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Chapter 1

Introduction to scientific computing
with Python

J.R. Johansson (jrjohansson at gmail.com)

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

1.1 The role of computing in science

Science has traditionally been divided into experimental and theoretical disciplines, but during the last
several decades computing has emerged as a very important part of science. Scientific computing is often
closely related to theory, but it also has many characteristics in common with experimental work. It is
therefore often viewed as a new third branch of science. In most fields of science, computational work is an
important complement to both experiments and theory, and nowadays a vast majority of both experimental
and theoretical papers involve some numerical calculations, simulations or computer modeling.

In experimental and theoretical sciences there are well established codes of conducts for how results
and methods are published and made available to other scientists. For example, in theoretical sciences,
derivations, proofs and other results are published in full detail, or made available upon request. Likewise,
in experimental sciences, the methods used and the results are published, and all experimental data should
be available upon request. It is considered unscientific to withhold crucial details in a theoretical proof or
experimental method, that would hinder other scientists from replicating and reproducing the results.

In computational sciences there are not yet any well established guidelines for how source code and
generated data should be handled. For example, it is relatively rare that source code used in simulations for
published papers are provided to readers, in contrast to the open nature of experimental and theoretical work.
And it is not uncommon that source code for simulation software is withheld and considered a competitive
advantage (or unnecessary to publish).

However, this issue has recently started to attract increasing attention, and a number of editorials in
high-profile journals have called for increased openness in computational sciences. Some prestigious journals,
including Science, have even started to demand of authors to provide the source code for simulation software
used in publications to readers upon request.

Discussions are also ongoing on how to facilitate distribution of scientific software, for example as sup-
plementary materials to scientific papers.

1.1.1 References

e Reproducible Research in Computational Science, Roger D. Peng, Science 334, 1226 (2011).
e Shining Light into Black Boxes, A. Morin et al., Science 336, 159-160 (2012).


http://ipython.org/notebook.html
http://github.com/jrjohansson/scientific-python-lectures
http://github.com/jrjohansson/scientific-python-lectures
http://jrjohansson.github.io
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1126/science.1218263

e The case for open computer programs, D.C. Ince, Nature 482, 485 (2012).

1.2 Requirements on scientific computing

Replication and reproducibility are two of the cornerstones in the scientific method. With respect to
numerical work, complying with these concepts have the following practical implications:

e Replication: An author of a scientific paper that involves numerical calculations should be able to
rerun the simulations and replicate the results upon request. Other scientist should also be able to
perform the same calculations and obtain the same results, given the information about the methods
used in a publication.

e Reproducibility: The results obtained from numerical simulations should be reproducible with an
independent implementation of the method, or using a different method altogether.

In summary: A sound scientific result should be reproducible, and a sound scientific study should be
replicable.
To achieve these goals, we need to:

e Keep and take note of ezactly which source code and version that was used to produce data and figures
in published papers.

e Record information of which version of external software that was used. Keep access to the environment
that was used.

e Make sure that old codes and notes are backed up and kept for future reference.

e Be ready to give additional information about the methods used, and perhaps also the simulation
codes, to an interested reader who requests it (even years after the paper was published!).

e Ideally codes should be published online, to make it easier for other scientists interested in the codes
to access it.

1.2.1 Tools for managing source code

Ensuring replicability and reprodicibility of scientific simulations is a complicated problem, but there are
good tools to help with this:

e Revision Control System (RCS) software.

— Good choices include:
% git - http://git-scm.com
* mercurial - http://mercurial.selenic.com. Also known as hg.
* subversion - http://subversion.apache.org. Also known as svn.

e Online repositories for source code. Available as both private and public repositories.

— Some good alternatives are
* Github - http://www.github.com
* Bitbucket - http://www.bitbucket.com
* Privately hosted repositories on the university’s or department’s servers.

Note

Repositories are also excellent for version controlling manuscripts, figures, thesis files, data files, lab logs,
etc. Basically for any digital content that must be preserved and is frequently updated. Again, both public
and private repositories are readily available. They are also excellent collaboration tools!


http://dx.doi.org/doi:10.1038/nature10836

1.3 What is Python?

Python is a modern, general-purpose, object-oriented, high-level programming language.
General characteristics of Python:

e clean and simple language: Easy-to-read and intuitive code, easy-to-learn minimalistic syntax,
maintainability scales well with size of projects.
e expressive language: Fewer lines of code, fewer bugs, easier to maintain.

Technical details:

e dynamically typed: No need to define the type of variables, function arguments or return types.

e automatic memory management: No need to explicitly allocate and deallocate memory for vari-
ables and data arrays. No memory leak bugs.

e interpreted: No need to compile the code. The Python interpreter reads and executes the python
code directly.

Advantages:

e The main advantage is ease of programming, minimizing the time required to develop, debug and
maintain the code.

e Well designed language that encourage many good programming practices:

e Modular and object-oriented programming, good system for packaging and re-use of code. This often
results in more transparent, maintainable and bug-free code.

e Documentation tightly integrated with the code.

A large standard library, and a large collection of add-on packages.

Disadvantages:

e Since Python is an interpreted and dynamically typed programming language, the execution of python
code can be slow compared to compiled statically typed programming languages, such as C and Fortran.
Somewhat decentralized, with different environment, packages and documentation spread out at dif-
ferent places. Can make it harder to get started.

1.4 'What makes python suitable for scientific computing?

Python has a strong position in scientific computing:

— Large community of users, easy to find help and documentation.

Extensive ecosystem of scientific libraries and environments

— numpy: http://numpy.scipy.org - Numerical Python
— scipy: http://www.scipy.org - Scientific Python
— matplotlib: http://www.matplotlib.org - graphics library

Great performance due to close integration with time-tested and highly optimized codes written in C
and Fortran:

— blas, atlas blas, lapack, arpack, Intel MKL, ...

Good support for

— Parallel processing with processes and threads
— Interprocess communication (MPT)
— GPU computing (OpenCL and CUDA)

Readily available and suitable for use on high-performance computing clusters.

No license costs, no unnecessary use of research budget.


http://www.python.org/

1.4.1 The scientific python software stack

1.4.2 Python environments

Python is not only a programming language, but often also refers to the standard implementation of the
interpreter (technically referred to as CPython) that actually runs the python code on a computer.

There are also many different environments through which the python interpreter can be used. Each
environment has different advantages and is suitable for different workflows. One strength of python is that
it is versatile and can be used in complementary ways, but it can be confusing for beginners so we will start
with a brief survey of python environments that are useful for scientific computing.

1.4.3 Python interpreter

The standard way to use the Python programming language is to use the Python interpreter to run python
code. The python interpreter is a program that reads and execute the python code in files passed to it as
arguments. At the command prompt, the command python is used to invoke the Python interpreter.

For example, to run a file my-program.py that contains python code from the command prompt, use::

$ python my-program.py

We can also start the interpreter by simply typing python at the command line, and interactively type
python code into the interpreter.

This is often how we want to work when developing scientific applications, or when doing small calcula-
tions. But the standard python interpreter is not very convenient for this kind of work, due to a number of
limitations.

1.4.4 IPython

IPython is an interactive shell that addresses the limitation of the standard python interpreter, and it is a
work-horse for scientific use of python. It provides an interactive prompt to the python interpreter with a
greatly improved user-friendliness.

Some of the many useful features of IPython includes:

e Command history, which can be browsed with the up and down arrows on the keyboard.

e Tab auto-completion.

e In-line editing of code.

e Object introspection, and automatic extract of documentation strings from python objects like classes
and functions.

Good interaction with operating system shell.

e Support for multiple parallel back-end processes, that can run on computing clusters or cloud services
like Amazon EE2.

1.4.5 IPython notebook

IPython notebook is an HTMIL-based notebook environment for Python, similar to Mathematica or Maple.
It is based on the IPython shell, but provides a cell-based environment with great interactivity, where
calculations can be organized and documented in a structured way.

Although using a web browser as graphical interface, IPython notebooks are usually run locally, from the
same computer that run the browser. To start a new IPython notebook session, run the following command:

$ ipython notebook

from a directory where you want the notebooks to be stored. This will open a new browser window (or
a new tab in an existing window) with an index page where existing notebooks are shown and from which
new notebooks can be created.


http://en.wikipedia.org/wiki/CPython
http://ipython.org/notebook.html

1.4.6 Spyder

Spyder is a MATLAB-like IDE for scientific computing with python. It has the many advantages of a
traditional IDE environment, for example that everything from code editing, execution and debugging is
carried out in a single environment, and work on different calculations can be organized as projects in the
IDE environment.

Some advantages of Spyder:

e Powerful code editor, with syntax high-lighting, dynamic code introspection and integration with the
python debugger.

e Variable explorer, IPython command prompt.

e Integrated documentation and help.

1.5 Versions of Python

There are currently two versions of python: Python 2 and Python 3. Python 3 will eventually supercede
Python 2, but it is not backward-compatible with Python 2. A lot of existing python code and packages
has been written for Python 2, and it is still the most wide-spread version. For these lectures either version
will be fine, but it is probably easier to stick with Python 2 for now, because it is more readily available via
prebuilt packages and binary installers.

To see which version of Python you have, run

$ python --version
Python 2.7.3

$ python3.2 --version
Python 3.2.3

Several versions of Python can be installed in parallel, as shown above.

1.6 Installation

1.6.1 Conda

The best way set-up an scientific Python environment is to use the cross-platform package manager conda
from Continuum Analytics. First download and install miniconda http://conda.pydata.org/miniconda.html
or Anaconda (see below). Next, to install the required libraries for these notebooks, simply run:

$ conda install ipython ipython-notebook spyder numpy scipy sympy matplotlib cython

This should be sufficient to get a working environment on any platform supported by conda.

1.6.2 Linux

In Ubuntu Linux, to installing python and all the requirements run:
$ sudo apt-get install python ipython ipython-notebook

$ sudo apt-get install python-numpy python-scipy python-matplotlib python-sympy $ sudo apt-get install
spyder

10


http://code.google.com/p/spyderlib/

1.6.3 MacOS X

Macports

Python is included by default in Mac OS X, but for our purposes it will be useful to install a new python
environment using Macports, because it makes it much easier to install all the required additional packages.
Using Macports, we can install what we need with:

$ sudo port install py27-ipython +pyside+notebook+parallel+scientific
$ sudo port install py27-scipy py27-matplotlib py27-sympy
$ sudo port install py27-spyder

These will associate the commands python and ipython with the versions installed via macports (instead
of the one that is shipped with Mac OS X), run the following commands:

$ sudo port select python python27
$ sudo port select ipython ipython27

Fink

Or, alternatively, you can use the Fink package manager. After installing Fink, use the following command
to install python and the packages that we need:

$ sudo fink install python27 ipython-py27 numpy-py27 matplotlib-py27 scipy-py27 sympy-py27
$ sudo fink install spyder-mac-py27

1.6.4 Windows

Windows lacks a good packaging system, so the easiest way to setup a Python environment is to install a
pre-packaged distribution. Some good alternatives are:

e Enthought Python Distribution. EPD is a commercial product but is available free for academic use.
e Anaconda. The Anaconda Python distribution comes with many scientific computing and data science
packages and is free, including for commercial use and redistribution. It also has add-on products such
as Accelerate, IOPro, and MKL Optimizations, which have free trials and are free for academic use.
e Python(x,y). Fully open source.

Note
EPD and Anaconda are also available for Linux and Max OS X.

1.7 Further reading

e Python. The official Python web site.
e Python tutorials. The official Python tutorials.
e Think Python. A free book on Python.

1.8 Python and module versions

Since there are several different versions of Python and each Python package has its own release cycle and
version number (for example scipy, numpy, matplotlib, etc., which we installed above and will discuss in
detail in the following lectures), it is important for the reproducibility of an IPython notebook to record
the versions of all these different software packages. If this is done properly it will be easy to reproduce the
environment that was used to run a notebook, but if not it can be hard to know what was used to produce
the results in a notebook.

To encourage the practice of recording Python and module versions in notebooks, I've created a simple
IPython extension that produces a table with versions numbers of selected software components. I believe
that it is a good practice to include this kind of table in every notebook you create.

To install this IPython extension, use pip install version_information:
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In [1]: # you only need to do this once
'pip install --upgrade version_information

Collecting version-information
Installing collected packages: version-information
Successfully installed version-information-1.0.3

or alternatively run (deprecated method): you only need to do this once Now, to load the extension and
produce the version table
In [2]: %load_ext version_information

%version_information numpy, scipy, matplotlib, sympy, version_information

Out[2] :
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Chapter 2

Introduction to Python programming

J.R. Johansson (jrjohansson at gmail.com)

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

2.1 Python program files

Python code is usually stored in text files with the file ending “.py”:

myprogram.py

Every line in a Python program file is assumed to be a Python statement, or part thereof.

— The only exception is comment lines, which start with the character # (optionally preceded by
an arbitrary number of white-space characters, i.e., tabs or spaces). Comment lines are usually
ignored by the Python interpreter.

e To run our Python program from the command line we use:

$ python myprogram.py

On UNIX systems it is common to define the path to the interpreter on the first line of the program
(note that this is a comment line as far as the Python interpreter is concerned):

#!/usr/bin/env python

If we do, and if we additionally set the file script to be executable, we can run the program like this:
$ myprogram.py

2.1.1 Example:

In [1]: 1s scripts/hello-world#*.py

scripts/hello-world-in-swedish.py scripts/hello-world.py

In [2]: cat scripts/hello-world.py
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#!/usr/bin/env python

print("Hello world!")

In [3]: !python scripts/hello-world.py

Hello world!

2.1.2 Character encoding

The standard character encoding is ASCII, but we can use any other encoding, for example UTF-8. To
specify that UTF-8 is used we include the special line

# —*- coding: UTF-8 —*-
at the top of the file.
In [4]: cat scripts/hello-world-in-swedish.py

#!/usr/bin/env python
# —x— coding: UTF-8 —*-—

print("Hej varlden!")

In [5]: !python scripts/hello-world-in-swedish.py

Hej vérlden!

Other than these two optional lines in the beginning of a Python code file, no additional code is required
for initializing a program.

2.2 IPython notebooks

This file - an IPython notebook - does not follow the standard pattern with Python code in a text file.
Instead, an IPython notebook is stored as a file in the JSON format. The advantage is that we can mix
formatted text, Python code and code output. It requires the IPython notebook server to run it though,
and therefore isn’t a stand-alone Python program as described above. Other than that, there is no difference
between the Python code that goes into a program file or an IPython notebook.

2.3 Modules

Most of the functionality in Python is provided by modules. The Python Standard Library is a large collection
of modules that provides cross-platform implementations of common facilities such as access to the operating
system, file I/O, string management, network communication, and much more.

2.3.1 References

e The Python Language Reference: http://docs.python.org/2/reference/index.html
e The Python Standard Library: http://docs.python.org/2/library/
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To use a module in a Python program it first has to be imported. A module can be imported using the
import statement. For example, to import the module math, which contains many standard mathematical
functions, we can do:

In [6]: import math

This includes the whole module and makes it available for use later in the program. For example, we can
do:

In [7]: import math
x = math.cos(2 * math.pi)
print (x)
1.0
Alternatively, we can chose to import all symbols (functions and variables) in a module to the current

namespace (so that we don’t need to use the prefix “math.” every time we use something from the math
module:

In [8]: from math import *
x = cos(2 * pi)

print (x)

1.0

This pattern can be very convenient, but in large programs that include many modules it is often a good
idea to keep the symbols from each module in their own namespaces, by using the import math pattern.
This would elminate potentially confusing problems with name space collisions.

As a third alternative, we can chose to import only a few selected symbols from a module by explicitly
listing which ones we want to import instead of using the wildcard character *:

In [9]: from math import cos, pi
x = cos(2 * pi)
print (x)

1.0

2.3.2 Looking at what a module contains, and its documentation

Once a module is imported, we can list the symbols it provides using the dir function:
In [10]: import math
print(dir(math))

['_doc__', '__file__', '__name__', '__package__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
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And using the function help we can get a description of each function (almost .. not all functions have
docstrings, as they are technically called, but the vast majority of functions are documented this way).

In [11]: help(math.log)

Help on built-in function log in module math:

log(...)
log(x[, base])

Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.

In [12]: 1log(10)
Out [12]: 2.302585092994046
In [13]: log(10, 2)
Out[13]: 3.3219280948873626
We can also use the help function directly on modules: Try
help(math)

Some very useful modules form the Python standard library are os, sys, math, shutil, re, subprocess,
multiprocessing, threading.

A complete lists of standard modules for Python 2 and Python 3 are available at
http://docs.python.org/2/library/ and http://docs.python.org/3/library/, respectively.

2.4 Variables and types

2.4.1 Symbol names

Variable names in Python can contain alphanumerical characters a-z, A-Z, 0-9 and some special characters
such as _. Normal variable names must start with a letter.
By convention, variable names start with a lower-case letter, and Class names start with a capital letter.
In addition, there are a number of Python keywords that cannot be used as variable names. These
keywords are:

and, as, assert, break, class, continue, def, del, elif, else, except,
exec, finally, for, from, global, if, import, in, is, lambda, not, or,
pass, print, raise, return, try, while, with, yield

Note: Be aware of the keyword lambda, which could easily be a natural variable name in a scientific
program. But being a keyword, it cannot be used as a variable name.

2.4.2 Assignment

The assignment operator in Python is =. Python is a dynamically typed language, so we do not need to
specify the type of a variable when we create one.
Assigning a value to a new variable creates the variable:

In [14]: # wvartable assignments
x =1.0
my_variable = 12.2
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Although not explicitly specified, a variable does have a type associated with it. The type is derived from
the value that was assigned to it.

In [15]: type(x)
Out[15]: float
If we assign a new value to a variable, its type can change.
In [16]: x =1
In [17]: type(x)
OQut[17]: int
If we try to use a variable that has not yet been defined we get an NameError:

In [18]: print(y)

NameError Traceback (most recent call last)

<ipython-input-18-36b2093251cd> in <module>()
----> 1 print(y)

NameError: name 'y' is not defined

2.4.3 Fundamental types

In [19]: # integers
x =1
type (x)

Out[19]: int

In [20]: # float
x =1.0
type (x)

Out[20]: float

In [21]: # boolean

bl = True
b2 = False
type (bl)

Out[21]: bool

In [22]: # complez numbers: note the use of “j° to specify the imaginary part
x=1.0-1.0j
type (x)

Out [22] : complex
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In [23]: print(x)

(1-13)

In [24]: print(x.real, x.imag)

(1.0, -1.0)

2.4.4 Type utility functions

The module types contains a number of type name definitions that can be used to test if variables are of
certain types:

In [25]: import types

# print all types defined in the “types ™ module
print(dir(types))

['BooleanType', 'BufferType', 'BuiltinFunctionType', 'BuiltinMethodType', 'ClassType', 'CodeType', 'Com

In [26]: x = 1.0

# check if the vartable = is a float
type(x) is float

Out[26]: True

In [27]: # check tf the wariable z <s an nt
type(x) is int

Out [27]: False
We can also use the isinstance method for testing types of variables:
In [28]: isinstance(x, float)
Out[28]: True
2.4.5 Type casting
In [29]: x = 1.5

print(x, type(x))

(1.5, <type 'float'>)

In [30]: x = int(x)

print(x, type(x))

(1, <type 'int'>)
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In [31]: z = complex(x)

print(z, type(z))

((1+0j), <type 'complex'>)

In [32]: x = float(z)

TypeError Traceback (most recent call last)

<ipython-input-32-e719cc7b3e96> in <module>()
---=> 1 x = float(z)

TypeError: can't convert complex to float

Complex variables cannot be cast to floats or integers. We need to use z.real or z.imag to extract the
part of the complex number we want:

In [33]: y = bool(z.real)
print(z.real, " -> ", y, type(y))
y = bool(z.imag)

print(z.imag, " -> ", y, type(y))

(1.0, " -> ', True, <type 'bool'>)
(0.0, ' -> ', False, <type 'bool'>)

2.5 Operators and comparisons

Most operators and comparisons in Python work as one would expect:
e Arithmetic operators +, -, *, /, // (integer division), "**’ power

In [34]: 1 +2, 1 -2, 1%2,1/ 2

Out[34]: (3, -1, 2, 0)

In [35]: 1.0 + 2.0, 1.0 - 2.0, 1.0 * 2.0, 1.0 / 2.0

Qut[35]: (3.0, -1.0, 2.0, 0.5)

In [36]: # Integer diviston of float numbers
3.0 // 2.0

Out[36]: 1.0

In [37]: # Note! The power operators in python isn't =, but **
2 *x 2
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Qut[37]: 4

Note: The / operator always performs a floating point division in Python 3.x. This is not true in Python
2.x, where the result of / is always an integer if the operands are integers. to be more specific, 1/2 = 0.5
(float) in Python 3.x, and 1/2 = 0 (int) in Python 2.x (but 1.0/2 = 0.5 in Python 2.x).

e The boolean operators are spelled out as the words and, not, or.
In [38]: True and False
Out [38]: False
In [39]: not False
Out[39]: True
In [40]: True or False
Out [40]: True
e Comparison operators >, <, >= (greater or equal), <= (less or equal), == equality, is identical.
In [41]: 2 > 1, 2 < 1
Out[41]: (True, False)
In [42]: 2 > 2, 2 < 2
Out[42]: (False, False)
In [43]: 2 >= 2, 2 <=2
Out [43]: (True, True)

In [44]: # equality
(1,21 == [1,2]

Out [44] : True

In [45]: # objects identical?
11 = 12 = [1,2]

11 is 12

Out [45]: True

2.6 Compound types: Strings, List and dictionaries
2.6.1 Strings
Strings are the variable type that is used for storing text messages.

In [46]: s = "Hello world"
type(s)

Out [46]: str
In [47]: # length of the string: the number of characters
len(s)
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Out[47]: 11

In [48]: # replace a substring in a string with somethign else
s2 = s.replace("world", "test")
print(s2)

Hello test

We can index a character in a string using []:
In [49]: s[O]
Qut[49]: 'H'

Heads up MATLAB users: Indexing start at 0!
We can extract a part of a string using the syntax [start:stopl], which extracts characters between
index start and stop -1 (the character at index stop is not included):

In [50]: s[0:5]
Out [50]: 'Hello'
In [51]: s[4:5]
Out[51]: 'o!

