4 Example 4.1 HomHom The following example is taken from Section 2 of [BR06]. The computation takes place over the ring R=ℤ/2^8ℤ, which is directly supported by the package Gauss. Here we compute the (infinite) long exact homology sequence of the covariant functor Hom(Hom(-,ℤ/2^7ℤ),ℤ/2^4ℤ) (and its left derived functors) applied to the short exact sequence 0 -> M_=ℤ/2^2ℤ --alpha_1--> M=ℤ/2^5ℤ --alpha_2--> _M=ℤ/2^3ℤ -> 0.  Example  gap> LoadPackage( "Modules" ); true gap> R := HomalgRingOfIntegers( 2^8 ); Z/256Z gap> Display( R );  gap> M := LeftPresentation( [ 2^5 ], R );  gap> Display( M ); Z/256Z/< ZmodnZObj(32,256) > gap> M;  gap> _M := LeftPresentation( [ 2^3 ], R );  gap> Display( _M ); Z/256Z/< ZmodnZObj(8,256) > gap> _M;  gap> alpha2 := HomalgMap( [ 1 ], M, _M );  gap> IsMorphism( alpha2 ); true gap> alpha2;  gap> Display( alpha2 );  1  the map is currently represented by the above 1 x 1 matrix gap> M_ := Kernel( alpha2 );  gap> alpha1 := KernelEmb( alpha2 );  gap> seq := HomalgComplex( alpha2 );  gap> Add( seq, alpha1 ); gap> seq;  gap> IsShortExactSequence( seq ); true gap> seq;  gap> Display( seq ); ------------------------- at homology degree: 2 Z/256Z/< ZmodnZObj(4,256) >  -------------------------  24  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 1 Z/256Z/< ZmodnZObj(32,256) >  -------------------------  1  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 0 Z/256Z/< ZmodnZObj(8,256) >  ------------------------- gap> K := LeftPresentation( [ 2^7 ], R );  gap> L := RightPresentation( [ 2^4 ], R );  gap> triangle := LHomHom( 4, seq, K, L, "t" );  gap> lehs := LongSequence( triangle );  gap> ByASmallerPresentation( lehs );  gap> IsExactSequence( lehs ); false gap> lehs;  gap> Assert( 0, IsLeftAcyclic( lehs ) ); gap> Display( lehs ); ------------------------- at homology degree: 14 Z/256Z/< ZmodnZObj(4,256) >  -------------------------  4  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 13 Z/256Z/< ZmodnZObj(8,256) >  -------------------------  6  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 12 Z/256Z/< ZmodnZObj(8,256) >  -------------------------  2  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 11 Z/256Z/< ZmodnZObj(4,256) >  -------------------------  4  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 10 Z/256Z/< ZmodnZObj(8,256) >  -------------------------  6  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 9 Z/256Z/< ZmodnZObj(8,256) >  -------------------------  2  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 8 Z/256Z/< ZmodnZObj(4,256) >  -------------------------  4  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 7 Z/256Z/< ZmodnZObj(8,256) >  -------------------------  6  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 6 Z/256Z/< ZmodnZObj(8,256) >  -------------------------  2  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 5 Z/256Z/< ZmodnZObj(4,256) >  -------------------------  4  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 4 Z/256Z/< ZmodnZObj(8,256) >  -------------------------  6  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 3 Z/256Z/< ZmodnZObj(8,256) >  -------------------------  2  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 2 Z/256Z/< ZmodnZObj(4,256) >  -------------------------  8  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 1 Z/256Z/< ZmodnZObj(16,256) >  -------------------------  1  the map is currently represented by the above 1 x 1 matrix ------------v------------ at homology degree: 0 Z/256Z/< ZmodnZObj(8,256) >  -------------------------