If we omit either (or both) of start or stop from [start:stop], the default is the beginning and the
end of the string, respectively:

In [52]: s[:5]
Out[52]: 'Hello'

In [53]: s[6:]

Out [53]: 'world'

In [54]: s[:]
Out[54]: 'Hello world'

We can also define the step size using the syntax [start:end:step] (the default value for step is 1, as
we saw above):

In [55]: s[::1]
OQut[55]: 'Hello world'
In [56]: s[::2]

Out[56]: 'Hlowrd'

This  technique is  called slicing. Read  more about the syntax  here:
http://docs.python.org/release/2.7.3 /library /functions.html?highlight=slice#slice
Python has a wvery rich set of functions for text processing. See for example

http://docs.python.org/2/library /string.html for more information.
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String formatting examples

In [57]: print("strl", "str2", "str3") # The print statement concatenates strings with a space

('strl', 'str2', 'str3')

In [58]: print("strl", 1.0, False, -1j) # The print statements converts all arguments to strings

('strl', 1.0, False, -1j)

In [59]: print("strl" + "str2" + "str3") # strings added with + are concatenated without space

stristr2str3

In [60]: print("value = %f" % 1.0) # we can use C-style string formatting

value = 1.000000
In [61]: # this formatting creates a string

82 = "valuel = 7.2f. value2 = %d" % (3.1415, 1.5)

print(s2)
valuel = 3.14. value2 = 1
In [62]: # alternative, more intuitive way of formatting a string

s3 = 'valuel = {0}, value2 = {1}'.format(3.1415, 1.5)

print(s3)

valuel = 3.1415, value2 = 1.5

2.6.2 List

Lists are very similar to strings, except that each element can be of any type.
The syntax for creating lists in Python is [...]:

In [63]: 1 = [1,2,3,4]

print (type(1))
print (1)

<type 'list'>
[1’ 2’ 3’ 4]

We can use the same slicing techniques to manipulate lists as we could use on strings:

In [64]: print(1)
print(1[1:3]1)

print(1[::2])
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[1, 2, 3, 4]
[2, 3]
[1, 3]

Heads up MATLAB users: Indexing starts at 0!
In [65]: 1[0]
Out[65]: 1

Elements in a list do not all have to be of the same type:
In [66]: 1 = [1, 'a', 1.0, 1-1j]

print (1)

(1, 'a', 1.0, (1-1j)]

Python lists can be inhomogeneous and arbitrarily nested:

In [67]: nested_list = [1, [2, [3, [4, [51111]

nested_list

Out[67]: [1, [2, [3, [4, [5111]1]

Lists play a very important role in Python. For example they are used in loops and other flow control
structures (discussed below). There are a number of convenient functions for generating lists of various

types, for example the range function:

In [68]: start = 10
stop = 30
step = 2

range(start, stop, step)

Out[68]: [10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

In [69]: # in python 3 range generates an interator, which can be converted to a list using

# It has no effect in python 2
list(range(start, stop, step))

Out[69]: [10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

In [70]: list(range(-10, 10))

Out[70]: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [71]: s

OQut[71]: 'Hello world'

In [72]: # convert a string to a list by type casting:

s2 = list(s)

s2
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Out[72]: [IHI’ lel’ lll, lll, Iol, 1 I, IW‘, Iol, Irl, Ill, Id|]

In [73]: # sorting lists
s2.sort()

print(s2)

Adding, inserting, modifying, and removing elements from lists

In [74]: # create a new empty list
1=11

add an elements using “append’
.append ("A")
.append("d")
.append("d")

o 3

print (1)

We can modify lists by assigning new values to elements in the list. In technical jargon, lists are mutable.

In [75]: 1[1] = "p"
1 [2] - npu

print (1)

[IAI, |p|, |p|]

In [76]: 1[1:3] = ["d", "d"]

print (1)

Insert an element at an specific index using insert

In [77]: 1l.insert(0, "i")
1.insert(1, "n"
1l.insert(2, "s")
1l.insert(3, "e")
1l.insert(4, "r")
1.insert(5, "t")

print (1)

Remove first element with specific value using ‘remove’
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In [78]: 1l.remove("A")

print (1)

Remove an element at a specific location using del:

In [79]: del 1[7]
del 1[6]

print (1)

See help(1list) for more details, or read the online documentation

2.6.3 Tuples

Tuples are like lists, except that they cannot be modified once created, that is they are immutable.
In Python, tuples are created using the syntax (..., ..., ...),oreven ...,

In [80]: point = (10, 20)

print(point, type(point))

((10, 20), <type 'tuple'>)

In [81]: point = 10, 20

print(point, type(point))

((10, 20), <type 'tuple'>)

We can unpack a tuple by assigning it to a comma-separated list of variables:

In [82]: x, y = point

print("x =", x)
print("y =||’ y)

('x =', 10)
(Iy =|’ 20)

If we try to assign a new value to an element in a tuple we get an error:

In [83]: point[0] = 20

TypeError Traceback (most recent call last)
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<ipython-input-83-aclc641labdca> in <module>()
----> 1 point[0] = 20

TypeError: 'tuple' object does not support item assignment

2.6.4 Dictionaries

Dictionaries are also like lists, except that each element is a key-value pair. The syntax for dictionaries is
{keyl : valuel, ...}:

In [84]: params = {"parameterl" : 1.0
"parameter2" : 2.0,
"parameter3d" 3.0

print (type (params))
print (params)

<type 'dict'>
{'parameterl': 1.0, 'parameter3': 3.0, 'parameter2': 2.0}

" + str(params["parameter1"]))
" + str(params["parameter2"]))

In [85]: print("parameteril
print ("parameter?2

print("parameter3 = " + str(params['"parameter3"]))
parameterl = 1.0
parameter2 = 2.0
parameter3d = 3.0
In [86]: params["parameterl"] = "A"
params ["parameter2"] = "B"

# add a new entry
params ["parameter4"] = "D"

print ("parameterl = " + str(params["parameterl"]))
print ("parameter2 = " + str(params["parameter2"]))
print ("parameter3 = " + str(params["parameter3"]))
print ("parameter4 = " + str(params["parameter4"]))

parameterl = A

parameter2 = B

parameter3d = 3.0

parameter4 = D

2.7 Control Flow

2.7.1 Conditional statements: if, elif, else

The Python syntax for conditional execution of code uses the keywords if, elif (else if), else:

26



In [87]: statementl = False
statement2 = False

if statementl:
print("statementl is True")

elif statement2:
print("statement2 is True")

else:
print("statementl and statement2 are False")

statementl and statement2 are False

For the first time, here we encounted a peculiar and unusual aspect of the Python programming language:
Program blocks are defined by their indentation level.
Compare to the equivalent C code:

if (statementl)

{

printf ("statementl is True\n");
}
else if (statement?2)
{

printf("statement2 is True\n");
}
else
{

printf("statementl and statement2 are False\n");
}

In C blocks are defined by the enclosing curly brakets { and }. And the level of indentation (white space
before the code statements) does not matter (completely optional).

But in Python, the extent of a code block is defined by the indentation level (usually a tab or say four
white spaces). This means that we have to be careful to indent our code correctly, or else we will get syntax
€ITOorS.

Examples:

In [88]: statementl = statement2 = True

if statementl:
if statement2:
print("both statementl and statement2 are True")

both statementl and statement2 are True

In [89]: # Bad indentation!
if statementl:
if statement2:
print("both statementl and statement2 are True") # this line is not properly indented

File "<ipython-input-89-78979cdecf37>", line 4
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print("both statementl and statement2 are True") # this line is not properly indented

IndentationError: expected an indented block

In [90]: statementl = False

if statementl:
print("printed if statementl is True")

print("still inside the if block")

In [91]: if statementl:
print("printed if statementl is True")

print ("now outside the if block")

now outside the if block

2.8 Loops

In Python, loops can be programmed in a number of different ways. The most common is the for loop,
which is used together with iterable objects, such as lists. The basic syntax is:

2.8.1 for loops:

In [92]: for x in [1,2,3]:
print (x)

The for loop iterates over the elements of the supplied list, and executes the containing block once for
each element. Any kind of list can be used in the for loop. For example:

In [93]: for x in range(4): # by default range start at O
print (x)

W N = O

Note: range(4) does not include 4 !

In [94]: for x in range(-3,3):
print (x)
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N =

In [95]: for word in ["scientific", "computing", "with", "python"]:
print (word)

scientific
computing
with
python

To iterate over key-value pairs of a dictionary:

In [96]: for key, value in params.items():
print(key + " = " + str(value))

parameter4 = D
parameterl =
parameter3
parameter?2

I
o w =
o

Sometimes it is useful to have access to the indices of the values when iterating over a list. We can use
the enumerate function for this:

In [97]: for idx, x in enumerate(range(-3,3)):
print (idx, x)

0, -3)
1, -2)
(2, -1
(3, 0)
(4, 1
(5, 2)

2.8.2 List comprehensions: Creating lists using for loops:

A convenient and compact way to initialize lists:

In [98]: 11 = [x**2 for x in range(0,5)]

print(11)

[03 1) 43 9’ 16]

2.8.3 while loops:
In [99]: i =0

while i < 5:
print (i)
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print ("done")

> W NN E~- O

done

Note that the print ("done") statement is not part of the while loop body because of the difference in
indentation.

2.9 Functions

A function in Python is defined using the keyword def, followed by a function name, a signature within
parentheses (), and a colon :. The following code, with one additional level of indentation, is the function
body.

In [100]: def funcO0():
print("test")

In [101]: func0(Q)

test

Optionally, but highly recommended, we can define a so called “docstring”, which is a description of the
functions purpose and behaivor. The docstring should follow directly after the function definition, before
the code in the function body.

In [102]: def funci(s):
Print a string '

s' and tell how many characters <t has

print(s + " has " + str(len(s)) + " characters")
In [103]: help(funcl)

Help on function funcl in module _main__:

func1(s)
Print a string 's' and tell how many characters it has

In [104]: funci("test")

test has 4 characters

Functions that returns a value use the return keyword:

30



In [105]: def square(x):

nmnn

Return the square of x.
mnimn

return x ** 2
In [106]: square(4)
Out[106]: 16
We can return multiple values from a function using tuples (see above):

In [107]: def powers(x):

nmnn

Return a few powers of x.
nimn

return x **x 2, X %k 3, x **x 4
In [108]: powers(3)
Out[108]: (9, 27, 81)

In [109]: x2, x3, x4 = powers(3)

print (x3)
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2.9.1 Default argument and keyword arguments
In a definition of a function, we can give default values to the arguments the function takes:

In [110]: def myfunc(x, p=2, debug=False):
if debug:
print("evaluating myfunc for x = " + str(x) + " using exponent p = " + str(p))
return x**p

If we don’t provide a value of the debug argument when calling the the function myfunc it defaults to
the value provided in the function definition:

In [111]: myfunc(5)
Out[111]: 25
In [112]: myfunc(5, debug=True)

evaluating myfunc for x = 5 using exponent p = 2

Out[112]: 25

If we explicitly list the name of the arguments in the function calls, they do not need to come in the same
order as in the function definition. This is called keyword arguments, and is often very useful in functions
that takes a lot of optional arguments.

In [113]: myfunc(p=3, debug=True, x=7)

evaluating myfunc for x = 7 using exponent p = 3
Out [113]: 343
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2.9.2 Unnamed functions (lambda function)

In Python we can also create unnamed functions, using the lambda keyword:

In [114]: f1 = lambda x: x**2
# 1s equivalent to

def f2(x):
return x**2

In [115]: £1(2), £2(2)
Out[115]: (4, 4)

This technique is useful for example when we want to pass a simple function as an argument to another
function, like this:

In [116]: # map %is a built-in python function
map(lambda x: x**2, range(-3,4))

Out[116]: [9, 4, 1, 0, 1, 4, 9]

In [117]: # in python 3 we can use “list(...)  to convert the tterator to an explicit list
list(map(lambda x: x**2, range(-3,4)))

Qut[117]: [9, 4, 1, 0, 1, 4, 9]

2.10 Classes

Classes are the key features of object-oriented programming. A class is a structure for representing an object
and the operations that can be performed on the object.

In Python a class can contain attributes (variables) and methods (functions).

A class is defined almost like a function, but using the class keyword, and the class definition usually
contains a number of class method definitions (a function in a class).

e Each class method should have an argument self as its first argument. This object is a self-reference.

e Some class method names have special meaning, for example:

— __init__: The name of the method that is invoked when the object is first created.

— __str__: A method that is invoked when a simple string representation of the class is needed, as
for example when printed.

— There are many more, see http://docs.python.org/2/reference/datamodel. html#special-method-
names

In [118]: class Point:

nmnn

Sitmple class for representing a point in a Cartesian coordinate system.

nmnn

def init__(self, x, y):

mmnn

Create a new Point at z, y.
mimn

self.x
self.y

]
»

]
<
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def translate(self, dx, dy):

nmnn

Translate the point by dxr and dy in the = and y direction.
mimn

self.x += dx

self.y += dy

def __str__(self):
return("Point at [%f, %f]" % (self.x, self.y))

To create a new instance of a class:

In [119]: pl = Point(0, 0) # this will <nvoke the __init__ method in the Point class

print(p1) # this will invoke the __str__ method

Point at [0.000000, 0.000000]

To invoke a class method in the class instance p:

In [120]: p2 = Point(l, 1)
pl.translate(0.25, 1.5)

print (p1)
print (p2)

Point at [0.250000, 1.500000]
Point at [1.000000, 1.000000]

Note that calling class methods can modifiy the state of that particular class instance, but does not effect
other class instances or any global variables.

That is one of the nice things about object-oriented design: code such as functions and related variables
are grouped in separate and independent entities.

2.11 Modules

One of the most important concepts in good programming is to reuse code and avoid repetitions.

The idea is to write functions and classes with a well-defined purpose and scope, and reuse these instead
of repeating similar code in different part of a program (modular programming). The result is usually that
readability and maintainability of a program is greatly improved. What this means in practice is that our
programs have fewer bugs, are easier to extend and debug/troubleshoot.

Python supports modular programming at different levels. Functions and classes are examples of tools
for low-level modular programming. Python modules are a higher-level modular programming construct,
where we can collect related variables, functions and classes in a module. A python module is defined in
a python file (with file-ending .py), and it can be made accessible to other Python modules and programs
using the import statement.

Consider the following example: the file mymodule.py contains simple example implementations of a
variable, function and a class:

In [121]: %Jfile mymodule.py
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Example of a python module. Contains a variable called my_variable,

a function called my_function, and a class called MyClass.

my_variable = 0
def my_function():
nnn

Example function
nnn

return my_variable

class MyClass:

Example class.

def __init__(self):
self.variable = my_variable

def set_variable(self, new_value):

Set self.variable to a new value
nnn

self.variable = new_value

def get_variable(self):
return self.variable

Writing mymodule.py

We can import the module mymodule into our Python program using import:
In [122]: import mymodule

Use help(module) to get a summary of what the module provides:
In [123]: help(mymodule)

Help on module mymodule:

NAME
mymodule

FILE
/Users/rob/Desktop/scientific-python-lectures/mymodule.py

DESCRIPTION
Example of a python module. Contains a variable called my_variable,
a function called my_function, and a class called MyClass.

CLASSES
MyClass
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class MyClass
| Example class.

Methods defined here:
__init__(self)
get_variable(self)

set_variable(self, new_value)
Set self.variable to a new value

FUNCTIONS
my_function()
Example function

DATA
my_variable = 0

In [124]: mymodule.my_variable
Out[124]: O

In [125]: mymodule.my_function()
Out[125]: O

In [126]: my_class = mymodule.MyClass()
my_class.set_variable(10)
my_class.get_variable()

Out[126]: 10
If we make changes to the code in mymodule.py, we need to reload it using reload:
In [127]: reload(mymodule) # works only in python 2

Out[127]: <module 'mymodule' from 'mymodule.pyc'>

2.12 Exceptions

In Python errors are managed with a special language construct called “Exceptions”. When errors occur
exceptions can be raised, which interrupts the normal program flow and fallback to somewhere else in the
code where the closest try-except statement is defined.

To generate an exception we can use the raise statement, which takes an argument that must be an
instance of the class BaseException or a class derived from it.

In [128]: raise Exception("description of the error")

Exception Traceback (most recent call last)
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<ipython-input-128-8f47ba831d5a> in <module>()
----> 1 raise Exception("description of the error")

Exception: description of the error

A typical use of exceptions is to abort functions when some error condition occurs, for example:

def my_function(arguments) :

if not verify(arguments):
raise Exception("Invalid arguments")

# rest of the code goes here

To gracefully catch errors that are generated by functions and class methods, or by the Python interpreter
itself, use the try and except statements:

try:
# normal code goes here
except:
# code for error handling goes here
# this code is not executed unless the code
# above generated an error

For example:

In [129]: try:
print("test")
# generate an error: the wvariable test is mot defined
print (test)
except:
print ("Caught an exception")

test
Caught an exception

To get information about the error, we can access the Exception class instance that describes the
exception by using for example:

except Exception as e:

In [130]: try:
print("test")
# generate an error: the variable test is not defined
print (test)
except Exception as e:
print ("Caught an exception:" + str(e))

test
Caught an exception:name 'test' is not defined
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2.13 Further reading

e http://www.python.org - The official web page of the Python programming language.

e http://www.python.org/dev/peps/pep-0008 - Style guide for Python programming. Highly recom-
mended.

e http://www.greenteapress.com/thinkpython/ - A free book on Python programming.

e Python Essential Reference - A good reference book on Python programming.

2.14 Versions

In [131]: %load_ext version_information

%version_information

Qut[131]:
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Chapter 3

Numpy - multidimensional data
arrays

J.R. Johansson (jrjohansson at gmail.com)

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

In [1]: # what is this line all about?!? Answer in lecture 4
Jmatplotlib inline
import matplotlib.pyplot as plt

3.1 Introduction

The numpy package (module) is used in almost all numerical computation using Python. It is a package
that provide high-performance vector, matrix and higher-dimensional data structures for Python. It is
implemented in C and Fortran so when calculations are vectorized (formulated with vectors and matrices),
performance is very good.

To use numpy you need to import the module, using for example:

In [2]: from numpy import *

In the numpy package the terminology used for vectors, matrices and higher-dimensional data sets is
array.

3.2 Creating numpy arrays

There are a number of ways to initialize new numpy arrays, for example from

e a Python list or tuples
e using functions that are dedicated to generating numpy arrays, such as arange, linspace, etc.
e reading data from files

3.2.1 From lists
For example, to create new vector and matrix arrays from Python lists we can use the numpy . array function.

In [3]: # a vector: the argument to the array function is a Python list
v = array([1,2,3,4])
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Out[3]: array([1, 2, 3, 41)

In [4]: # a matriz: the argument to the array function is a nested Python list
M = array([[1, 2], [3, 411D

M

Out[4]: array([[1, 2],
[3, 411)

The v and M objects are both of the type ndarray that the numpy module provides.
In [5]: type(v), type(M)
Out[5]: (numpy.ndarray, numpy.ndarray)

The difference between the v and M arrays is only their shapes. We can get information about the shape
of an array by using the ndarray.shape property.

In [6]: v.shape
Out[6]: (4,)
In [7]: M.shape
Out[7]: (2, 2)
The number of elements in the array is available through the ndarray.size property:
In [8]: M.size
Out([8]: 4
Equivalently, we could use the function numpy.shape and numpy.size
In [9]: shape(M)
Out[9]: (2, 2)
In [10]: size(M)
OQut[10]: 4

So far the numpy.ndarray looks awefully much like a Python list (or nested list). Why not simply use
Python lists for computations instead of creating a new array type?
There are several reasons:

e Python lists are very general. They can contain any kind of object. They are dynamically typed. They
do not support mathematical functions such as matrix and dot multiplications, etc. Implementing such
functions for Python lists would not be very efficient because of the dynamic typing.

e Numpy arrays are statically typed and homogeneous. The type of the elements is determined when
the array is created.

e Numpy arrays are memory efficient.

e Because of the static typing, fast implementation of mathematical functions such as multiplication and
addition of numpy arrays can be implemented in a compiled language (C and Fortran is used).

Using the dtype (data type) property of an ndarray, we can see what type the data of an array has:

In [11]: M.dtype
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Out[11]: dtype('int64')
We get an error if we try to assign a value of the wrong type to an element in a numpy array:

In [12]: M[0,0] = "hello"

ValueError Traceback (most recent call last)

<ipython-input-12-a09d72434238> in <module>()
-——-=> 1 M[0,0] = "hello"

ValueError: invalid literal for long() with base 10: 'hello’

If we want, we can explicitly define the type of the array data when we create it, using the dtype keyword
argument:

In [13]: M = array([[1, 2], [3, 4]], dtype=complex)

M

Out[13]: array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.311)

Common data types that can be used with dtype are: int, float, complex, bool, object, etc.
We can also explicitly define the bit size of the data types, for example: int64, int16, float128,
complex128.

3.2.2 Using array-generating functions

For larger arrays it is inpractical to initialize the data manually, using explicit python lists. Instead we can
use one of the many functions in numpy that generate arrays of different forms. Some of the more common
are:

arange

In [14]: # create a range
x = arange(0, 10, 1) # arguments: start, stop, step

X
OQut[14]: array([O, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [15]: x = arange(-1, 1, 0.1)

X

Out[15]: array([ -1.00000000e+00, =-9.00000000e-01, -8.00000000e-01,
-7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
-4.00000000e-01, -3.00000000e-01, -2.00000000e-01,
-1.00000000e-01, -2.22044605e-16, 1.00000000e-01,
2.00000000e-01, 3.00000000e-01, 4.00000000e-01,
5.00000000e-01, 6.00000000e-01, 7.00000000e-01,
8.00000000e-01, 9.00000000e-011)
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linspace and logspace

In [16]: # using linspace, both end points ARE included
linspace(0, 10, 25)

Out[16]: array([ O. , 0.41666667, 0.83333333, 1.25 ,
1.66666667, 2.08333333, 2.5 , 2.91666667,
3.33333333, 3.75 , 4.16666667, 4.58333333,
5. , 5.41666667, 5.83333333, 6.25 ,
6.66666667, 7.08333333, 7.5 s 7.91666667,
8.33333333, 8.75 , 9.16666667, 9.58333333, 10.
In [17]: logspace(0, 10, 10, base=e)
Out[17]: array([ 1.00000000e+00, 3.03773178e+00, 9.22781435e+00,
2.80316249e+01, 8.51525577e+01, 2.58670631e+02,
7.85771994e+02, 2.38696456e+03, 7.25095809e+03,
2.20264658e+04])
mgrid
In [18]: x, y = mgrid[0:5, 0:5] # similar to meshgrid in MATLAB
In [19]: x
Out[19]: array([[O, O, O, O, O],
[1: 1: 1’ 19 1]’
[2, 2’ 2’ 2, 2]’
[3, 3, 3! 3’ 3],
(4, 4, 4, 4, 4]11)

In [20]: ¥y

Out[20]: array([[O, 1, 2, 3, 4],
[0’ 17 2’ 3, 4]’
[0, 1, 2! 3’ 4],
o, 1, 2, 3, 4],
o, 1, 2, 3, 41D

random data

In [21]: from numpy import random
In [22]: # wniform random numbers in [0,1]
random.rand(5,5)
Out[22]: array([[ 0.92932506, 0.19684255, 0.736434 , 0.18125714, 0.70905038],
[ 0.18803573, 0.9312815 , 0.1284532 , 0.38138008, 0.36646481],
[ 0.53700462, 0.02361381, 0.97760688, 0.73296701, 0.23042324],
[ 0.9024635 , 0.20860922, 0.67729644, 0.68386687, 0.49385729],
[ 0.95876515, 0.29341553, 0.37520629, 0.29194432, 0.64102804]11])
In [23]: # standard normal distributed random numbers
random.randn(5,5)
Out[23]: array([[ 0.117907 , -1.57016164, 0.78256246, 1.45386709, 0.54744436],
[ 2.30356897, -0.28352021, -0.9087325 , 1.2285279 , -1.00760167],
[ 0.72216801, 0.77507299, -0.37793178, -0.31852241, 0.84493629],
[-0.10682252, 1.15930142, -0.47291444, -0.69496967, -0.58912034],
[ 0.34513487, -0.92389516, -0.216978 , 0.42153272, 0.866501011])



diag

In [24]: # a diagonal matriz
diag([1,2,3])

Out[24]: array([[1, O, 0],
[0, 2, O]’
[0, 0, 311)

In [25]: # diagonal with offset from the main diagonal
diag([1,2,3], k=1)

Out[25]: array([[O, 1, O, O],
(o, o, 2, o],
(o, o, o, 31,
[0, 0, 0, 011)
zeros and ones
In [26]: zeros((3,3))
Out[26]: array([[ 0., 0., 0.1,
[o0., 0., 0.1,
[ 0., 0., 0.1
In [27]: ones((3,3))
Out[27]: array([[ 1., 1., 1.1,
(1., 1., 1.1,
1., 1., 1.1

3.3 TFile I/O

3.3.1 Comma-separated values (CSV)

A very common file format for data files is comma-separated values (CSV), or related formats such as TSV
(tab-separated values). To read data from such files into Numpy arrays we can use the numpy.genfromtxt
function. For example,

In [28]: 'head stockholm_td_adj.dat

1800 1 1 -6.1 -6.1 -6.1 1
1800 1 2 -15.4 -15.4 -15.4 1
1800 1 3 -15.0 -15.0 -15.01
1800 1 4 -19.3 -19.3 -19.31
1800 1 5 -16.8 -16.8 -16.81
1800 1 6 -11.4 -11.4 -11.41
1800 1 7 -7.6 -7.6 -7.6 1
1800 1 8 -7.1 -7.1 -7.11
1800 1 9 -10.1 -10.1 -10.1 1
1800 1 10 -9.5 -9.5 -9.5 1

In [29]: data = genfromtxt('stockholm_td_adj.dat')

In [30]: data.shape
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Out [30]: (77431, 7)

In [31]: fig, ax = plt.subplots(figsize=(14,4))
ax.plot(datal:,0]+datal:,1]/12.0+datal:,2]/365, datal:,5])
ax.axis('tight')
ax.set_title('tempeatures in Stockholm')
ax.set_xlabel('year')
ax.set_ylabel('temperature (C)');

tempeatures in Stockholm

temperature {C}

1800 1850 1900 1950 2000

Using numpy . savetxt we can store a Numpy array to a file in CSV format:

In [32]: M = random.rand(3,3)

M

Out[32]: array([[ 0.77872576, 0.40043577, 0.66254019],
[ 0.60410063, 0.4791374 , 0.8237106 ],
[ 0.96856318, 0.15459644, 0.96082399]1])

In [33]: savetxt("random-matrix.csv", M)
In [34]: 'cat random-matrix.csv

7.787257639287014088e-01 4.004357670697732408e-01 6.625401863466899854e-01
6.041006328761111543e-01 4.791373994963619154e-01 8.237105968088237473e-01
9.685631757740569281e-01 1.545964379103705877e-01 9.608239852111523094e-01

In [35]: savetxt('"random-matrix.csv", M, fmt='J,.5f') # fmt specifies the format

!cat random-matrix.csv

0.77873 0.40044 0.66254
0.60410 0.47914 0.82371
0.96856 0.15460 0.96082

3.3.2 Numpy’s native file format

Useful when storing and reading back numpy array data. Use the functions numpy.save and numpy.load:

In [36]: save("random-matrix.npy", M)

!file random-matrix.npy
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random-matrix.npy: data

In [37]: load("random-matrix.npy")

Out[37]: array([[ 0.77872576, 0.40043577, 0.66254019],
[ 0.60410063, 0.4791374 , 0.8237106 1],
[ 0.96856318, 0.15459644, 0.96082399]1])

3.4 More properties of the numpy arrays
In [38]: M.itemsize # bytes per element

Out[38]: 8

In [39]: M.nbytes # number of bytes

Out[39]: 72

In [40]: M.ndim # number of dimensions

Out[40]: 2

3.5 Manipulating arrays
3.5.1 Indexing
We can index elements in an array using square brackets and indices:

In [41]: # v is a vector, and has only one dimenstion, taking one index
v[0]

Out[41]: 1

In [42]: # M 4is a matriz, or a 2 dimensional array, taking two indices
M[1,1]

Out[42]: 0.47913739949636192

If we omit an index of a multidimensional array it returns the whole row (or, in general, a N-1 dimensional
array)

In [43]: M

Out [43]: array([[ 0.77872576, 0.40043577, 0.66254019],
[ 0.60410063, 0.4791374 , 0.8237106 1],
[ 0.96856318, 0.15459644, 0.96082399]]1)

In [44]: M[1]

Out [44]: array([ 0.60410063, 0.4791374 , 0.8237106 1)
The same thing can be achieved with using : instead of an index:

In [45]: M[1,:] # row 1

Out [45]: array([ 0.60410063, 0.4791374 , 0.8237106 1)
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In [46]: M[:,1] # column 1

Out[46]: array([ 0.40043577, 0.4791374 , 0.15459644])
We can assign new values to elements in an array using indexing:

In [47]: M[0,0] =1

In [48]: M

Out[48]: array([[ 1. , 0.40043577, 0.66254019],
[ 0.60410063, 0.4791374 , 0.8237106 ],
[ 0.96856318, 0.15459644, 0.96082399]1])

In [49]: # also works for rows and columns

M[1,:] =0
M[:,2] = -1
In [50]: M
Out [60]: array([[ 1. , 0.40043577, -1. 1,
[ o. , O. , —-1. 1,
[ 0.96856318, 0.15459644, -1. 1)

3.5.2 Index slicing

Index slicing is the technical name for the syntax M[lower:upper:step] to extract part of an array:

In [51]: A = array([1,2,3,4,5])
A

Out[51]: array([1, 2, 3, 4, 51)
In [52]: A[1:3]
Out [52]: array([2, 31)

Array slices are mutable: if they are assigned a new value the original array from which the slice was
extracted is modified:

In [53]: A[1:3] = [-2,-3]
A

Out[53]: array([ 1, -2, -3, 4, 51)

We can omit any of the three parameters in M[lower:upper:step]:
In [54]: A[::] # lower, upper, step all take the default values
Out [54]: array([ 1, -2, -3, 4, 51)
In [55]: A[::2] # step is 2, lower and upper defaults to the beginning and end of the array
Out [55]: array([ 1, -3, 5])
In [56]: A[:3] # first three elements

Out[56]: array([ 1, -2, -31)
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In [57]: A[3:]1 # elements from index 3
Out [57]: array([4, 5])
Negative indices counts from the end of the array (positive index from the begining):
In [58]: A = array([1,2,3,4,5])
In [59]: A[-1] # the last element in the array
Out[59]: 5
In [60]: A[-3:] # the last three elements
Out [60]: array([3, 4, 5])
Index slicing works exactly the same way for multidimensional arrays:

In [61]: A = array([[n+m*10 for n in range(5)] for m in range(5)])
A

Qut[61]: array([[ O, 1, 2, 3, 4],
[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
[30, 31, 32, 33, 34],
[40, 41, 42, 43, 44]])

In [62]: # a block from the original array
Al1:4, 1:4]

Out[62]: array([[11, 12, 13],
[21, 22, 23],
[31, 32, 33]11)

In [63]: # strides
Al::2, ::2]

Out[63]: array([[ 0, 2, 4],
[20, 22, 24],
[40, 42, 4411)

3.5.3 Fancy indexing

Fancy indexing is the name for when an array or list is used in-place of an index:

In [64]: row_indices = [1, 2, 3]
Alrow_indices]

Out[64]: array([[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
[30, 31, 32, 33, 34]1])

In [65]: col_indices = [1, 2, -1] # remember, indexr -1 means the last element
Alrow_indices, col_indices]

Out[65]: array([11, 22, 34]1)
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We can also use index masks: If the index mask is an Numpy array of data type bool, then an element
is selected (True) or not (False) depending on the value of the index mask at the position of each element:

In [66]: B = array([n for n in range(5)])
B

Out[66]: array([0, 1, 2, 3, 4])

In [67]: row_mask = array([True, False, True, False, False])
B[row_mask]

Out[67]: array([0, 2])

In [68]: # same thing
row_mask = array([1,0,1,0,0], dtype=bool)
B[row_mask]

Out[68]: array([0, 2])

This feature is very useful to conditionally select elements from an array, using for example comparison
operators:

In [69]: = arange(0, 10, 0.5)

X

X

Qut[69]: array([ 0. , 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5.,
5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5])

In [70]: mask = (5 < x) * (x < 7.5)

mask

Out[70]: array([False, False, False, False, False, False, False, False, False,
False, False, True, True, True, True, False, False, False,
False, False], dtype=bool)

In [71]: x[mask]

Qut[71]: array([ 5.5, 6. , 6.5, 7. 1)

3.6 Functions for extracting data from arrays and creating arrays

3.6.1 where

The index mask can be converted to position index using the where function
In [72]: indices = where(mask)
indices
Out[72]: (array([11, 12, 13, 141),)
In [73]: x[indices] # this indezing is equivalent to the fancy tindezing z[mask]

Out[73]: array([ 5.5, 6. , 6.5, 7. 1)
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3.6.2 diag

With the diag function we can also extract the diagonal and subdiagonals of an array:
In [74]: diag(A)

Out [74]: array([ 0, 11, 22, 33, 44])

In [75]: diag(A, -1)

Out[75]: array([10, 21, 32, 431)

3.6.3 take

The take function is similar to fancy indexing described above:

In [76]: v2 = arange(-3,3)
v2

Out[76]: array([‘B, -23 _1, O’ 1) 2])

In [77]: row_indices = [1, 3, 5]
v2[row_indices] # fancy indexzing

Out[77]: array([-2, O, 2])
In [78]: v2.take(row_indices)
Out[78]: array([-2, O, 2])
But take also works on lists and other objects:
In [79]: take([-3, -2, -1, O, 1, 2], row_indices)

Out[79]: array([-2, 0, 2])

3.6.4 choose

Constructs an array by picking elements from several arrays:

In [80]: which = [1, 0, 1, 0]
choices = [[-2,-2,-2,-2], [5,5,5,5]]

choose(which, choices)

Out[80]: array([ 5, -2, 5, -2])

3.7 Linear algebra
Vectorizing code is the key to writing efficient numerical calculation with Python/Numpy. That means

that as much as possible of a program should be formulated in terms of matrix and vector operations, like
matrix-matrix multiplication.
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3.7.1 Scalar-array operations

We can use the usual arithmetic operators to multiply, add, subtract, and divide arrays with scalar numbers.
In [81]: v1 = arange(0, 5)

In [82]: v1 * 2

Out[82]: array([0, 2, 4, 6, 8])

In [83]: v1 + 2

Out[83]: array([2, 3, 4, 5, 6])

In [84]: A * 2, A + 2

Out[84]: (array([[ O, 2, 4, 6, 8],
[20, 22, 24, 26, 28],
[40, 42, 44, 46, 48],
[60, 62, 64, 66, 68],
(80, 82, 84, 86, 88]1), array([[ 2, 3, 4, 5, 6],
[12, 13, 14, 15, 16],
[22, 23, 24, 25, 26],
[32, 33, 34, 35, 36],
[42, 43, 44, 45, 46]11))

3.7.2 Element-wise array-array operations

When we add, subtract, multiply and divide arrays with each other, the default behaviour is element-wise
operations:

In [85]: A * A # element-wise multiplication

Out[85]: array([[ 0, 1, 4, 9, 16],
[ 100, 121, 144, 169, 196],
[ 400, 441, 484, 529, 576],
[ 900, 961, 1024, 1089, 1156],
[1600, 1681, 1764, 1849, 1936]11]1)

In [86]: vl * v1
Out[86]: array([ O, 1, 4, 9, 16])
If we multiply arrays with compatible shapes, we get an element-wise multiplication of each row:
In [87]: A.shape, vl.shape
Out[87]1: ((5, 5), (5,))

In [88]: A * vi

Out[88]: array([[ O, 1, 4, 9, 16],
[ o, 11, 24, 39, 56],
[ o, 21, 44, 69, 96],
[ o0, 31, 64, 99, 136],
[ o, 41, 84, 129, 176]]1)
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3.7.3 DMatrix algebra

What about matrix mutiplication? There are two ways. We can either use the dot function, which applies
a matrix-matrix, matrix-vector, or inner vector multiplication to its two arguments:

In [89]: dot(A, A)

Out[89]: array([[ 300, 310, 320, 330, 340],
[1300, 1360, 1420, 1480, 15401,
[2300, 2410, 2520, 2630, 2740],
[3300, 3460, 3620, 3780, 3940],
[4300, 4510, 4720, 4930, 5140]])

In [90]: dot(A, v1)

Out[90]: array([ 30, 130, 230, 330, 430])
In [91]: dot(v1l, v1)

Out[91]: 30

Alternatively, we can cast the array objects to the type matrix. This changes the behavior of the standard
arithmetic operators +, -, * to use matrix algebra.

In [92]: M = matrix(A)
v = matrix(vl).T # make it a column vector

In [93]: v

Out[93]: matrix([[0],
1],
[2],
31,
[411)

In [94]: M * M

Out[94]: matrix([[ 300, 310, 320, 330, 340],
[1300, 1360, 1420, 1480, 1540],
[2300, 2410, 2520, 2630, 2740],
[3300, 3460, 3620, 3780, 3940],
[4300, 4510, 4720, 4930, 5140]11)

In [95]: M * v

Out[95]: matrix([[ 307,
[130],
[230],
[330],
[43011)

In [96]: # inner product
v.T * v

Out[96]: matrix([[30]1)

In [97]: # with matriz objects, standard matriz algebra applies
v + Mxv
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Out[97]: matrix([[ 30],
[131],
[232],
[333],
[43411)

If we try to add, subtract or multiply objects with incomplatible shapes we get an error:
In [98]: v = matrix([1,2,3,4,5,6]).T
In [99]: shape(M), shape(v)
Out[99]: ((5, B5), (6, 1))

In [100]: M * v

ValueError Traceback (most recent call last)

<ipython-input-100-995fb48adOcc> in <module>()
> 1 M* v

/Users/rob/miniconda/envs/py27-spl/1ib/python2.7/site-packages/numpy/matrixlib/defmatrix.pyc in

339 if isinstance(other, (N.ndarray, list, tuple))
340 # This promotes 1-D vectors to row vectors
--> 341 return N.dot(self, asmatrix(other))
342 if isscalar(other) or not hasattr(other, '__rmul__')
343 return N.dot(self, other)

ValueError: shapes (5,5) and (6,1) not aligned: 5 (dim 1) != 6 (dim 0)

See also the related functions: inner, outer, cross, kron, tensordot. Try for example help (kron).

3.7.4 Array/Matrix transformations

Above we have used the .T to transpose the matrix object v. We could also have used the transpose
function to accomplish the same thing.
Other mathematical functions that transform matrix objects are:

In [101]: C = matrix([[1j, 2371, [3j, 4311)
C
Out[101]: matrix([[ 0.+1.j, 0.+2.j],
[ 0.+43.3, 0.+4.31D)

In [102]: conjugate(C)

o

Out[102]: matrix([[ 0.-1.j, 0.-2.j],
[ 0.-3.5, 0.-4.311)

Hermitian conjugate: transpose + conjugate

o1



In [103]: C.H

Out[103]: matrix([[ 0.-1.j, O0.-
[0.-2.j, ©

We can extract the real and imaginary parts of complex-valued arrays using real and imag:
In [104]: real(C) # same as: C.real

Out[104] : matrix([[ 0., 0.1,
[o., 0.11)

In [105]: imag(C) # same as: C.imag

Out[105]: matrix([[ 1., 2.7,
[ 3., 4.1

Or the complex argument and absolute value
In [106]: angle(C+1) # heads up MATLAB Users, angle is used instead of arg

Out[106]: array([[ 0.78539816, 1.10714872],
[ 1.24904577, 1.32581766]]1)

In [107]: abs(C)

Out[107]: matrix([[ 1., 2
(3., 4.

3.7.5 Matrix computations

Inverse

In [108]: linalg.inv(C) # equivalent to C.I

Out[108]: matrix([[ 0.+2.j , 0.-1.j 1],
[ 0.-1.5j, 0.+0.5j11)

In [109]: C.I * C

Out[109]: matrix([[ 1.00000000e+00+0.j, 4.44089210e-16+0.j],
[ 0.00000000e+00+0.j,  1.00000000e+00+0.31])

Determinant

In [110]: linalg.det(C)

Out[110]: (2.0000000000000004+073)

In [111]: linalg.det(C.I)

Out[111]: (0.50000000000000011+07)

3.7.6 Data processing

Often it is useful to store datasets in Numpy arrays. Numpy provides a number of functions to calculate
statistics of datasets in arrays.
For example, let’s calculate some properties from the Stockholm temperature dataset used above.

In [112]: # reminder, the tempeature dataset is stored in the data variable:
shape (data)

Out[112]: (77431, 7)
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mean

In [113]: # the temperature data ts in column 3
mean(datal:,3])

Out[113]: 6.1971096847515854

The daily mean temperature in Stockholm over the last 200 years has been about 6.2 C.

standard deviations and variance

In [114]: std(datal:,3]), var(datal:,3])
Out[114]: (8.2822716213405734, 68.596023209663414)

min and max

In [115]: # lowest daily average temperature
datal:,3] .min()

Out[115]: -25.800000000000001

In [116]: # highest daily average temperature
datal:,3] .max()

Out[116]: 28.300000000000001

sum, prod, and trace

In [117]: d = arange(0, 10)
d

Out[117]: array([O, 1, 2, 3, 4, 5, 6, 7, 8, 91)

In [118]: # sum up all elements
sum(d)

Out[118]: 45

In [119]: # product of all elements
prod(d+1)

Out[119]: 3628800

In [120]: # cummulative sum
cumsum(d)

Out[120]: array([ O, 1, 3, 6, 10, 15, 21, 28, 36, 45])

In [121]: # cummulative product
cumprod (d+1)

Out[121]: array([ 1, 2, 6, 24, 120,
40320, 362880, 3628800])

In [122]: # same as: diag(4).sum()
trace(4)

Out[122]: 110

53

720,

5040,



3.7.7 Computations on subsets of arrays

We can compute with subsets of the data in an array using indexing, fancy indexing, and the other methods
of extracting data from an array (described above).
For example, let’s go back to the temperature dataset:

In [123]: 'head -n 3 stockholm_td_adj.dat

1800 1 1 -6.1 -6.1 -6.1 1
1800 1 2 -156.4 -15.4 -15.4 1
1800 1 3 -16.0 -15.0 -15.01

The dataformat is: year, month, day, daily average temperature, low, high, location.
If we are interested in the average temperature only in a particular month, say February, then we can
create a index mask and use it to select only the data for that month using:

In [124]: unique(datal:,1]) # the month column takes values from 1 to 12

Out[124]: array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.,
12.1)

In [125]: mask_feb = datal:,1] ==

In [126]: # the temperature data s in column 3
mean (data[mask_feb,3])

Out[126]: -3.2121095707365961

With these tools we have very powerful data processing capabilities at our disposal. For example, to
extract the average monthly average temperatures for each month of the year only takes a few lines of code:

In [127]: months = arange(1,13)
monthly_mean = [mean(datal[datal:,1] == month, 3]) for month in months]

fig, ax = plt.subplots()

ax.bar (months, monthly_mean)
ax.set_xlabel("Month")
ax.set_ylabel("Monthly avg. temp.");
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3.7.8 Calculations with higher-dimensional data

When functions such as min, max, etc. are applied to a multidimensional arrays, it is sometimes useful to
apply the calculation to the entire array, and sometimes only on a row or column basis. Using the axis
argument we can specify how these functions should behave:

In [128]: m = random.rand(3,3)
m

Out[128]: array([[ 0.2850926 , 0.17302017, 0.17748378],
[ 0.80070487, 0.45527067, 0.61277451],
[ 0.11372793, 0.43608703, 0.87010206]]1)

In [129]: # global maz
m.max ()

Out[129]: 0.87010206156754955

In [130]: # maz in each column
m.max (axis=0)

Out[130]: array([ 0.80070487, 0.45527067, 0.87010206])

In [131]: # maz in each Tow
m.max (axis=1)

Out[131]: array([ 0.2850926 , 0.80070487, 0.87010206])
Many other functions and methods in the array and matrix classes accept the same (optional) axis

keyword argument.
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3.8 Reshaping, resizing and stacking arrays

The shape of an Numpy array can be modified without copying the underlaying data, which makes it a fast
operation even for large arrays.

In [132]:

Out[132]:

In [133]:

In [134]:

Out[134]:

In [135]:

Out[135] :

In [136]:

Out[136] :

A

array([[ 0, 1, 2, 3, 4],
[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
[30, 31, 32, 33, 34],
[40, 41, 42, 43, 4411)

n, m = A.shape

B = A.reshape((1,n*m))
B

array([[ O, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31,
32, 33, 34, 40, 41, 42, 43, 4411)

B[0,0:5] = 5 # modify the array

B

array([[ 5, 5, 5, 5, 5, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31,
32, 33, 34, 40, 41, 42, 43, 4411)

A # and the original variable is also changed. B is only a different view of the same data

array([[ 5, 5, 5, 5, 5],
[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
[30, 31, 32, 33, 34],
[40, 41, 42, 43, 44]])

We can also use the function flatten to make a higher-dimensional array into a vector. But this function
create a copy of the data.

In [137]:

Out [137]:

In [138]:

Out[138]:

In [139]:

Out[139]:

B = A.flatten()

B

array([ 5, 5, 5, 5, 5, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31,
32, 33, 34, 40, 41, 42, 43, 441)

B[0:5] = 10

B

array([10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31,
32, 33, 34, 40, 41, 42, 43, 441)

A # now A has not changed, because B's data ts a copy of A's, not refering to the same data

array([[ 5, 5, 5, 5, 5],
[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
[30, 31, 32, 33, 34],
[40, 41, 42, 43, 4411)
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3.9 Adding a new dimension: newaxis

With newaxis, we can insert new dimensions in an array, for example converting a vector to a column or
row matrix:

In [140]: v = array([1,2,3])
In [141]: shape(v)
Out[141]: (3,)

In [142]: # make a column matriz of the wector w
v[:, newaxis]

Out[142]: array([[1],
(21,
(3111

In [143]: # column matriz
v[:,newaxis] .shape

Out[143]: (3, 1)

In [144]: # row matriz
v [newaxis, :].shape

Out[144]: (1, 3)

3.10 Stacking and repeating arrays

Using function repeat, tile, vstack, hstack, and concatenate we can create larger vectors and matrices
from smaller ones:

3.10.1 tile and repeat
In [145]: a = array([[1, 2], [3, 411)

In [146]: # repeat each element 3 times
repeat(a, 3)

Out[146]: array([1l, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4])

In [147]: # tile the matriz 3 times
tile(a, 3)

Out[147]: array([[1, 2, 1, 2, 1, 2],
[3, 4, 3, 4, 3, 411)

3.10.2 concatenate

In [148]: b = array([[5, 611)

In [149]: concatenate((a, b), axis=0)

Out[149]: array([[1, 2],
[3, 4],
[5, 611D

In [150]: concatenate((a, b.T), axis=1)

Out[150]: array([[1, 2, 5],
[3, 4, 611)
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3.10.3 hstack and vstack
In [151]: vstack((a,b))

Out[151]: array([[1, 2],
[3, 4] ’
(5, 611)

In [152]: hstack((a,b.T))

Out[152]: array([[1, 2, 5],
[3, 4, 611)

3.11 Copy and “deep copy”

To achieve high performance, assignments in Python usually do not copy the underlaying objects. This is
important for example when objects are passed between functions, to avoid an excessive amount of memory
copying when it is not necessary (technical term: pass by reference).

In [163]: A = array([[1, 2], [3, 411)

A
Out[153]: array([[1, 2],
(3, 41D
In [154]: # now B is referring to the same array data as A
B=A
In [155]: # changing B affects A
B[0,0] = 10
B

Out[155]: array([[10, 2],
[ 3, 41D

In [156]: A

Out[156]: array([[10, 2],
[3, 41D

If we want to avoid this behavior, so that when we get a new completely independent object B copied
from A, then we need to do a so-called “deep copy” using the function copy:

In [157]: B = copy(A)

In [168]: # now, <f we modify B, A is not affected
B[0,0] = -5

B

Out[158]: array([[-5, 21,
[3, 41D

In [159]: A
Out[159]: array([[10, 2],
[ 3, 41D
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3.12 Iterating over array elements

Generally, we want to avoid iterating over the elements of arrays whenever we can (at all costs). The reason
is that in a interpreted language like Python (or MATLAB), iterations are really slow compared to vectorized
operations.

However, sometimes iterations are unavoidable. For such cases, the Python for loop is the most conve-
nient way to iterate over an array:

In [160]: v = array([1,2,3,4])

for element in v:
print (element)

S wWw N

In [161]: M = array([[1,2], [3,411)

for row in M:
print("row", row)

for element in row:
print (element)

('row', array([1, 2]))
1
2
('row', array([3, 4]1))
3
4

When we need to iterate over each element of an array and modify its elements, it is convenient to use
the enumerate function to obtain both the element and its index in the for loop:

In [162]: for row_idx, row in enumerate(M):

print("row_idx", row_idx, "

" row)

row
for col_idx, element in enumerate(row):
print("col_idx", col_idx, "element", element)

# update the matrixz M: square each element
M[lrow_idx, col_idx] = element ** 2

('row.idx', 0, 'row', array([1, 2]))

0

('col_idx', 0, 'element', 1)
('col_idx', 1, 'element', 2)
('row.idx', 1, 'row', array([3, 4]1))
('col_idx', 0, 'element', 3)
('col_idx', 1, 'element', 4)

In [163]: # each element in M is now squared
M
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Out[163]: array([[ 1, 4],
[ 9, 1611)

3.13 Vectorizing functions

As mentioned several times by now, to get good performance we should try to avoid looping over elements
in our vectors and matrices, and instead use vectorized algorithms. The first step in converting a scalar
algorithm to a vectorized algorithm is to make sure that the functions we write work with vector inputs.

In [164]: def Theta(x):

nmnn

Scalar implemenation of the Heaviside step function.

nmnn

if x >= 0:
return 1
else:
return O

In [165]: Theta(array([-3,-2,-1,0,1,2,31))

ValueError Traceback (most recent call last)

<ipython-input-165-6658efdd2f22> in <module>()
----> 1 Theta(array([-3,-2,-1,0,1,2,3]))

<ipython-input-164-9a0cb13d93d4> in Theta(x)

3 Scalar implemenation of the Heaviside step function.
4 nnn
-—->5 if x >= 0:
6 return 1
7 else:

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or

OK, that didn’t work because we didn’t write the Theta function so that it can handle a vector input. ..

To get a vectorized version of Theta we can use the Numpy function vectorize. In many cases it can
automatically vectorize a function:

In [166]: Theta_vec = vectorize(Theta)
In [167]: Theta_vec(array([-3,-2,-1,0,1,2,3]1))
Out[167]: array([O, O, O, 1, 1, 1, 11)

We can also implement the function to accept a vector input from the beginning (requires more effort
but might give better performance):

In [168]: def Theta(x):

nmnn

Vector-aware implemenation of the Heaviside step function.

mmnn

return 1 * (x >= 0)
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In [169]: Theta(array([-3,-2,-1,0,1,2,31))
Out[169]: array([0, O, O, 1, 1, 1, 11)

In [170]: # still works for scalars as well
Theta(-1.2), Theta(2.6)

Out[170]: (0, 1)

3.14 Using arrays in conditions

When using arrays in conditions,for example if statements and other boolean expressions, one needs to use
any or all, which requires that any or all elements in the array evalutes to True:

In [171]: M

Out[171]: array([[ 1, 4],
[ 9, 16]11)

In [172]: if (M > 5).any():
print("at least one element in M is larger than 5")
else:
print("no element in M is larger than 5")

at least one element in M is larger than 5

In [173]: if (M > 5).all(0):
print("all elements in M are larger than 5")
else:
print("all elements in M are not larger than 5")

all elements in M are not larger than 5

3.15 Type casting

Since Numpy arrays are statically typed, the type of an array does not change once created. But we can
explicitly cast an array of some type to another using the astype functions (see also the similar asarray
function). This always create a new array of new type:

In [174]: M.dtype
Out[174]: dtype('int64')
In [175]: M2 = M.astype(float)

M2

Out[175]: array([[ 1., 4.7,
[ 9., 16.11)

In [176]: M2.dtype
Out[176]: dtype('float64')
In [177]: M3 = M.astype(bool)

M3

Out[177]: array([[ True, Truel,
[ True, Truell, dtype=bool)
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3.16 Further reading
e http://numpy.scipy.org

e http://scipy.org/Tentative_ NumPy_Tutorial
e http://scipy.org/NumPy_for_Matlab_Users - A Numpy guide for MATLAB users.

3.17 Versions

In [178]: Yreload_ext version_information

Jversion_information numpy

Out[178]:
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Chapter 4

SciPy - Library of scientific
algorithms for Python

J.R. Johansson (jrjohansson at gmail.com)

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

In [1]: # what is this line all about? Answer in lecture 4
Jmatplotlib inline
import matplotlib.pyplot as plt
from IPython.display import Image

4.1 Introduction

The SciPy framework builds on top of the low-level NumPy framework for multidimensional arrays, and
provides a large number of higher-level scientific algorithms. Some of the topics that SciPy covers are:

Special functions (scipy.special)
Integration (scipy.integrate)

Optimization (scipy.optimize)
Interpolation (scipy.interpolate)

Fourier Transforms (scipy.fitpack)

Signal Processing (scipy.signal)

Linear Algebra (scipy.linalg)

Sparse Eigenvalue Problems (scipy.sparse)
Statistics (scipy.stats)

Multi-dimensional image processing (scipy.ndimage)
File IO (scipy.io)

Each of these submodules provides a number of functions and classes that can be used to solve problems
in their respective topics.

In this lecture we will look at how to use some of these subpackages.

To access the SciPy package in a Python program, we start by importing everything from the scipy
module.

In [2]: from scipy import *
If we only need to use part of the SciPy framework we can selectively include only those modules we are

interested in. For example, to include the linear algebra package under the name la, we can do:
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In [3]: import scipy.linalg as la

4.2 Special functions

A large number of mathematical special functions are important for many computional physics problems.
SciPy provides implementations of a very extensive set of special functions. For details, see the list of
functions in the reference documention at http://docs.scipy.org/doc/scipy/reference/special. html#module-
scipy.special.

To demonstrate the typical usage of special functions we will look in more detail at the Bessel functions:

In [4]: #
# The scipy.special module includes a large number of Bessel-functions
# Here we will use the functions jn and yn, which are the Bessel functions
# of the first and second kind and real-valued order. We also include the
# function jn_zeros and yn_zeros that gives the zeroes of the functions jn
# and yn.
#
from scipy.special import jn, yn, jn_zeros, yn_zeros

In [5]: n =0 # order
x = 0.0

# Bessel function of first kind
print "J_%d(%f) = Jf" % (n, x, jn(n, x))

x=1.0
# Bessel function of second kind
print "Y_%d(%£) = %f" % (n, x, yn(n, x))

1.000000
0.088257

J_0(0.000000)
Y_0(1.000000)

In [6]: x = linspace(0, 10, 100)

fig, ax = plt.subplots()
for n in range(4):

ax.plot(x, jn(n, x), label=r"$J_%d(x)$" % n)
ax.legend();
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In [7]: # zeros of Bessel functions
n =0 # order
m = 4 # number of roots to compute
jn_zeros(n, m)

Out[7]: array([ 2.40482556, 5.52007811, 8.65372791,

4.3 Integration

4.3.1 Numerical integration: quadrature

Numerical evaluation of a function of the type
b

/ f(z)dz

8 10

11.79153444])

a
is called numerical quadrature, or simply quadature. SciPy provides a series of functions for different
kind of quadrature, for example the quad, dblquad and tplquad for single, double and triple integrals,

respectively.

In [8]: from scipy.integrate import quad, dblquad, tplquad

The quad function takes a large number of optional arguments, which can be used to fine-tune the

behaviour of the function (try help(quad) for details).
The basic usage is as follows:

In [9]: # define a simple function for the integrand
def f(x):
return x

In [10]: x_lower
X_upper

O # the lower limit of x
1 # the upper limit of z
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val, abserr = quad(f, x_lower, x_upper)

print "integral value =", val, ", absolute error =", abserr

integral value = 0.5 , absolute error = 5.55111512313e-15

If we need to pass extra arguments to integrand function we can use the args keyword argument:

In [11]: def integrand(x, n):

mmnn

Bessel function of first kind and order n.

mmwn

return jn(n, x)

x_lower
X_upper

0O # the lower limit of x
10 # the upper limit of x

val, abserr = quad(integrand, x_lower, x_upper, args=(3,))

print val, abserr

0.736675137081 9.3891268825e-13

For simple functions we can use a lambda function (name-less function) instead of explicitly defining a

function for the integrand:

In [12]: val, abserr = quad(lambda x: exp(-x ** 2), -Inf, Inf)
print "numerical =", val, abserr

analytical = sqrt(pi)
print "analytical =", analytical

numerical = 1.77245385091 1.42026367809e-08
analytical 1.77245385091

As show in the example above, we can also use ‘Inf’ or -Inf’ as integral limits.

Higher-dimensional integration works in the same way:

In [13]: def integrand(x, y):
return exp(-x**2-y**2)

x_lower = O

x_upper = 10
y_lower = 0O
y_upper = 10

val, abserr = dblquad(integrand, x_lower, x_upper, lambda x :

print val, abserr
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0.785398163397 1.63822994214e-13

Note how we had to pass lambda functions for the limits for the y integration, since these in general can
be functions of x.

4.4 Ordinary differential equations (ODEs)

SciPy provides two different ways to solve ODEs: An API based on the function odeint, and object-oriented
API based on the class ode. Usually odeint is easier to get started with, but the ode class offers some finer
level of control.

Here we will use the odeint functions. For more information about the class ode, try help(ode). It
does pretty much the same thing as odeint, but in an object-oriented fashion.

To use odeint, first import it from the scipy.integrate module

In [14]: from scipy.integrate import odeint, ode

A system of ODEs are usually formulated on standard form before it is attacked numerically. The
standard form is:

y = f(yv t)

where

y=[y1(t),y2(t), ., yn(t)]

and f is some function that gives the derivatives of the function y;(t). To solve an ODE we need to know
the function f and an initial condition, y(0).

Note that higher-order ODEs can always be written in this form by introducing new variables for the
intermediate derivatives.

Once we have defined the Python function f and array y-O (that is f and y(0) in the mathematical
formulation), we can use the odeint function as:

y_t = odeint(f, y_0, t)

where t is and array with time-coordinates for which to solve the ODE problem. y_t is an array with
one row for each point in time in t, where each column corresponds to a solution y_i(t) at that point in
time.

We will see how we can implement f and y_0 in Python code in the examples below.

Example: double pendulum

Let’s consider a physical example: The double compound pendulum, described in some detail here:
http://en.wikipedia.org/wiki/Double_pendulum

In [15]: Image(url='http://upload.wikimedia.org/wikipedia/commons/c/c9/Double-compound-pendulum-dimensi
Out[15]: <IPython.core.display.Image object>

The equations of motion of the pendulum are given on the wiki page:

0, — 6 2po, —3cos(01—02)pe,
1= ez~ 16—9cos?(0:—02)

9‘ 6 8p92*3COS(91792)p91
2= me 16—9cos?(01—062)

2
pgl = 7%77?{2 |:0.10.2 sin(91 - 02) + 3% sin 91:|
1

T2
To make the Python code simpler to follow, let’s introduce new variable names and the vector notation:
T = [017927100171702]

_ 6 2x3—3cos(zi—w2)Ts
1= e 16—9 cos?(z1—x2)

p92 = 7m;€2 |:79.1é2 sin(91 — 82) —+ %Sin 02i|
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Gy — O 8z4—3cos(z1—x2)T3
2 = mi?2 T16—9cos? (w1 —z2)

iy = —iml? [@1do sin(zy — x2) + 39 sina, |
T4 = 7%m€2 [7:].315'52 sin(ml — 1272) + %Sinxg]
In [16]: g = 9.82
L=20.5
m= 0.1

def dx(x, t):

mnnn

The right-hand stde of the pendulum ODE

mmnn

x1, x2, x3, x4 = x[0], x[1]1, x[2], x[3]

dx1l = 6.0/ (m*L**2) * (2 * x3 - 3 * cos(x1-x2) * x4)/(16 - 9 * cos(x1-x2)**2)
dx2 = 6.0/ (m*L**2) * (8 * x4 - 3 * cos(x1-x2) * x3)/(16 - 9 * cos(x1-x2)**2)
dx3 = -0.5 * m * L**x2 x ( dxl * dx2 * sin(x1-x2) + 3 * (g/L) * sin(x1))

dx4 = -0.5 * m * L**2 * (-dxl * dx2 * sin(x1-x2) + (g/L) * sin(x2))

return [dx1, dx2, dx3, dx4]

In [17]: # choose an initial state
x0 = [pi/4, pi/2, 0, 0]

In [18]: # time coodinate to solve the ODE for: from O to 10 seconds
t = linspace(0, 10, 250)

In [19]: # solve the ODE problem
x = odeint(dx, x0, t)

In [20]: # plot the angles as a function of time

fig, axes = plt.subplots(l,2, figsize=(12,4))
axes[0] .plot(t, x[:, 0], 'r', label="thetal")
axes[0] .plot(t, x[:, 1], 'b', label="theta2")

x1
yi

+ L * sin(x[:, 01)
- L * cos(x[:, 01)

x2 = x1 + L * sin(x[:, 1])
y2 =yl - L * cos(x[:, 11)

axes[1] .plot(xl, y1, 'r', label="pendulumi")
axes[1] .plot(x2, y2, 'b', label="pendulum2")
axes[1] .set_ylim([-1, 0])
axes[1] .set_x1im([1, -1]1);
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Simple annimation of the pendulum motion. We will see how to make better animation in Lecture 4.

In [21]:

In [22]:

from IPython.display import display, clear_output

import time

fig, ax = plt.subplots(figsize=(4,4))

for t_idx, tt in enumerate(t[:200]):

x1 = + L * sin(x[t_idx, 0])
yl = - L * cos(x[t_idx, 0])

x2 = x1 + L * sin(x[t_idx, 1])
y2 = y1 - L * cos(x[t_idx, 1])

ax.cla()

ax.plot ([0, x11, [0, y11, 'r.-")

ax.plot([x1, x2], [y1, y2l,
ax.set_ylim([-1.5, 0.5])
ax.set_x1im([1, -1])

clear_output ()
display(fig)

time.sleep(0.1)

Ib._l)
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Example: Damped harmonic oscillator

ODE problems are important in computational physics, so we will look at one more example: the damped har-
monic oscillation. This problem is well described on the wiki page: http://en.wikipedia.org/wiki/Damping
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The equation of motion for the damped oscillator is:

A2z dx

@ +2CWOE +w§x =0

where x is the position of the oscillator, wy is the frequency, and ( is the damping ratio. To write this
second-order ODE on standard form we introduce p = ‘é—f:

d

£ = —2(wop — wp

dz

=p

In the implementation of this example we will add extra arguments to the RHS function for the ODE,
rather than using global variables as we did in the previous example. As a consequence of the extra arguments
to the RHS, we need to pass an keyword argument args to the odeint function:

In [23]: def dy(y, t, zeta, w0):

nmnn

The right-hand side of the damped oscillator UDE

mmnn

x, p = ylol, y[1]

dx = p
dp = -2 * zeta * w0 * p - wO**2 * x

return [dx, dp]

In [24]: # 4nitial state:
y0 = [1.0, 0.0]

In [25]: # time coodinate to solve the ODE for
t = linspace(0, 10, 1000)
w0 = 2*pix1.0
In [26]: # solve the ODE problem for three different values of the damping ratio

y1l = odeint(dy, yO, t, args=(0.0, w0)) # undamped

y2 = odeint(dy, y0, t, args=(0.2, w0)) # under damped
t,
€,

y3 = odeint(dy, yo0, args=(1.0, w0)) # critial damping
y4 = odeint(dy, yo0, args=(5.0, w0)) # over damped

In [27]: fig, ax = plt.subplots()
ax.plot(t, y1[:,0], 'k', label="undamped", linewidth=0.25)
ax.plot(t, y2[:,0], 'r', label="under damped")
ax.plot(t, y3[:,0], 'b', label=r"critical damping")
ax.plot(t, y4[:,0], 'g', label="over damped")
ax.legend();
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4.5 Fourier transform

Fourier transforms are one of the universal tools in computational physics, which appear over and over again
in different contexts. SciPy provides functions for accessing the classic FFTPACK library from NetLib,
which is an efficient and well tested FFT library written in FORTRAN. The SciPy API has a few additional
convenience functions, but overall the API is closely related to the original FORTRAN library.

To use the fftpack module in a python program, include it using:

In [28]: from numpy.fft import fftfreq
from scipy.fftpack import *

To demonstrate how to do a fast Fourier transform with SciPy, let’s look at the FFT of the solution to
the damped oscillator from the previous section:

In [29]: N = len(t)
dt = t[1]1-t[0]

# calculate the fast fourier transform
# y2 1s the solution to the under-damped oscillator from the previous section
F = £fft(y2[:,01)

# calculate the frequencies for the components in F
w = fftfreq(N, dt)

In [30]: fig, ax = plt.subplots(figsize=(9,3))
ax.plot(w, abs(F));
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Since the signal is real, the spectrum is symmetric. We therefore only need to plot the part that corresponds
to the postive frequencies. To extract that part of the w and F we can use some of the indexing tricks for
NumPy arrays that we saw in Lecture 2:

In [31]: indices = where(w > 0) # select only indices for elements that corresponds to positive frequen
w_pos = wl[indices]
F_pos = F[indices]

In [32]: fig, ax = plt.subplots(figsize=(9,3))
ax.plot(w_pos, abs(F_pos))
ax.set_x1im(0, 5);

'45 T T T T

B i

S 8
20 1
15 - 1
10+ i

As expected, we now see a peak in the spectrum that is centered around 1, which is the frequency we used
in the damped oscillator example.

4.6 Linear algebra

The linear algebra module contains a lot of matrix related functions, including linear equation solving, eigen-
value solvers, matrix functions (for example matrix-exponentiation), a number of different decompositions
(SVD, LU, cholesky), etc.

Detailed documetation is available at: http://docs.scipy.org/doc/scipy /reference/linalg.html

Here we will look at how to use some of these functions:
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4.6.1 Linear equation systems

Linear equation systems on the matrix form
Axr=b
where A is a matrix and z, b are vectors can be solved like:

In [33]: from scipy.linalg import *

In [34]: A = array([[1,2,3], [4,5,6], [7,8,9]11)
b = array([1,2,3])

In [35]: x = solve(A, b)
x
Out[35]: array([-0.33333333, 0.66666667, O. iD)

In [36]: # check
dot(A, x) - b

Out [36]: array([ -1.11022302e-16, 0.00000000e+00, 0.00000000e+00])
We can also do the same with

AX =B
where A, B, X are matrices:

In [37]: A
B

rand(3,3)
rand(3,3)

In [38]: X = solve(A, B)

In [39]: X

Out[39]: array([[ 1.19168749, 1.34543171, 0.38437594],
[-0.88153715, -3.22735597, 0.66370273],
[ 0.10044006, 1.0465058 , 0.39801748]1]1)

In [40]: # check
norm(dot (A, X) - B)

Out[40]: 2.0014830212433605e-16

4.6.2 Eigenvalues and eigenvectors

The eigenvalue problem for a matrix A:

Av,, = A\ o,

where v, is the nth eigenvector and A, is the nth eigenvalue.

To calculate eigenvalues of a matrix, use the eigvals and for calculating both eigenvalues and eigenvec-
tors, use the function eig:

In [41]: evals = eigvals(A)

In [42]: evals

Out[42] : array([ 1.08466629+0.j, 0.33612878+0.j, -0.28229973+0.31)
In [43]: evals, evecs = eig(A)

In [44]: evals
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Out[44]: array([ 1.08466629+0.j, 0.33612878+0.j, -0.28229973+0.3])
In [45]: evecs

Out [45] : array([[-0.20946865, -0.48428024, -0.14392087],
[-0.79978578, 0.8616452 , -0.79527482],
[-0.56255275, 0.15178997, 0.58891829]1])

The eigenvectors corresponding to the nth eigenvalue (stored in evals[nl) is the nth column in evecs,
i.e., evecs[:,n]. To verify this, let’s try mutiplying eigenvectors with the matrix and compare to the product
of the eigenvector and the eigenvalue:

In [46]: n =1

norm(dot (A, evecs[:,n]) - evals[n] * evecs[:,n])
Out [46]: 3.243515426387745e-16

There are also more specialized eigensolvers, like the eigh for Hermitian matrices.

4.6.3 Matrix operations

In [47]: # the matriz inverse
inv(A)

Out [47]: array([[ 2.0031935 , -0.63411453, 0.49891784],
[-4.63643938, -0.2212669 , 3.35170585],
[ 1.06421936, 1.37366073, -1.42726809]1)

In [48]: # determinant
det (A)

Out [48]: -0.10292296739753022

In [49]: # norms of warious orders
norm(A, ord=2), norm(A, ord=Inf)

Out[49]: (1.3060382297688262, 1.591998214728641)

4.6.4 Sparse matrices

Sparse matrices are often useful in numerical simulations dealing with large systems, if the problem can be
described in matrix form where the matrices or vectors mostly contains zeros. Scipy has a good support for
sparse matrices, with basic linear algebra operations (such as equation solving, eigenvalue calculations, etc).

There are many possible strategies for storing sparse matrices in an efficient way. Some of the most
common are the so-called coordinate form (COO), list of list (LIL) form, and compressed-sparse column CSC
(and row, CSR). Each format has some advantanges and disadvantages. Most computational algorithms
(equation solving, matrix-matrix multiplication, etc) can be efficiently implemented using CSR or CSC
formats, but they are not so intuitive and not so easy to initialize. So often a sparse matrix is initially
created in COO or LIL format (where we can efficiently add elements to the sparse matrix data), and then
converted to CSC or CSR before used in real calcalations.

For more information about these sparse formats, see e.g. http://en.wikipedia.org/wiki/Sparse_matrix

When we create a sparse matrix we have to choose which format it should be stored in. For example,

In [50]: from scipy.sparse import *
In [51]: # dense matriz

M = array([[1,0,0,0], [0,3,0,0], [0,1,1,0], [1,0,0,1]1]); M
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Out [51]: array([[1, O, O, O],
(o, 3, 0, 0],
(o, 1, 1, 0],
[1, 0, 0, 11D

In [62]: # convert from dense to sparse
A = csr_matrix(M); A

Out [52]: <4x4 sparse matrix of type '<type 'numpy.int64'>'
with 6 stored elements in Compressed Sparse Row format>

In [53]: # convert from sparse to dense
A.todense()

Out [53]: matrix([[1, O, O, O],
(o, 3, 0, 0l,
o, 1, 1, 0],
(1, o0, 0, 11D

More efficient way to create sparse matrices: create an empty matrix and populate with using matrix
indexing (avoids creating a potentially large dense matrix)

In [54]: A = 1il_matrix((4,4)) # empty 4z/ sparse matriz

A[0,0] = 1

A[1,1] = 3

A[2,2] = A[2,1] = 1
A[3,3] = A[3,0] = 1
A

Out [54]: <4x4 sparse matrix of type '<type 'numpy.float64'>'
with 6 stored elements in LInked List format>

In [55]: A.todense()

Qut [55]: matrix([[ 1., O., 0., O0.],
[0., 3., 0., 0.1,
[o., 1., 1., 0.1,
[1., 0., 0., 1.1

Converting between different sparse matrix formats:
In [66]: A

Out [56]: <4x4 sparse matrix of type '<type 'numpy.float64'>'
with 6 stored elements in LInked List format>

In [67]: A = csr_matrix(A); A

Out [67]: <4x4 sparse matrix of type '<type 'numpy.float64'>'
with 6 stored elements in Compressed Sparse Row format>

In [58]: A = csc_matrix(A); A

Out [58]: <4x4 sparse matrix of type '<type 'numpy.float64'>'
with 6 stored elements in Compressed Sparse Column format>

We can compute with sparse matrices like with dense matrices:
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In [59]: A.todense()

Out[59]: matrix([[ 1., O., 0., 0.1,
[o., 3., 0., 0.1,
[o., 1., 1., 0.1,
[1., 0., 0., 1.1

In [60]: (A * A).todense()

Out [60] : matrix([[ 1., 0., 0., 0.],
[ 0., 9., 0., 0.1,
[o., 4., 1., 0.1,
[2., 0., 0., 1.1D

In [61]: A.todense()

OQut[61]: matrix([[ 1., 0., 0., 0.1,
[o., 3., 0., 0.1,
[o., 1., 1., 0.1,
[1., 0., 0., 1.11)

In [62]: A.dot(A).todense()

Out[62]: matrix([[ 1., 0., 0., 0.],
[ 0., 9., 0., 0.1,
[o0., 4., 1., 0.1,
[2., 0., 0., 1.1

In [63]: v = array([1,2,3,4])[:,newaxis]; v
Out[63]: array([[1],

(21,
(31,
(41D
In [64]: # sparse matriz - dense vector multiplication
A xv
Out[64]: array([[ 1.1,
6.1,
[ 5'] b
[5.1D

In [65]: # same result with dense matriz - dense wvector multiplcation
A.todense() * v

Out[65]: matrix([[ 1.],
[ 6.1,
[ 5.1,
[ 5.1

4.7 Optimization

Optimization (finding minima or maxima of a function) is a large field in mathematics, and optimiza-
tion of complicated functions or in many variables can be rather involved. Here we will only look at a
few very simple cases. For a more detailed introduction to optimization with SciPy see: http://scipy-
lectures.github.com/advanced /mathematical optimization/index.html

To use the optimization module in scipy first include the optimize module:

In [66]: from scipy import optimize
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4.7.1 Finding a minima

Let’s first look at how to find the minima of a simple function of a single variable:

In [67]: def f(x):
return 4*x**3 + (x-2)**2 + x**4

In [68]: fig, ax = plt.subplots()
x = linspace(-5, 3, 100)
ax.plot(x, £(x));

200 . . . . T T T
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We can use the fmin_bfgs function to find the minima of a function:

In [69]: x_min = optimize.fmin_bfgs(f, -2)
x_min

Optimization terminated successfully.
Current function value: -3.506641
Iterations: 6
Function evaluations: 30
Gradient evaluations: 10

Out[69]: array([-2.67298164])
In [70]: optimize.fmin_bfgs(f, 0.5)

Optimization terminated successfully.
Current function value: 2.804988
Iterations: 3
Function evaluations: 15
Gradient evaluations: 5
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Out [70] :

array([ 0.46961745])

We can also use the brent or fminbound functions. They have a bit different syntax and use different

algorithms
In [71]:
Out[71]:
In [72]:

Out[72] :

optimize.brent (f)
0.46961743402759754
optimize.fminbound(f, -4, 2)

-2.6729822917513886

4.7.2 Finding a solution to a function

To find the root for a function of the form f(x) = 0 we can use the fsolve function. It requires an initial

guess:

In [73]:

In [74]:

omega_c = 3.0

def f(omega):
# a transcendental equation: resonance frequencies of a low-{ SQUID terminated microwave T
return tan(2+pi*omega) - omega_c/omega

fig, ax = plt.subplots(figsize=(10,4))

x = linspace(0, 3, 1000)

y = £(x)

mask = where(abs(y) > 50)

x[mask] = y[mask] = NaN # get 7id of vertical line when the function flip sign
ax.plot(x, y)

ax.plot ([0, 3], [0, O], 'k')

ax.set_ylim(-5,5);

/Users/rob/miniconda/envs/py27-spl/lib/python2.7/site-packages/IPython/kernel/_main__.py:4: RuntimeWarn:

0o

In [75]:

Out [75] :

L

optimize.fsolve(f, 0.1)

]

array ([ 0.23743014])
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In [76]: optimize.fsolve(f, 0.6)
Out[76]: array([ 0.71286972])
In [77]: optimize.fsolve(f, 1.1)

Out[771: array([ 1.18990285]1)

4.8 Interpolation

Interpolation is simple and convenient in scipy: The interpld function, when given arrays describing X and
Y data, returns and object that behaves like a function that can be called for an arbitrary value of x (in the
range covered by X), and it returns the corresponding interpolated y value:

In [78]: from scipy.interpolate import *

In [79]: def f(x):
return sin(x)

In [80]: n = arange(0, 10)

x = linspace(0, 9, 100)
y_meas = f(n) + 0.1 * randn(len(n)) # simulate measurement with noise
y_real = f(x)

linear_interpolation = interpld(n, y_meas)
y_interpl = linear_interpolation(x)

cubic_interpolation = interpld(n, y_meas, kind='cubic')
y_interp2 = cubic_interpolation(x)

In [81]: fig, ax = plt.subplots(figsize=(10,4))
ax.plot(n, y_meas, 'bs', label='noisy data')
ax.plot(x, y_real, 'k', lw=2, label='true function')
ax.plot(x, y_interpl, 'r', label='linear interp')
ax.plot(x, y_interp2, 'g', label='cubic interp')
ax.legend(loc=3);

B B noisy data
—0.5 f| = true function
— linear interp

— cubic interp

-1.0 n N i
0 1 2 3

80



4.9 Statistics

The scipy.stats module contains a large number of statistical distributions, statistical functions and tests.
For a complete documentation of its features, see http://docs.scipy.org/doc/scipy /reference/stats.html.

There is also a very powerful python package for statistical modelling called statsmodels. See
http://statsmodels.sourceforge.net for more details.

In [82]: from scipy import stats

In [83]: # create a (discreet) random variable with poissionian distribution

X = stats.poisson(3.5) # photon distribution for a coherent state with n=3.5 photons

In [84]: n

arange (0,15)
fig, axes = plt.subplots(3,1, sharex=True)

# plot the probability mass function (PMF)
axes[0] .step(n, X.pmf(n))

# plot the commulative distribution function (CDF)
axes[1] .step(n, X.cdf(n))

# plot histogram of 1000 random realizations of the stochastic variable X
axes[2] .hist(X.rvs(size=1000));
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In [85]: # create a (continous) random variable with normal distribution
Y = stats.norm()

In [86]: x

linspace(-5,5,100)
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fig, axes = plt.subplots(3,1, sharex=True)

# plot the probability distribution function (PDF)
axes[0] .plot(x, Y.pdf(x))

# plot the commulative distributin function (CDF)
axes[1] .plot(x, Y.cdf(x));

# plot histogram of 1000 random realizations of the stochastic variable Y
axes[2] .hist(Y.rvs(size=1000), bins=50);
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Statistics:

In [87]: X.mean(), X.std(), X.var() # poission distribution
Out [87]: (3.5, 1.8708286933869707, 3.5)

In [88]: Y.mean(), Y.std(), Y.var() # normal distribution

Out[88]: (0.0, 1.0, 1.0)

4.9.1 Statistical tests

Test if two sets of (independent) random data comes from the same distribution:

In [89]: t_statistic, p_value = stats.ttest_ind(X.rvs(size=1000), X.rvs(size=1000))

print "t-statistic =", t_statistic
print "p-value =", p_value

t-statistic = -0.901953297251
p-value = 0.367190391714
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Since the p value is very large we cannot reject the hypothesis that the two sets of random data have
different means.
To test if the mean of a single sample of data has mean 0.1 (the true mean is 0.0):

In [90]: stats.ttest_lsamp(Y.rvs(size=1000), 0.1)

Out [90] : Ttest_lsampResult(statistic=-3.1644288210071765, pvalue=0.0016008455559249511)
Low p-value means that we can reject the hypothesis that the mean of Y is 0.1.

In [91]: Y.mean()

Out[91]: 0.0

In [92]: stats.ttest_lsamp(Y.rvs(size=1000), Y.mean())

Out [92]: Ttest_lsampResult(statistic=2.2098772438652992, pvalue=0.027339807364469011)

4.10 Further reading

e http://www.scipy.org - The official web page for the SciPy project.
e http://docs.scipy.org/doc/scipy/reference /tutorial /index.html - A tutorial on how to get started using
SciPy.
e https://github.com/scipy/scipy/ - The SciPy source code.
4.11 Versions
In [93]: Yreload_ext version_information

Jversion_information numpy, matplotlib, scipy

Out [93]:
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Chapter 5

matplotlib - 2D and 3D plotting in
Python

J.R. Johansson (jrjohansson at gmail.com)

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

In [1]: # This line configures matplotlib to show figures embedded in the notebook,
# instead of opening a new window for each figure. More about that later.
# If you are using an old version of IPython, try using '/pylab inline' instead.
Jmatplotlib inline

5.1 Introduction

Matplotlib is an excellent 2D and 3D graphics library for generating scientific figures. Some of the many
advantages of this library include:

Easy to get started

Support for BIEX formatted labels and texts

Great control of every element in a figure, including figure size and DPI.

High-quality output in many formats, including PNG, PDF, SVG, EPS, and PGF.

GUI for interactively exploring figures and support for headless generation of figure files (useful for
batch jobs).

One of the key features of matplotlib that I would like to emphasize, and that I think makes matplotlib
highly suitable for generating figures for scientific publications is that all aspects of the figure can be controlled
programmatically. This is important for reproducibility and convenient when one needs to regenerate the
figure with updated data or change its appearance.

More information at the Matplotlib web page: http://matplotlib.org/

To get started using Matplotlib in a Python program, either include the symbols from the pylab module
(the easy way):

In [2]: from pylab import
or import the matplotlib.pyplot module under the name plt (the tidy way):

In [3]: import matplotlib
import matplotlib.pyplot as plt

In [4]: import numpy as np
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5.2 MATLAB-like API

The easiest way to get started with plotting using matplotlib is often to use the MATLAB-like API provided
by matplotlib.

It is designed to be compatible with MATLAB’s plotting functions, so it is easy to get started with if
you are familiar with MATLAB.

To use this API from matplotlib, we need to include the symbols in the pylab module:

In [5]: from pylab import *

5.2.1 Example
A simple figure with MATLAB-like plotting API:

In [6]: x = np.linspace(0, 5, 10)
y = X %k 2

In [7]: figure()
plot(x, y, 'r')
xlabel('x")
ylabel('y")
title('title')
show ()

title

25 .

20

15

10

Most of the plotting related functions in MATLAB are covered by the pylab module. For example, subplot
and color/symbol selection:

In [8]: subplot(1,2,1)
plot(x, y, 'r—-')
subplot(1,2,2)
plot(y, X, 'g*_');
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The good thing about the pylab MATLAB-style API is that it is easy to get started with if you are familiar
with MATLAB, and it has a minumum of coding overhead for simple plots.
However, I'd encourrage not using the MATLAB compatible API for anything but the simplest figures.
Instead, I recommend learning and using matplotlib’s object-oriented plotting API. It is remarkably
powerful. For advanced figures with subplots, insets and other components it is very nice to work with.

5.3 The matplotlib object-oriented API

The main idea with object-oriented programming is to have objects that one can apply functions and actions
on, and no object or program states should be global (such as the MATLAB-like API). The real advantage
of this approach becomes apparent when more than one figure is created, or when a figure contains more
than one subplot.

To use the object-oriented API we start out very much like in the previous example, but instead of
creating a new global figure instance we store a reference to the newly created figure instance in the fig
variable, and from it we create a new axis instance axes using the add_axes method in the Figure class
instance fig:

In [9]: fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)
axes.plot(x, y, 'r'")
axes.set_xlabel('x")

axes.set_ylabel('y')
axes.set_title('title');
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Although a little bit more code is involved, the advantage is that we now have full control of where the plot
axes are placed, and we can easily add more than one axis to the figure:

In [10]: fig = plt.figure()

axesl = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main azes
axes?2 fig.add_axes([0.2, 0.5, 0.4, 0.3]) # <nset azes

# main figure
axesl.plot(x, y, 'r')
axesl.set_xlabel('x")
axesl.set_ylabel('y')
axesl.set_title('title')

# insert

axes2.plot(y, x, 'g")
axes2.set_xlabel('y')
axes2.set_ylabel('x')
axes2.set_title('insert title');
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If we don’t care about being explicit about where our plot axes are placed in the figure canvas, then we can
use one of the many axis layout managers in matplotlib. My favorite is subplots, which can be used like

this:
In [11]: fig,
axes

axes

title

. Insert title
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axes = plt.subplots()

.plot(x, y, 'r")
axes.
.set_ylabel('y")
axes.

set_xlabel('x")

set_title('title');
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In [12]: fig, axes = plt.subplots(nrows=1, ncols=2)

for ax

ax.
ax.
ax.
ax.

in axes:

plot(x, y, 'r')
set_xlabel('x")
set_ylabel('y"')
set_title('title')

89




- .tItIE. | - Itltle |
/
/

20 fﬁf 4 20

15 | j 4 15 |

That was easy, but it isn’t so pretty with overlapping figure axes and labels, right?
We can deal with that by using the fig.tight_layout method, which automatically adjusts the positions
of the axes on the figure canvas so that there is no overlapping content:

In [13]: fig, axes = plt.subplots(nrows=1, ncols=2)

for ax in axes:
ax.plot(x, y, 'r')
ax.set_xlabel('x")
ax.set_ylabel('y")
ax.set_title('title')

fig.tight_layout ()
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5.3.1 Figure size, aspect ratio and DPI

Matplotlib allows the aspect ratio, DPI and figure size to be specified when the Figure object is created,
using the figsize and dpi keyword arguments. figsize is a tuple of the width and height of the figure in
inches, and dpi is the dots-per-inch (pixel per inch). To create an 800x400 pixel, 100 dots-per-inch figure,
we can do:

In [14]: fig = plt.figure(figsize=(8,4), dpi=100)

<matplotlib.figure.Figure at 0x8065320>

The same arguments can also be passed to layout managers, such as the subplots function:
In [15]: fig, axes = plt.subplots(figsize=(12,3))

axes.plot(x, y, 'r')
axes.set_xlabel('x"')
axes.set_ylabel('y')
axes.set_title('title');
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5.3.2 Saving figures

To save a figure to a file we can use the savefig method in the Figure class:
In [16]: fig.savefig("filename.png")
Here we can also optionally specify the DPI and choose between different output formats:

In [17]: fig.savefig("filename.png", dpi=200)

What formats are available and which ones should be used for best quality?

Matplotlib can generate high-quality output in a number formats, including PNG, JPG, EPS, SVG, PGF
and PDF. For scientific papers, I recommend using PDF whenever possible. (LaTeX documents compiled
with pdflatex can include PDFs using the includegraphics command). In some cases, PGF can also be
good alternative.

5.3.3 Legends, labels and titles

Now that we have covered the basics of how to create a figure canvas and add axes instances to the canvas,
let’s look at how decorate a figure with titles, axis labels, and legends.

Figure titles

A title can be added to each axis instance in a figure. To set the title, use the set_title method in the
axes instance:

In [18]: ax.set_title("title");

Axis labels
Similarly, with the methods set_xlabel and set_ylabel, we can set the labels of the X and Y axes:

In [19]: ax.set_xlabel("x")
ax.set_ylabel("y");

Legends
Legends for curves in a figure can be added in two ways. One method is to use the legend method of
the axis object and pass a list /tuple of legend texts for the previously defined curves:

In [20]: ax.legend(["curvel", "curve2", "curve3"]);

The method described above follows the MATLAB API. It is somewhat prone to errors and unflexible if
curves are added to or removed from the figure (resulting in a wrongly labelled curve).

A better method is to use the label="1abel text" keyword argument when plots or other objects are
added to the figure, and then using the legend method without arguments to add the legend to the figure:
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In [21]: ax.plot(x, x**2, label="curvel")
ax.plot(x, x**3, label="curve2")
ax.legend();

The advantage with this method is that if curves are added or removed from the figure, the legend is
automatically updated accordingly.

The legend function takes an optional keyword argument loc that can be used to specify where in the
figure the legend is to be drawn. The allowed values of loc are numerical codes for the various places the
legend can be drawn. See http://matplotlib.org/users/legend_guide.html#legend-location for details. Some
of the most common loc values are:

In [22]: ax.legend(loc=0) # let matplotlib decide the optimal location
ax.legend(loc=1) # upper right corner
ax.legend(loc=2) # upper left corner
ax.legend(loc=3) # lower left corner
ax.legend(loc=4) # lower right corner
# .. many more options are available

Out[22] : <matplotlib.legend.Legend at 0x3dfc1d0>
The following figure shows how to use the figure title, axis labels and legends described above:

In [23]: fig, ax = plt.subplots()

ax.plot(x, x**2, label="y = x**2")
ax.plot(x, x**3, label="y = x**3")
ax.legend(loc=2); # upper left corner
ax.set_xlabel('x")

ax.set_ylabel('y"')
ax.set_title('title');

140 | | title | |

120

100 |

93



5.3.4 Formatting text: LaTeX, fontsize, font family

The figure above is functional, but it does not (yet) satisfy the criteria for a figure used in a publication.
First and foremost, we need to have LaTeX formatted text, and second, we need to be able to adjust the
font size to appear right in a publication.

Matplotlib has great support for LaTeX. All we need to do is to use dollar signs encapsulate LaTeX in
any text (legend, title, label, etc.). For example, "$y=x"3$".

But here we can run into a slightly subtle problem with LaTeX code and Python text strings. In LaTeX,
we frequently use the backslash in commands, for example \alpha to produce the symbol «. But the
backslash already has a meaning in Python strings (the escape code character). To avoid Python messing
up our latex code, we need to use “raw” text strings. Raw text strings are prepended with an ‘r’, like
r"\alpha" or r’\alpha’ instead of "\alpha" or ’\alpha’:

In [24]: fig, ax = plt.subplots()

ax.plot(x, x**2, label=r"$y = \alpha~2$")
ax.plot(x, x*#*3, label=r"$y = \alpha~3$")
ax.legend(loc=2) # upper left corner
ax.set_xlabel(r'$\alpha$', fontsize=18)
ax.set_ylabel(r'$y$', fontsize=18)
ax.set_title('title');

140 | | title | |
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We can also change the global font size and font family, which applies to all text elements in a figure (tick
labels, axis labels and titles, legends, etc.):

In [25]: # Update the matplotlib configuration parameters:
matplotlib.rcParams.update({'font.size': 18, 'font.family': 'serif'})

In [26]: fig, ax = plt.subplots()
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ax.
ax.
ax.
ax.
ax.
ax.

plot(x, x**2, label=r"$y = \alpha~2$")
plot(x, x*+*3, label=r"$y = \alpha~33$")
legend(loc=2) # upper left corner
set_xlabel(r'$\alpha$')
set_ylabel(r'$y$"')

set_title('title');
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A good choice of global fonts are the STIX fonts:

In [27]: # Update the matplotlib configuration parameters:
matplotlib.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral',

In [28]:

fig, ax = plt.subplots()

ax.
ax.
ax.
ax.
ax.
ax.

plot(x, x**2, label=r"$y = \alpha~2$")
plot(x, x**3, label=r"$y = \alpha~3$")
legend(loc=2) # upper left corner
set_xlabel(r'$\alpha$')
set_ylabel(r'$y$')

set_title('title');
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Or, alternatively, we can request that matplotlib uses LaTeX to render the text elements in the figure:
In [29]: matplotlib.rcParams.update({'font.size': 18, 'text.usetex': True})

In [30]: fig, ax = plt.subplots()

ax.plot(x, x**2, label=r"$y = \alpha~2$")
ax.plot(x, x*+*3, label=r"$y = \alpha~3$")
ax.legend(loc=2) # upper left corner
ax.set_xlabel(r'$\alpha$')
ax.set_ylabel(r'$y$"')
ax.set_title('title');
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In [31]: # restore

matplotlib.rcParams.update({'font.size': 12, 'font.family': 'sans', 'text.usetex':

5.3.5 Setting colors, linewidths, linetypes
Colors

With matplotlib, we can define the colors of lines and other graphical elements in a number of ways. First
of all, we can use the MATLAB-like syntax where ’b’ means blue, ’g’ means green, etc. The MATLAB
API for selecting line styles are also supported: where, for example, ‘b.-” means a blue line with dots:

In [32]: # MATLAB style line color and style
ax.plot(x, x**2, 'b.-') # blue line with dots
ax.plot(x, x**3, 'g--') # green dashed line

Out[32]: [<matplotlib.lines.Line2D at 0x96df0b8>]

We can also define colors by their names or RGB hex codes and optionally provide an alpha value using
the color and alpha keyword arguments:

In [33]: fig, ax = plt.subplots()

ax.plot(x, x+1, color="red", alpha=0.5) # half-transparant red
ax.plot(x, x+2, color="#1155dd") # RGB hex code for a bluish color
ax.plot(x, x+3, color="#15cc55") # RGB hex code for a greemtsh color

Out[33]: [<matplotlib.lines.Line2D at 0x6fbc048>]

97

Falsel})



(-

Line and marker styles

To change the line width, we can use the 1linewidth or 1w keyword argument. The line style can be selected
using the linestyle or 1s keyword arguments:

In [34]: fig, ax = plt.subplots(figsize=(12,6))

ax.plot(x, x+1, color="blue", linewidth=0.25)
ax.plot(x, x+2, color="blue", linewidth=0.50)
ax.plot(x, x+3, color="blue", linewidth=1.00)
ax.plot(x, x+4, color="blue", linewidth=2.00)

# possible linestype options ‘-¢, ‘-=7, ‘=.7, ‘:7, f‘steps’
ax.plot(x, x+5, color="red", lw=2, linestyle='-"')
ax.plot(x, x+6, color="red", lw=2, ls='-."')

ax.plot(x, x+7, color="red", lw=2, ls=':')

# custom dash
line, = ax.plot(x, x+8, color="black", lw=1.50)
line.set_dashes([5, 10, 15, 10]) # format: line length, space length,

# possible marker symbols: marker = '+', ‘o', k', 'g', ', 1t rgt g0 130,
ax.plot(x, x+ 9, color="green", lw=2, 1ls='--', marker='+"')
ax.plot(x, x+10, color="green", lw=2, ls='--', marker='o')
ax.plot(x, x+11, color="green", lw=2, ls='--', marker='s')
ax.plot(x, x+12, color="green", lw=2, ls='--', marker='1l"')

# marker size and color
ax.plot(x, x+13, color="purple", lw=1, 1ls='-', marker='o', markersize=2)
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ax.plot(x, x+14, color="purple", lw=1, 1ls='-', marker='o', markersize=4)

ax.plot(x, x+15, color="purple", lw=1, 1ls='-', marker='o', markersize=8, markerfacecolor="red"

ax.plot(x, x+16, color="purple", lw=1, 1ls='-', marker='s', markersize=8,
markerfacecolor="yellow", markeredgewidth=2, markeredgecolor="blue");

25

5.3.6 Control over axis appearance

The appearance of the axes is an important aspect of a figure that we often need to modify to make a
publication quality graphics. We need to be able to control where the ticks and labels are placed, modify the
font size and possibly the labels used on the axes. In this section we will look at controling those properties
in a matplotlib figure.

Plot range

The first thing we might want to configure is the ranges of the axes. We can do this using the set_ylim
and set_x1lim methods in the axis object, or axis (’tight’) for automatrically getting “tightly fitted” axes
ranges:

In [35]: fig, axes = plt.subplots(l, 3, figsize=(12, 4))

axes[0] .plot(x, x**2, x, x**3)
axes[0] .set_title("default axes ranges")

axes[1] .plot(x, x**2, x, x**3)
axes[1] .axis('tight"')
axes[1] .set_title("tight axes")

axes[2] .plot(x, x**2, x, x*%*3)

axes[2] .set_ylim([0, 60])

axes[2] .set_x1im([2, 5])

axes[2] .set_title("custom axes range");
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Logarithmic scale

It is also possible to set a logarithmic scale for one or both axes. This functionality is in fact only one
application of a more general transformation system in Matplotlib. Each of the axes’ scales are set seperately
using set_xscale and set_yscale methods which accept one parameter (with the value “log” in this case):

In [36]: fig, axes = plt.subplots(l, 2, figsize=(10,4))

axes[0] .plot(x, x**2, x, np.exp(x))
axes[0] .set_title("Normal scale")

axes[1] .plot(x, x**2, x, np.exp(x))
axes[1] .set_yscale("log")
axes[1] .set_title("Logarithmic scale (y)");

MNormal scale Logarithmic scale (y)
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5.3.7 Placement of ticks and custom tick labels

We can explicitly determine where we want the axis ticks with set_xticks and set_yticks, which both
take a list of values for where on the axis the ticks are to be placed. We can also use the set_xticklabels
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and set_yticklabels methods to provide a list of custom text labels for each tick location:
In [37]: fig, ax = plt.subplots(figsize=(10, 4))
ax.plot(x, x**2, x, x**3, lw=2)

ax.set_xticks([1, 2, 3, 4, 5])
ax.set_xticklabels([r'$\alpha$', r'$\beta$', r'$\gamma$', r'$\delta$', r'$\epsilon$'], fontsiz

yticks = [0, 50, 100, 150]
ax.set_yticks(yticks)
ax.set_yticklabels(["$7.1£f$" % y for y in yticks], fontsize=18); # use LaTeX formatted labels

Out [37]: [<matplotlib.text.Text at 0x10a3ae610>,
<matplotlib.text.Text at 0x10a3aedd0>,
<matplotlib.text.Text at 0x10a3fell0>,
<matplotlib.text.Text at 0x10a3fe750>]
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There are a number of more advanced methods for controlling major and minor tick place-
ment in matplotlib figures, such as automatic placement according to different policies. See
http://matplotlib.org/api/ticker_api.html for details.

Scientific notation

With large numbers on axes, it is often better use scientific notation:

In [38]: fig, ax = plt.subplots(l, 1)

ax.plot(x, x*+*2, x, np.exp(x))
ax.set_title("scientific notation")

ax.set_yticks ([0, 50, 100, 150])

from matplotlib import ticker

formatter = ticker.ScalarFormatter(useMathText=True)
formatter.set_scientific(True)
formatter.set_powerlimits((-1,1))
ax.yaxis.set_major_formatter(formatter)

101



% 10° scientific notation

5.3.8 Axis number and axis label spacing

In [39]: # distance between x and y axis and the numbers on the axes
matplotlib.rcParams['xtick.major.pad'] = 5
matplotlib.rcParams['ytick.major.pad'] = 5

fig, ax = plt.subplots(l, 1)

ax.plot(x, x**2, x, np.exp(x))
ax.set_yticks ([0, 50, 100, 150])

ax.set_title("label and axis spacing")
# padding between azis label and azis numbers

ax.xaxis.labelpad = 5
5

ax.yaxis.labelpad

ax.set_xlabel("x")
ax.set_ylabel("y");
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In [40]: # restore defaults
matplotlib.rcParams['xtick.major.pad'] = 3
matplotlib.rcParams['ytick.major.pad'] = 3

Axis position adjustments

Unfortunately, when saving figures the labels are sometimes clipped, and it can be necessary to adjust the
positions of axes a little bit. This can be done using subplots_adjust:

In [41]: fig, ax = plt.subplots(l, 1)

ax.plot(x, x**2, x, np.exp(x))
ax.set_yticks([0, 50, 100, 150])

ax.set_title("title")
ax.set_xlabel("x")

ax.set_ylabel("y")

fig.subplots_adjust(left=0.15, right=.9, bottom=0.1, top=0.9);
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5.3.9 Axis grid

With the grid method in the axis object, we can turn on and off grid lines. We can also customize the
appearance of the grid lines using the same keyword arguments as the plot function:

In [42]: fig, axes = plt.subplots(l, 2, figsize=(10,3))

# default grid appearance
axes[0] .plot(x, x**2, x, x**3, lw=2)
axes[0] .grid(True)

# custom grid appearance
axes[1] .plot(x, x**2, x, x**3, lw=2)
axes[1].grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
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5.3.10 Axis spines

We can also change the properties of axis spines:
In [43]: fig, ax = plt.subplots(figsize=(6,2))

ax.spines['bottom'].set_color('blue')
ax.spines['top'].set_color('blue')

ax.spines['left'].set_color('red')
ax.spines['left'].set_linewidth(2)

# turn off axzis spine to the right
ax.spines['right'] .set_color("none"
ax.yaxis.tick_left() # only ticks on the left stde
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0.4
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5.3.11 Twin axes

Sometimes it is useful to have dual x or y axes in a figure; for example, when plotting curves with different
units together. Matplotlib supports this with the twinx and twiny functions:

In [44]: fig, axl = plt.subplots()

axl.plot(x, x**2, 1lw=2, color="blue")

axl.set_ylabel(r"area $(m~2)$", fontsize=18, color="blue")

for label in axl.get_yticklabels():
label.set_color("blue")

ax2 = axl.twinx()
ax2.plot(x, x**3, lw=2, color="red")
ax2.set_ylabel(r"volume $(m~3)$", fontsize=18, color="red")
for label in ax2.get_yticklabels():

label.set_color("red")
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area (m?)

5.3.12
In [45]:
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Axes where x and y is zero

fig, ax = plt.subplots()

ax.
ax.

ax.
ax.

ax

ax.

XX

ax.

spines['right'].set_color('none')
spines['top'].set_color('none')

xaxis.set_ticks_position('bottom"')
spines['bottom'].set_position(('data',0)) # set position of = spine to z=0

.yaxis.set_ticks_position('left')

spines['left'] .set_position(('data',0)) # set position of y spine to y=0

= np.linspace(-0.75, 1., 100)
plot(xx, xx**3);
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5.3.13

10

0.5

02 04 06 08 10

Other 2D plot styles

In addition to the regular plot method, there are a number of other functions for generating dif-
ferent kind of plots. See the matplotlib plot gallery for a complete list of available plot types:
http://matplotlib.org/gallery.html. Some of the more useful ones are show below:

In [46]:
In [47]:

15

10}
0.5F
0.0}
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-10-0500 05 1015 0 1 2 3 4 5 -101 2 3 45 6 0

n = np.array([0,1,2,3,4,5])

fig, axes = plt.subplots(l, 4, figsize=(12,3))

axes[0] .scatter(xx, xx + 0.25%np.random.randn(len(xx)))
axes[0] .set_title("scatter")

axes[1] .step(n, n**2, lw=2)
axes[1] .set_title("step")

axes[2] .bar(n, n**2, align="center", width=0.5, alpha=0.5)
axes[2] .set_title("bar")

axes[3] .fill_between(x, x**2, x**3, color="green", alpha=0.5);
axes[3] .set_title("fill_between");
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In [48]: # polar plot using add_azes and polar projection
fig = plt.figure()
ax = fig.add_axes([0.0, 0.0, .6, .6], polar=True)
t = np.linspace(0, 2 * np.pi, 100)
ax.plot(t, t, color='blue', 1lw=3);

mﬂ

180

270°

In [49]: # A histogram
n = np.random.randn(100000)
fig, axes = plt.subplots(l, 2, figsize=(12,4))

axes [0] .hist(n)
axes[0] .set_title("Default histogram")
axes[0] .set_x1im((min(n), max(n)))

axes[1] .hist(n, cumulative=True, bins=50)
axes[1] .set_title("Cumulative detailed histogram")
axes[1] .set_x1lim((min(n), max(n)));

Default histogram Cumulative detailed histogram
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30000
80000 -
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10000 -
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5000

0
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5.3.14 Text annotation

Annotating text in matplotlib figures can be done using the text function. It supports LaTeX formatting
just like axis label texts and titles:

In [50]: fig, ax = plt.subplots()
ax.plot(xx, xx**2, xx, XX**3)

ax.text(0.15, 0.2, r"$y=x"2$", fontsize=20, color="blue")
ax.text(0.65, 0.1, r"$y=x"3$", fontsize=20, color="green");
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5.3.15 Figures with multiple subplots and insets

Axes can be added to a matplotlib Figure canvas manually using fig.add_axes or using a sub-figure layout
manager such as subplots, subplot2grid, or gridspec:

subplots

In [51]: fig, ax = plt.subplots(2, 3)
fig.tight_layout ()
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subplot2grid

In [62]: fig = plt.figure()
axl = plt.subplot2grid((3,3), (0,0), colspan=3)
ax2 = plt.subplot2grid((3,3), (1,0), colspan=2)
ax3 = plt.subplot2grid((3,3), (1,2), rowspan=2)
ax4 = plt.subplot2grid((3,3), (2,0))

ax5 = plt.subplot2grid((3,3), (2,1))
fig.tight_layout ()
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gridspec
In [53]:

In [54]:

fig = plt.figure()
gs = gridspec.GridSpec(2, 3, height_ratios=[2,1], width_ratios=[1,2,1])
for g in gs:

ax = fig.add_subplot(g)

fig.tight_layout ()
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Manually adding axes with add_axes is useful for adding insets to figures:

In [65]: fig, ax

= plt.subplots()

ax.plot(xx, xx**2, xx, XX**3)

fig.tight_layout ()

# inset
inset_ax
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= fig.add_axes([0.2, 0.55, 0.35, 0.35]) # X, Y, width, height

inset_ax.plot (xx, xx**2, xx, XX*%*3)

inset_ax.set_title('zoom near origin')

# set azis range
inset_ax.set_xlim(-.2,
inset_ax.set_ylim(-.005,

.2)
.01)

# set axis tick locations
inset_ax.set_yticks([0, 0.005, 0.01])

inset_ax.set_xticks([-0.1,0,.1]);
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5.3.16 Colormap and contour figures

Colormaps and contour figures are useful for plotting functions of two variables. In most of these func-
tions we will use a colormap to encode one dimension of the data. There are a number of predefined
colormaps. It is relatively straightforward to define custom colormaps. For a list of pre-defined colormaps,
see: http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps

In [56]: alpha = 0.7
2

phi_ext = * np.pi * 0.5

def flux_qubit_potential(phi_m, phi_p):
return 2 + alpha - 2 * np.cos(phi_p) * np.cos(phi_m) - alpha * np.cos(phi_ext - 2*phi_p)

In [57]: phi_m = np.linspace(0, 2*np.pi, 100)
phi_p = np.linspace(0, 2#np.pi, 100)
X,Y = np.meshgrid(phi_p, phi_m)
Z = flux_qubit_potential(X, Y).T

pcolor

In [58]: fig, ax = plt.subplots()

p = ax.pcolor(X/(2*np.pi), Y/(2*np.pi), Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=ab
cb = fig.colorbar(p, ax=ax)
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imshow

In [69]: fig, ax = plt.subplots()

im = ax.imshow(Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z) .min(), vmax=abs(Z) .max(), extent=[0, 1,
im.set_interpolation('bilinear')

cb = fig.colorbar(im, ax=ax)
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contour

In [60]: fig, ax = plt.subplots()

cnt = ax.contour(Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0,
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5.4 3D figures

To use 3D graphics in matplotlib, we first need to create an instance of the Axes3D class. 3D axes can be
added to a matplotlib figure canvas in exactly the same way as 2D axes; or, more conveniently, by passing
a projection=’3d’ keyword argument to the add_axes or add_subplot methods.

In [61]: from mpl_toolkits.mplot3d.axes3d import Axes3D

Surface plots

In [62]: fig = plt.figure(figsize=(14,6))

# Taxr” 1s a 3D-aware azis instance because of the projection='3d' keyword argument to add_subp
ax = fig.add_subplot(1l, 2, 1, projection='3d"')

p = ax.plot_surface(X, Y, Z, rstride=4, cstride=4, linewidth=0)

# surface_plot with color grading and color bar

ax = fig.add_subplot(l, 2, 2, projection='3d"')

p = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=matplotlib.cm.coolwarm, linewidth=0, a
cb = fig.colorbar(p, shrink=0.5)

5.0
45
4.0
3.5
3.0
2.5
20
15

Wire-frame plot
In [63]: fig = plt.figure(figsize=(8,6))

ax = fig.add_subplot(l, 1, 1, projection='3d")

p = ax.plot_wireframe(X, Y, Z, rstride=4, cstride=4)
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Coutour plots with projections

In [64]: fig = plt.figure(figsize=(8,6))
ax = fig.add_subplot(1l,1,1, projection='3d')

ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
cset = ax.contour(X, Y, Z, zdir='z', offset=-np.pi, cmap=matplotlib.cm.coolwarm)
ax.contour (X, Y, Z, zdir='x', offset=-np.pi, cmap=matplotlib.cm.coolwarm)

cset
ax.contour(X, Y, Z, zdir='y', offset=3*np.pi, cmap=matplotlib.cm.coolwarm)

cset

ax.set_x1im3d(-np.pi, 2*np.pi);
ax.set_ylim3d(0, 3*np.pi);
ax.set_zlim3d(-np.pi, 2*np.pi);
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Change the view angle

We can change the perspective of a 3D plot using the view_init method, which takes two arguments:
elevation and azimuth angle (in degrees):

In [65]: fig = plt.figure(figsize=(12,6))
ax = fig.add_subplot(1,2,1, projection='3d"')
ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
ax.view_init (30, 45)
ax = fig.add_subplot(1,2,2, projection='3d"')
ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)

ax.view_init (70, 30)

fig.tight_layout()
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5.4.1 Animations

Matplotlib also includes a simple API for generating animations for sequences of figures. With the
FuncAnimation function we can generate a movie file from sequences of figures. The function takes the
following arguments: fig, a figure canvas, func, a function that we provide which updates the figure,
init_func, a function we provide to setup the figure, frame, the number of frames to generate, and blit,
which tells the animation function to only update parts of the frame which have changed (for smoother
animations):

def init():
# setup figure

def update(frame_counter):
# update figure for new frame

anim = animation.FuncAnimation(fig, update, init_func=init, frames=200, blit=True)
anim.save('animation.mp4', fps=30) # fps = frames per second

To use the animation features in matplotlib we first need to import the module matplotlib.animation:

In [66]: from matplotlib import animation
In [67]: # solve the ode problem of the double compound pendulum again

from scipy.integrate import odeint
from numpy import cos, sin

def dx(x, t):
x1, x2, x3, x4 = x[0], x[1]1, x[2], x[3]

dxl = 6.0/ (m*xL**2) * (2 * x3 - 3 * cos(xl-x2) * x4)/(16 - 9 * cos(x1-x2)**2)
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dx2 = 6.0/ (m*L**2) * (8 * x4 - 3 * cos(x1-x2) * x3)/(16 - 9 * cos(x1-x2)**2)
dx3 = -0.5 * m * L*x2 * ( dxl * dx2 * sin(x1-x2) + 3 * (g/L) * sin(x1))

dx4 = -0.5 * m * L**2 x (-dxl * dx2 * sin(x1-x2) + (g/L) * sin(x2))

return [dx1, dx2, dx3, dx4]

x0 = [np.pi/2, np.pi/2, 0, 0] # 4nitial state
t = np.linspace(0, 10, 250) # time coordinates
odeint (dx, x0, t) # solve the ODE problem

X
Generate an animation that shows the positions of the pendulums as a function of time:

In [68]: fig, ax = plt.subplots(figsize=(5,5))

ax.set_ylim([-1.5, 0.5])
ax.set_x1im([1, -1])

penduluml, = ax.plot([], [], color="red", lw=2)
pendulum?2, ax.plot([], [], color="blue", lw=2)

def init():
penduluml.set_data([], [1)
pendulum?.set_data([], [1)

def update(n):
# n = frame counter
# calculate the positions of the pendulums
x1 = + L * sin(x[n, 0])
yl = - L * cos(x[n, 01)
x2 = x1 + L * sin(x[n, 1])
y2 =yl - L * cos(x[n, 1])

# update the line data
penduluml.set_data([0 ,x1], [0 ,y11)
pendulum?2.set_data([x1,x2], [y1,y2])

anim = animation.FuncAnimation(fig, update, init_func=init, frames=len(t), blit=True)

# anim.save can be called in a few different ways, some which might or might not work

# on different platforms and with different versions of matplotlidb and video encoders

#anim. save ('animation.mp4 ', fps=20, extra_args=['-vcodec', 'ltbz264'], writer=animation.FFMpeg
#anim. save ('animation.mp4 ', fps=20, extra_args=['-vcodec', 'ltbxz264'])

#anim. save ('animation.mp4 ', fps=20, writer="ffmpeg", codec="1ltbx264")
anim.save('animation.mp4', fps=20, writer="avconv", codec="1ibx264")

plt.close(fig)

Note: To generate the movie file we need to have either ffmpeg or avconv installed. Install it on Ubuntu
using:

$ sudo apt-get install ffmpeg
or (newer versions)
$ sudo apt-get install libav-tools

On MacOSX, try:
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$ sudo port install ffmpeg

In [69]: from IPython.display import HTML

video = open("animation.mp4", "rb").read()
video_encoded = video.encode("base64")
video_tag = '<video controls alt="test" src="data:video/x-m4v;base64,{0}">"'.format(video_encod

HTML (video_tag)

Out [69]: <IPython.core.display.HTML object>

5.4.2 Backends

Matplotlib has a number of “backends” which are responsible for rendering graphs. The different backends
are able to generate graphics with different formats and display /event loops. There is a distinction between
noninteractive backends (such as ‘agg’, ‘svg’, ‘pdf’, etc.) that are only used to generate image files (e.g. with
the savefig function), and interactive backends (such as Qt4Agg, GTK, MaxOSX) that can display a GUIL
window for interactively exploring figures.

A list of available backends are:

In [70]: print(matplotlib.rcsetup.all_backends)

[u'GTK', u'GTKAgg', u'GTKCairo', u'MacOSX', u'Qt4Agg', u'QtbAgg', u'TkAgg', u'WX', u'WXAgg', u'Cocoalgg

The default backend, called agg, is based on a library for raster graphics which is great for generating
raster formats like PNG.

Normally we don’t need to bother with changing the default backend; but sometimes it can be useful to
switch to, for example, PDF or GTKCairo (if you are using Linux) to produce high-quality vector graphics
instead of raster based graphics.

Generating SVG with the svg backend

In [1]: #
# RESTART THE NOTEBOOK: the matplotlib backend can only be selected before pylab is imported!
# (e.g. Kernel > Restart)
#
import matplotlib
matplotlib.use('svg')
import matplotlib.pylab as plt
import numpy
from IPython.display import Image, SVG

In [2]: #
# Now we are using the svg backend to produce SVG vector graphics
#
fig, ax = plt.subplots()
t = numpy.linspace(0, 10, 100)
ax.plot(t, numpy.cos(t)*numpy.sin(t))
plt.savefig("test.svg")

In [3]: #
# Show the produced SVG file.
#
SVG(filename="test.svg")

Out[3]:
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The IPython notebook inline backend

When we use [Python notebook it is convenient to use a matplotlib backend that outputs the graphics
embedded in the notebook file. To activate this backend, somewhere in the beginning on the notebook, we
add:

fmatplotlib inline
It is also possible to activate inline matplotlib plotting with:
%pylab inline

The difference is that %pylab inline imports a number of packages into the global address space (scipy,
numpy), while %matplotlib inline only sets up inline plotting. In new notebooks created for IPython
1.0+, I would recommend using %matplotlib inline, since it is tidier and you have more control over
which packages are imported and how. Commonly, scipy and numpy are imported separately with:

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

The inline backend has a number of configuration options that can be set by using the IPython magic
command %config to update settings in InlineBackend. For example, we can switch to SVG figures or
higher resolution figures with either:

%config InlineBackend.figure_format='svg'

or:

%config InlineBackend.figure_format='retina'
For more information, type:

%config InlineBackend

In [1]: Ymatplotlib inline
%hconfig InlineBackend.figure_format='svg'

import matplotlib.pylab as plt
import numpy

In [2]: #
# Now we are using the SVG vector graphics displaced inline in the notebook
#
fig, ax = plt.subplots()
t = numpy.linspace(0, 10, 100)
ax.plot(t, numpy.cos(t)*numpy.sin(t))
plt.savefig("test.svg")
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Interactive backend (this makes more sense in a python script file)

In [1]: #
# RESTART THE NOTEBOOK: the matplotlib backend can only be selected before pylab is imported!
# (e.g. Kernel > Restart)
#
import matplotlib
matplotlib.use('Qt4Agg') # or for example MacOSX
import matplotlib.pylab as plt
import numpy as np

In [ 1: # Now, open an interactive plot window with the @t4Agg backend
fig, ax = plt.subplots()
t = np.linspace(0, 10, 100)
ax.plot(t, np.cos(t) * np.sin(t))
plt.show()

Note that when we use an interactive backend, we must call plt.show() to make the figure appear on
the screen.

5.5 Further reading

http://www.matplotlib.org - The project web page for matplotlib.
https://github.com/matplotlib/matplotlib - The source code for matplotlib.
http://matplotlib.org/gallery.html - A large gallery showcaseing various types of plots matplotlib can
create. Highly recommended!

http://www.loria.fr/ “rougier/teaching/matplotlib - A good matplotlib tutorial.
http://scipy-lectures.github.io/matplotlib/matplotlib.html - Another good matplotlib reference.
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5.6 Versions

In [1]: Yreload_ext version_information
Jversion_information numpy, scipy, matplotlib

OQut[1]:
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Chapter 6

Sympy - Symbolic algebra in Python

J.R. Johansson (jrjohansson at gmail.com)

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

In [1]: Ymatplotlib inline
import matplotlib.pyplot as plt

6.1 Introduction
There are two notable Computer Algebra Systems (CAS) for Python:

e SymPy - A python module that can be used in any Python program, or in an IPython session, that
provides powerful CAS features.

e Sage - Sage is a full-featured and very powerful CAS enviroment that aims to provide an open source
system that competes with Mathematica and Maple. Sage is not a regular Python module, but rather
a CAS environment that uses Python as its programming language.

Sage is in some aspects more powerful than SymPy, but both offer very comprehensive CAS functionality.
The advantage of SymPy is that it is a regular Python module and integrates well with the IPython notebook.

In this lecture we will therefore look at how to use SymPy with IPython notebooks. If you are interested
in an open source CAS environment I also recommend to read more about Sage.

To get started using SymPy in a Python program or notebook, import the module sympy:

In [2]: from sympy import *
To get nice-looking ETEX formatted output run:
In [3]: init_printing()

# or with older versions of sympy/ipython, load the IPython extension
#Jload_ext sympy.interactive.ipythonprinting

# or

#Jload_ext sympyprinting

6.2 Symbolic variables

In SymPy we need to create symbols for the variables we want to work with. We can create a new symbol
using the Symbol class:
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In [4]: x = Symbol('x')
In [5]: (pi + x)**2
Out [5] :

In [6]: # alternative way of defining symbols
a, b, ¢ = symbols("a, b, c")

In [7]: type(a)
Out [7]: sympy.core.symbol.Symbol
We can add assumptions to symbols when we create them:
In [8]: x = Symbol('x', real=True)
In [9]: x.is_imaginary
Out[9]: False
In [10]: x = Symbol('x', positive=True)
In [11]: x > O

Out[11]:

6.2.1 Complex numbers

The imaginary unit is denoted I in Sympy.
In [12]: 1+1%I

Out[12]:

In [13]: Ix*2

Out [13]:

In [14]: (x * I + 1)#*%2

Out[14]:

6.2.2 Rational numbers

There are three different numerical types in SymPy: Real, Rational, Integer:

In [15]: rl1 = Rational(4,5)
r2 = Rational(5,4)

In [16]: ri

Out[16] :

In [17]: ri+r2
Out [17]:
In [18]: r1/x2

Out[18]:
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6.3 Numerical evaluation

SymPy uses a library for artitrary precision as numerical backend, and has predefined SymPy expressions
for a number of mathematical constants, such as: pi, e, oo for infinity.

To evaluate an expression numerically we can use the evalf function (or N). It takes an argument n which
specifies the number of significant digits.

In [19]: pi.evalf(n=50)

Out[19]:

In [20]: y = (x + pi)**2

In [21]: N(y, 5) # same as evalf

Out [21]: When we numerically evaluate algebraic expressions we often want to substitute a symbol with a
numerical value. In SymPy we do that using the subs function:

In [22]: y.subs(x, 1.5)

Out [22] :

In [23]: N(y.subs(x, 1.5))

Out [23]: The subs function can of course also be used to substitute Symbols and expressions:
In [24]: y.subs(x, atpi)

Out [24] : We can also combine numerical evolution of expressions with NumPy arrays:

In [25]: import numpy

In [26]: x_vec = numpy.arange(0, 10, 0.1)

In [27]: y_vec = numpy.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec])

In [28]: fig, ax = plt.subplots()
ax.plot(x_vec, y_vec);
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However, this kind of numerical evolution can be very slow, and there is a much more efficient way to do it:
Use the function lambdify to “compile” a Sympy expression into a function that is much more efficient to
evaluate numerically:

In [29]: f = lambdify([x], (x + pi)**2, 'numpy') # the first argument is a list of wartables that
# f will be a function of: in this case only z -> f(z

In [30]: y_vec = f(x_vec) # now we can directly pass a numpy array and f(z) is efficiently evaluated

The speedup when using “lambdified” functions instead of direct numerical evaluation can be significant,
often several orders of magnitude. Even in this simple example we get a significant speed up:

In [31]: %%timeit

y_vec = numpy.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec])

10 loops, best of 3: 28.2 ms per loop

In [32]: %%timeit

y_vec = f(x_vec)

The slowest run took 8.86 times longer than the fastest. This could mean that an intermediate result is
100000 loops, best of 3: 2.93 pus per loop

6.4 Algebraic manipulations

One of the main uses of an CAS is to perform algebraic manipulations of expressions. For example, we might
want to expand a product, factor an expression, or simply an expression. The functions for doing these basic
operations in SymPy are demonstrated in this section.

6.4.1 Expand and factor

The first steps in an algebraic manipulation
In [33]: (x+1)*(x+2)*(x+3)

Out[33]:

In [34]: expand((x+1)#*(x+2)*(x+3))

Out [34] : The expand function takes a number of keywords arguments which we can tell the functions what
kind of expansions we want to have performed. For example, to expand trigonometric expressions, use the
trig=True keyword argument:

In [35]: sin(a+b)
Out [35]:
In [36]: expand(sin(a+b), trig=True)

Out[36]: See help(expand) for a detailed explanation of the various types of expansions the expand
functions can perform.

The opposite a product expansion is of course factoring. The factor an expression in SymPy use the
factor function:

In [37]: factor(x**3 + 6 * x**2 + 11%x + 6)

Out [37] :
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6.4.2 Simplify

The simplify tries to simplify an expression into a nice looking expression, using various techniques. More
specific alternatives to the simplify functions also exists: trigsimp, powsimp, logcombine, etc.
The basic usages of these functions are as follows:

In [38]: # stimplify ezpands a product
simplify ((x+1)* (x+2)* (x+3))

Out[38]:

In [39]: # simplify uses trigonometric identities
simplify(sin(a)**2 + cos(a)**2)

Out [39]:
In [40]: simplify(cos(x)/sin(x))

Out [40] :

6.4.3 apart and together

To manipulate symbolic expressions of fractions, we can use the apart and together functions:
In [41]: £f1 = 1/((a+1)*(a+2))

In [42]: f1

Out [42] :

In [43]: apart(f1)

Out [43]:

In [44]: f2 = 1/(a+2) + 1/(a+3)

In [45]: £2

Out [45] :

In [46]: together(£f2)

Out [46] : Simplify usually combines fractions but does not factor:
In [47]: simplify(£2)

Out [47]:

6.5 Calculus

In addition to algebraic manipulations, the other main use of CAS is to do calculus, like derivatives and
integrals of algebraic expressions.
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6.5.1 Differentiation

Differentiation is usually simple. Use the diff function. The first argument is the expression to take the
derivative of, and the second argument is the symbol by which to take the derivative:

In [48]: y

Out [48]:

In [49]: diff(y**2, x)

Out [49] : For higher order derivatives we can do:

In [50]: diff(y**2, x, x)

Out [50] :

In [51]: diff(y**2, x, 2) # same as above

Out [51]: To calculate the derivative of a multivariate expression, we can do:
In [52]: x, y, z = symbols("x,y,z")

In [63]: f = sin(x*y) + cos(y*z)

a3 f
dxdy?

In [54]: diff(f, x, 1, y, 2)

Out [54] :

6.6 Integration

Integration is done in a similar fashion:

In [55]: £

Out [55] :

In [56]: integrate(f, x)

Out [56] : By providing limits for the integration variable we can evaluate definite integrals:
In [57]: integrate(f, (x, -1, 1))

Out [57]: and also improper integrals

In [58]: integrate(exp(-x**2), (x, -o0o0, 00))

Out [68] : Remember, oo is the SymPy notation for inifinity.

6.6.1 Sums and products

We can evaluate sums and products using the functions: ‘Sum’
In [59]: n = Symbol("n"

In [60]: Sum(1i/n**2, (n, 1, 10))

Out [60] :

In [61]: Sum(1/n**2, (n,1, 10)).evalf()

Out[61]:

In [62]: Sum(1/n**2, (n, 1, oo0)).evalf()

Out [62] : Products work much the same way:

In [63]: Product(n, (n, 1, 10)) # 10!
Out[63]:

130



6.7 Limits

Limits can be evaluated using the 1imit function. For example,

In [64]: limit(sin(x)/x, x, 0)

Out [64] : We can use ‘limit’ to check the result of derivation using the diff function:
In [65]: £

Out [65] :

In [66]: diff(f, x)

Out [66] : df(z,y) _ flz+hy) — f(,y)
dz h

In [67]: h = Symbol("h")

In [68]: 1imit((f.subs(x, x+h) - f)/h, h, 0)

Out[68]: OK!
We can change the direction from which we approach the limiting point using the dir keywork argument:

In [69]: limit(i1/x, x, O, dir="+")
Out [69] :
In [70]: limit(i1/x, x, O, dir="-")

Out [70] :

6.8 Series

Series expansion is also one of the most useful features of a CAS. In SymPy we can perform a series expansion
of an expression using the series function:

In [71]: series(exp(x), x)

Out [71]: By default it expands the expression around x = 0, but we can expand around any value of = by
explicitly include a value in the function call:

In [72]: series(exp(x), x, 1)
Out [72]: And we can explicitly define to which order the series expansion should be carried out:
In [73]: series(exp(x), x, 1, 10)

Out [73]: The series expansion includes the order of the approximation, which is very useful for keeping
track of the order of validity when we do calculations with series expansions of different order:

In [74]: s1 = cos(x).series(x, 0, 5)

si

Out [74]:

In [75]: s2 = sin(x) .series(x, 0, 2)
s2

Out [75]:
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In [76]:
Out [76]:
In [77]:
Out [77]:
In [78]:

Out[78] :

expand (sl * s2)

If we want to get rid of the order information we can use the remove0 method:
expand(sl.remove0() * s2.remove0())

But note that this is not the correct expansion of cos(z) sin(x) to 5th order:

(cos(x)*sin(x)) .series(x, 0, 6)

6.9 Linear algebra

6.9.1 DMatrices

Matrices are defined using the Matrix class:

In [79]:

In [80]:

Out [80] :
In [81]:

Out[81]:
In [82]:
Out [82] :
In [83]:
Out[83]:
In [84]:
Out [84] :
In [85]:
Out [85] :

6.10

mill, m12, m21, m22 = symbols("mil, mi12, m21, m22")
bl, b2 = symbols("bl, b2")

A = Matrix([[m11l, m12], m21, m22]])
A

b = Matrix([[b1], [b2]])

b

With Matrix class instances we can do the usual matrix algebra operations:

Ax*2
A x Db
And calculate determinants and inverses, and the like:

A.det()

A.inv()

Solving equations

For solving equations and systems of equations we can use the solve function:

In [86]:
Out [86] :
In [87]:
Out [87]:
In [88]:
Out [88]:
In [89]:

Out [89] :

solve(x**2 - 1, x)

solve(x**4 - x**2 - 1, x)

System of equations:

solve([x +y - 1, x -y - 1], [x,yD)
In terms of other symbolic expressions:

solve([x +y - a, x -y - cl, [x,y])
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6.11 Further reading

e http://sympy.org/en/index.html - The SymPy projects web page.
e https://github.com/sympy/sympy - The source code of SymPy.
e http://live.sympy.org - Online version of SymPy for testing and demonstrations.

6.12 Versions

In [90]: Yreload_ext version_information

Jversion_information numpy, matplotlib, sympy

Out [90] :
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Chapter 7

Using Fortran and C code with
Python

J.R. Johansson (jrjohansson at gmail.com)

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

In [1]: %pylab inline
from IPython.display import Image

Populating the interactive namespace from numpy and matplotlib

The advantage of Python is that it is flexible and easy to program. The time it takes to setup a
new calulation is therefore short. But for certain types of calculations Python (and any other interpreted
language) can be very slow. It is particularly iterations over large arrays that is difficult to do efficiently.

Such calculations may be implemented in a compiled language such as C or Fortran. In Python it is
relatively easy to call out to libraries with compiled C or Fortran code. In this lecture we will look at how
to do that.

But before we go ahead and work on optimizing anything, it is always worthwhile to ask. ...

In [2]: Image(filename='images/optimizing-what.png')

Out[2] :

7.1 Fortran

7.1.1 F2PY

F2PY is a program that (almost) automatically wraps fortran code for use in Python: By using the f2py
program we can compile fortran code into a module that we can import in a Python program.
F2PY is a part of NumPy, but you will also need to have a fortran compiler to run the examples below.

7.1.2 Example 0: scalar input, no output

In [3]: %%file hellofortran.f
C File hellofortran.f
subroutine hellofortran (n)
integer n
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do 100 i=0, n
print *, "Fortran says hello"
100 continue
end

Overwriting hellofortran.f

Generate a python module using f2py:
In [4]: !'f2py -c¢c -m hellofortran hellofortran.f

running build
running config cc
unifing config cc, config, build_clib, build_ext, build commands --compiler options
running config fc
unifing config fc, config, build_clib, build_ext, build commands --fcompiler options
running build_src
build_src
building extension "hellofortran" sources
f2py options: []
f2py:> /tmp/tmpz2IPjB/src.linux-x86_64-2.7/hellofortranmodule.c
creating /tmp/tmpz2IPjB/src.linux-x86_64-2.7
Reading fortran codes...
Reading file 'hellofortran.f' (format:fix,strict)
Post-processing. ..
Block: hellofortran
Block: hellofortran
Post-processing (stage 2)...
Building modules. ..
Building module "hellofortran"...
Constructing wrapper function "hellofortran"...
hellofortran(n)
Wrote C/API module "hellofortran" to file "/tmp/tmpz2IPjB/src.linux-x86_64-2.7/hellofortranmodu!
adding '/tmp/tmpz2IPjB/src.linux-x86_64-2.7/fortranobject.c' to sources.
adding '/tmp/tmpz2IPjB/src.linux-x86_64-2.7' to include.dirs.
copying /usr/lib/python2.7/dist-packages/numpy/f2py/src/fortranobject.c -> /tmp/tmpz2IPjB/src.linux-x86
copying /usr/lib/python2.7/dist-packages/numpy/f2py/src/fortranobject.h -> /tmp/tmpz2IPjB/src.linux-x86
build_src: building npy-pkg config files
running build_ext
customize UnixCCompiler
customize UnixCCompiler using build_ext
customize Gnu95FCompiler
Found executable /usr/bin/gfortran
customize Gnu95FCompiler
customize Gnu95FCompiler using build_ext
building 'hellofortran' extension
compiling C sources
C compiler: x86_64-linux-gnu-gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -02 -Wall -Wstrict-p:

creating /tmp/tmpz2IPjB/tmp

creating /tmp/tmpz2IPjB/tmp/tmpz2IPjB

creating /tmp/tmpz2IPjB/tmp/tmpz2IPjB/src.linux-x86_64-2.7

compile options: '-I/tmp/tmpz2IPjB/src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/ir
x86_64-1linux-gnu-gcc: /tmp/tmpz2IPjB/src.linux-x86_64-2.7/hellofortranmodule.c
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In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/arrayobject.h:4,
from /tmp/tmpz2IPjB/src.linux-x86_64-2.7/fortranobject.h:13,
from /tmp/tmpz2IPjB/src.linux-x86_64-2.7/hellofortranmodule.c:17:

/usr/1ib/python2.7/dist-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:15:2: warning: #warnii

#warning "Using deprecated NumPy API, disable it by " \

x86_64-1linux-gnu-gcc: /tmp/tmpz2IPjB/src.linux-x86_64-2.7/fortranobject.c
In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/arrayobject.h:4,
from /tmp/tmpz2IPjB/src.linux-x86_64-2.7/fortranobject.h:13,
from /tmp/tmpz2IPjB/src.linux-x86_64-2.7/fortranobject.c:2:
/usr/1ib/python2.7/dist-packages/numpy/core/include/numpy/npy_1_7 _deprecated _api.h:15:2: warning: #warni
#warning "Using deprecated NumPy API, disable it by " \

compiling Fortran sources

Fortran £77 compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-second-underscore -fPIC -03 -funroll-lo
Fortran £f90 compiler: /usr/bin/gfortran -Wall -fno-second-underscore -fPIC -03 -funroll-loops

Fortran fix compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-second-underscore -Wall -fno-second-und
compile options: '-I/tmp/tmpz2IPjB/src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/ir
gfortran:f77: hellofortran.f

/usr/bin/gfortran -Wall -Wall -shared /tmp/tmpz2IPjB/tmp/tmpz2IPjB/src.linux-x86_64-2.7/hellofortranmodt
Removing build directory /tmp/tmpz2IPjB

Example of a python script that use the module:

In [5]: %%file hello.py
import hellofortran

hellofortran.hellofortran(5)

Overwriting hello.py

In [6]: # run the script
!python hello.py

Fortran says hello
Fortran says hello
Fortran says hello
Fortran says hello
Fortran says hello
Fortran says hello

7.1.3 Example 1: vector input and scalar output

In [7]: %\file dprod.f
subroutine dprod(x, y, n)

double precision x(n), y
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y=1.0

do 100 i=1, n
y =y *x({d)
100 continue
end

Overwriting dprod.f

In [8]: !rm -f dprod.pyf
'f2py -m dprod -h dprod.pyf dprod.f

Reading fortran codes...

Reading file 'dprod.f' (format:fix,strict)
Post-processing. ..

Block: dprod
{

In: :dprod:dprod.f:dprod

vars2fortran: No typespec for argument "n".
Block: dprod

Post-processing (stage 2)...

Saving signatures to file "./dprod.pyf"

The £2py program generated a module declaration file called dsum.pyf. Let’s look what’s in it:
In [9]: !cat dprod.pyf

! —*= 90 -*-
I Note: the context of this file is case sensitive.

python module dprod ! in
interface ! in :dprod
subroutine dprod(x,y,n) ! in :dprod:dprod.f
double precision dimension(n) :: x
double precision :: y
integer, optional,check(len(x)>=n),depend(x) :: n=len(x)
end subroutine dprod
end interface
end python module dprod

! This file was auto-generated with f2py (version:2).
! See http://cens.ioc.ee/projects/f2py2e/

The module does not know what Fortran subroutine arguments is input and output, so we need to
manually edit the module declaration files and mark output variables with intent (out) and input variable

with intent (in):

In [10]: Y%file dprod.pyf
python module dprod ! in

interface ! in :dprod
subroutine dprod(x,y,n) ! in :dprod:dprod.f
double precision dimension(n), intent(in) :: x
double precision, intent(out) :: y
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integer, optional,check(len(x)>=n),depend(x),intent(in) :: n=len(x)
end subroutine dprod
end interface
end python module dprod

Overwriting dprod.pyf

Compile the fortran code into a module that can be included in python:
In [11]: !'f2py -c dprod.pyf dprod.f

running build
running config cc
unifing config cc, config, build_clib, build_ext, build commands --compiler options
running config fc
unifing config fc, config, build_clib, build_ext, build commands --fcompiler options
running build_src
build_src
building extension "dprod" sources
creating /tmp/tmpWyCvxl/src.linux-x86_64-2.7
f2py options: []
f2py: dprod.pyf
Reading fortran codes...

Reading file 'dprod.pyf' (format:free)
Post-processing. ..

Block: dprod

Block: dprod

Post-processing (stage 2)...
Building modules. ..

Building module "dprod"...

Constructing wrapper function "dprod"...
y = dprod(x, [n])
Wrote C/API module "dprod" to file "/tmp/tmpWyCvxl/src.linux-x86_64-2.7/dprodmodule.c"
adding '/tmp/tmpWyCvxl/src.linux-x86_64-2.7/fortranobject.c' to sources.
adding '/tmp/tmpWyCvxl/src.linux-x86_64-2.7' to include._dirs.

copying /usr/lib/python2.7/dist-packages/numpy/f2py/src/fortranobject.c -> /tmp/tmpWyCvxl/src.linux-x86
copying /usr/lib/python2.7/dist-packages/numpy/f2py/src/fortranobject.h -> /tmp/tmpWyCvxl/src.linux-x86
build_src: building npy-pkg config files
running build_ext
customize UnixCCompiler
customize UnixCCompiler using build_ext
customize Gnu95FCompiler
Found executable /usr/bin/gfortran
customize Gnu95FCompiler
customize Gnu95FCompiler using build_ext
building 'dprod' extension
compiling C sources
C compiler: x86_64-linux-gnu-gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -02 -Wall -Wstrict-p:

creating /tmp/tmpWyCvx1l/tmp

creating /tmp/tmpWyCvxl/tmp/tmpWyCvx1

creating /tmp/tmpWyCvxl/tmp/tmpWyCvxl/src.linux-x86_64-2.7

compile options: '-I/tmp/tmpWyCvxl/src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/ir
x86_64-1linux-gnu-gcc: /tmp/tmpWyCvxl/src.linux-x86_64-2.7/dprodmodule.c
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In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/arrayobject.h:4,
from /tmp/tmpWyCvxl/src.linux-x86_64-2.7/fortranobject.h:13,
from /tmp/tmpWyCvxl/src.linux-x86_64-2.7/dprodmodule.c:18:

/usr/1ib/python2.7/dist-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:15:2: warning: #warnii

#warning "Using deprecated NumPy API, disable it by " \

/tmp/tmpWyCvx1l/src.linux-x86_64-2.7/dprodmodule.c:111:12: warning: ‘f2py_size’ defined but not used [-Wu
static int f2py_size(PyArrayObject* var, ...)

x86_64-1linux-gnu-gcc: /tmp/tmpWyCvxl/src.linux-x86_64-2.7/fortranobject.c
In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/arrayobject.h:4,
from /tmp/tmpWyCvxl/src.linux-x86_64-2.7/fortranobject.h:13,
from /tmp/tmpWyCvxl/src.linux-x86_64-2.7/fortranobject.c:2:
/usr/1lib/python2.7/dist-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:15:2: warning: #warnii
#warning "Using deprecated NumPy API, disable it by " \

compiling Fortran sources

Fortran f77 compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-second-underscore -fPIC -03 -funroll-lo
Fortran f90 compiler: /usr/bin/gfortran -Wall -fno-second-underscore -fPIC -03 -funroll-loops

Fortran fix compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-second-underscore -Wall -fno-second-und
compile options: '-I/tmp/tmpWyCvxl/src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/ir
gfortran:f77: dprod.f

/usr/bin/gfortran -Wall -Wall -shared /tmp/tmpWyCvxl/tmp/tmpWyCvxl/src.linux-x86_64-2.7/dprodmodule.o /1
Removing build directory /tmp/tmpWyCvxl

Using the module from Python
In [12]: import dprod
In [13]: help(dprod)

Help on module dprod:

NAME
dprod

FILE
/home/rob/Desktop/scientific-python-lectures/dprod.so

DESCRIPTION
This module 'dprod' is auto-generated with f2py (version:2).
Functions:
y = dprod(x,n=len(x))

DATA
_version__ = '$Revision: $'
dprod = <fortran object>

VERSION
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In [14]: dprod.dprod(arange(1,50))
Out[14]: 6.082818640342675e+62

In [15]: # compare to numpy
prod(arange(1.0,50.0))

Out[15]: 6.0828186403426752e+62
In [16]: dprod.dprod(arange(1,10), 5) # only the 5 first elements
Out[16]: 120.0
Compare performance:
In [17]: xvec = rand(500)
In [18]: timeit dprod.dprod(xvec)

1000000 loops, best of 3: 882 ns per loop

In [19]: timeit xvec.prod()

100000 loops, best of 3: 4.45 pus per loop

7.1.4 Example 2: cummulative sum, vector input and vector output

The cummulative sum function for an array of data is a good example of a loop intense algorithm: Loop
through a vector and store the cummulative sum in another vector.

In [20]: # simple python algorithm: exzample of a SLOW implementation
# Why? Because the loop is implemented in python.
def py_dcumsum(a):
b = empty_like(a)
b[0] = a[0]
for n in range(l,len(a)):
b[n] = b[n-1]+a[n]
return b

Fortran subroutine for the same thing: here we have added the intent (in) and intent (out) as comment
lines in the original fortran code, so we do not need to manually edit the fortran module declaration file
generated by f2py.

In [21]: %%file dcumsum.f

c File dcumsum.f
subroutine dcumsum(a, b, n)
double precision a(n)
double precision b(n)
integer n

cf2py intent(in) :: a

cf2py intent(out) :: b
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cf2py intent(hide) :: n

b(1) = a(1)
do 100 i=2, n
b(i) = b(i-1) + a(i)
100 continue
end

Overwriting dcumsum.f

We can directly compile the fortran code to a python module:
In [22]: !f2py -c dcumsum.f -m dcumsum

running build
running config cc
unifing config cc, config, build_clib, build_ext, build commands --compiler options
running config fc
unifing config fc, config, build_clib, build_ext, build commands --fcompiler options
running build_src
build_src
building extension "dcumsum" sources
f2py options: []
f2py:> /tmp/tmpfvrMl6/src.linux-x86_64-2.7/dcumsummodule.c
creating /tmp/tmpfvrM1l6/src.linux-x86_64-2.7
Reading fortran codes...

Reading file 'dcumsum.f' (format:fix,strict)
Post-processing. ..

Block: dcumsum

Block: dcumsum

Post-processing (stage 2)...
Building modules...

Building module "dcumsum"...

Constructing wrapper function "dcumsum"...
b = dcumsum(a)
Wrote C/API module "dcumsum" to file "/tmp/tmpfvrM16/src.linux-x86_64-2.7/dcumsummodule.c"
adding '/tmp/tmpfvrM16/src.linux-x86_64-2.7/fortranobject.c' to sources.
adding '/tmp/tmpfvrMl6/src.linux-x86_64-2.7' to include dirs.

copying /usr/lib/python2.7/dist-packages/numpy/f2py/src/fortranobject.c -> /tmp/tmpfvrM16/src.linux-x86
copying /usr/lib/python2.7/dist-packages/numpy/f2py/src/fortranobject.h -> /tmp/tmpfvrM16/src.linux-x86
build_src: building npy-pkg config files
running build_ext
customize UnixCCompiler
customize UnixCCompiler using build_ext
customize Gnu95FCompiler
Found executable /usr/bin/gfortran
customize Gnu95FCompiler
customize Gnu95FCompiler using build_ext
building 'dcumsum' extension
compiling C sources
C compiler: x86_64-linux-gnu-gcc -pthread -fno-strict-aliasing -DNDEBUG -g —-fwrapv -02 -Wall -Wstrict-p:

creating /tmp/tmpfvrM16/tmp
creating /tmp/tmpfvrM16/tmp/tmpfvrM16
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creating /tmp/tmpfvrM16/tmp/tmpfvrM16/src.linux-x86_64-2.7
compile options: '-I/tmp/tmpfvrM16/src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/ir
x86_64-1linux-gnu-gcc: /tmp/tmpfvrM16/src.linux-x86_64-2.7/dcumsummodule.c
In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/arrayobject.h:4,
from /tmp/tmpfvrM16/src.linux-x86_64-2.7/fortranobject.h:13,
from /tmp/tmpfvrM16/src.linux-x86_64-2.7/dcumsummodule.c:18:
/usr/1ib/python2.7/dist-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:15:2: warning: #warnii
#warning "Using deprecated NumPy API, disable it by " \

/tmp/tmpfvrM16/src.linux-x86_64-2.7/dcumsummodule.c:111:12: warning: ‘f2py_size’ defined but not used [-
static int f2py_size(PyArrayObject* var, ...)

x86_64-1linux-gnu-gcc: /tmp/tmpfvrMl6/src.linux-x86_64-2.7/fortranobject.c
In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17,
from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/arrayobject.h:4,
from /tmp/tmpfvrM16/src.linux-x86_64-2.7/fortranobject.h:13,
from /tmp/tmpfvrM16/src.linux-x86_64-2.7/fortranobject.c:2:
/usr/1ib/python2.7/dist-packages/numpy/core/include/numpy/npy_-1_7_deprecated_api.h:15:2: warning: #warnii
#warning "Using deprecated NumPy API, disable it by " \

compiling Fortran sources

Fortran £77 compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-second-underscore -fPIC -03 -funroll-lo
Fortran f90 compiler: /usr/bin/gfortran -Wall -fno-second-underscore -fPIC -03 -funroll-loops

Fortran fix compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-second-underscore -Wall -fno-second-und
compile options: '-I/tmp/tmpfvrM16/src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/ir
gfortran:f77: dcumsum.f

/usr/bin/gfortran -Wall -Wall -shared /tmp/tmpfvrM16/tmp/tmpfvrM1l6/src.linux-x86_64-2.7/dcumsummodule.o
Removing build directory /tmp/tmpfvrM16

In [23]: import dcumsum

In [24]: a = array([1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0])

In [25]: py_dcumsum(a)

Out[25]: array([ 1., 3., 6., 10., 15., 21., 28., 36.1)

In [26]: dcumsum.dcumsum(a)

Out[26]: array([ 1., 3., 6., 10., 15., 21., 28., 36.1)

In [27]: cumsum(a)

Qut[27]: array([ 1., 3., 6., 10., 15., 21., 28., 36.1)
Benchmark the different implementations:

In [28]: a = rand(10000)

In [29]: timeit py_dcumsum(a)

100 loops, best of 3: 4.83 ms per loop
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In [30]: timeit dcumsum.dcumsum(a)

100000 loops, best of 3: 12.2 us per loop

In [31]: timeit a.cumsum()

10000 loops, best of 3: 27.4 us per loop

7.1.5 Further reading

1. http://www.scipy.org/F2py
2. http://dsnra.jpl.nasa.gov/software/Python/F2PY tutorial.pdf
3. http://www.shocksolution.com/2009/09/{2py-binding-fortran-python/

7.2 C

7.3 ctypes

ctypes is a Python library for calling out to C code. It is not as automatic as £2py, and we manually need
to load the library and set properties such as the functions return and argument types. On the otherhand
we do not need to touch the C code at all.

In [32]: %%file functions.c
#include <stdio.h>
void hello(int n);
double dprod(double *x, int n);
void dcumsum(double *a, double *b, int n);
void
hello(int n)
{
int i;

for (i = 0; i < m; i++)

{
printf ("C says hello\n");
}
}
double
dprod(double *x, int n)
{
int i;

double y = 1.0;

for (i = 0; i1 < n; i++)

{
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y *= x[i];

}
return y;
}
void
dcumsum(double *a, double *b, int n)
{
int i;
b[0] = al[0];
for (i = 1; i < n; i++)
{
bli] = al[i] + b[i-1];
}
}

Overwriting functions.c

Compile the C file into a shared library:

In [33]: !gcc -c -Wall -02 -Wall -ansi -pedantic -fPIC -o functions.o functions.c
!gcc -o libfunctions.so -shared functioms.o

The result is a compiled shared library libfunctions.so:
In [34]: !file libfunctions.so

libfunctions.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[s!

Now we need to write wrapper functions to access the C library: To load the library we use the ctypes
package, which included in the Python standard library (with extensions from numpy for passing arrays to
C). Then we manually set the types of the argument and return values (no automatic code inspection here!).

In [35]: %%file functions.py

import numpy
import ctypes

_libfunctions = numpy.ctypeslib.load_library('libfunctions', '.')

_libfunctions.hello.argtypes = [ctypes.c_int]
_libfunctions.hello.restype = ctypes.c_void_p

_libfunctions.dprod.argtypes = [numpy.ctypeslib.ndpointer (dtype=numpy.float), ctypes.c_int]
_libfunctions.dprod.restype ctypes.c_double

_libfunctions.dcumsum.argtypes [numpy . ctypeslib.ndpointer (dtype=numpy.float), numpy.ctypesli]
_libfunctions.dcumsum.restype = ctypes.c_void_p

def hello(n):
return _libfunctions.hello(int(n))

144



def dprod(x, n=None):
if n is None:
n = len(x)
X = numpy.asarray(x, dtype=numpy.float)
return _libfunctions.dprod(x, int(n))

def dcumsum(a, n):
a = numpy.asarray(a, dtype=numpy.float)
b = numpy.empty(len(a), dtype=numpy.float)
_libfunctions.dcumsum(a, b, int(n))
return b

Overwriting functions.py

In [36]: J%file run_hello_c.py
import functions

functions.hello(3)

Overwriting run_hello_c.py

In [37]: !'python run_hello_c.py

C says hello
C says hello
C says hello

In [38]: import functions

7.3.1 Product function:
In [39]: functions.dprod([1,2,3,4,5])

Out[39]: 120.0

7.3.2 Cummulative sum:

In [40]: a = rand(100000)

In [41]: res_c = functions.dcumsum(a, len(a))
In [42]: res_fortran = dcumsum.dcumsum(a)

In [43]: res_c - res_fortran

Out[43]: array([ 0., 0., O., ..., 0., 0., 0.1

7.3.3 Simple benchmark

In [44]: timeit functions.dcumsum(a, len(a))

1000 loops, best of 3: 286 us per loop
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In [45]: timeit dcumsum.dcumsum(a)

10000 loops, best of 3: 119 us per loop

In [46]: timeit a.cumsum()

1000 loops, best of 3: 261 us per loop

7.3.4 Further reading

e http://docs.python.org/2/library/ctypes.html
e http://www.scipy.org/Cookbook/Ctypes

7.4 Cython
A hybrid between python and C that can be compiled: Basically Python code with type declarations.

In [47]: 7J%file cy_dcumsum.pyx
cimport numpy

def dcumsum(numpy.ndarray[numpy.float64_t, ndim=1] a, numpy.ndarray[numpy.float64_t, ndim=1] b
cdef int i, n = len(a)
b[0] = a[0]
for i from 1 <= i < n:
b[i]l = bli-1] + alil
return b

Overwriting cy_dcumsum.pyx

A build file for generating C code and compiling it into a Python module.

In [48]: ’\file setup.py

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
cmdclass = {'build_ext': build_ext},
ext_modules = [Extension("cy_dcumsum", ["cy_dcumsum.pyx"])]

)

Overwriting setup.py

In [49]: !'python setup.py build_ext --inplace

running build_ext

cythoning cy_dcumsum.pyx to cy_dcumsum.c

warning: /usr/local/lib/python2.7/dist-packages/Cython/Includes/numpy.pxd:869:17: Non-trivial type decl
warning: /usr/local/lib/python2.7/dist-packages/Cython/Includes/numpy.pxd:869:24: Non-trivial type decl
building 'cy_dcumsum' extension
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x86_64-1linux-gnu-gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -02 -Wall -Wstrict-prototypes -fI
In file included from /usr/include/python2.7/numpy/ndarraytypes.h:1761:0,

from /usr/include/python2.7/numpy/ndarrayobject.h:17,

from /usr/include/python2.7/numpy/arrayobject.h:4,

from cy_dcumsum.c:352:
/usr/include/python2.7/numpy/npy-1_7_deprecated_api.h:15:2: warning: #warning "Using deprecated NumPy AP:
#warning "Using deprecated NumPy API, disable it by " \

In file included from /usr/include/python2.7/numpy/ndarrayobject.h:26:0,

from /usr/include/python2.7/numpy/arrayobject.h:4,

from cy_dcumsum.c:352:
/usr/include/python2.7/numpy/_multiarray_api.h:1629:1: warning: ‘_import_array’ defined but not used [-¥
_import_array(void)
In file included from /usr/include/python2.7/numpy/ufuncobject.h:327:0,

from cy_dcumsum.c:353:
/usr/include/python2.7/numpy/_ufunc_api.h:241:1: warning: ‘_import_umath’ defined but not used [-Wunusec
_import_umath(void)

x86_64-1inux-gnu-gcc -pthread -shared -Wl,-01 -Wl1,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl1,-z,1

In [50]: import cy_dcumsum

In [51]: a = array([1,2,3,4], dtype=float)

b = empty_like(a)
cy_dcumsum.dcumsum(a,b)
b

Out[51]: array([ 1., 3., 6., 10.1)

In [52]: a = array([l.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])

In [53]: b = empty_like(a)
cy_dcumsum.dcumsum(a, b)
b
Out[53]: array([ 1., 3., 6., 10., 15., 21., 28., 36.1)

In [54]: py_dcumsum(a)

Out[54]: array([ 1., 3., 6., 10., 15., 21., 28., 36.1)

In [55]: a rand (100000)
b = empty_like(a)

In [56]: timeit py_dcumsum(a)

10 loops, best of 3: 50.1 ms per loop

In [57]: timeit cy_dcumsum.dcumsum(a,b)

1000 loops, best of 3: 263 pus per loop
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7.4.1 Cython in the IPython notebook

When working with the TPython (especially in the notebook), there is a more convenient way of compiling
and loading Cython code. Using the %J%cython IPython magic (command to IPython), we can simply type
the Cython code in a code cell and let IPython take care of the conversion to C code, compilation and loading
of the function. To be able to use the %%cython magic, we first need to load the extension cythonmagic:

In [58]: %load_ext cythonmagic
In [62]: JJcython
cimport numpy

def cy_dcumsum2(numpy.ndarray[numpy.float64_t, ndim=1] a, numpy.ndarray[numpy.float64_t, ndim=
cdef int i, n = len(a)
b[0] = a[0]
for i from 1 <= 1i < n:
bl[i]l = b[i-1] + a[il
return b
In [63]: timeit cy_dcumsum2(a,b)

1000 loops, best of 3: 265 us per loop

7.4.2 Further reading

e http://cython.org
e http://docs.cython.org/src/userguide/tutorial. html
e http://wiki.cython.org/tutorials/numpy

7.5 Versions

In [64]: Yreload_ext version_information

Jversion_information ctypes, Cython

Out [64] :
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Chapter 8

Lecture 6B - Tools for
high-performance computing
applications

J.R. Johansson (jrjohansson at gmail.com)

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io

In [1]: Ymatplotlib inline
import matplotlib.pyplot as plt

8.1 multiprocessing

Python has a built-in process-based library for concurrent computing, called multiprocessing.

In [2]: import multiprocessing
import os
import time
import numpy

In [3]: def task(args):
print ("PID =", os.getpid(), ", args =", args)

return os.getpid(), args
In [4]: task("test")

PID = 28995 , args = test

Out[4]: (28995, 'test')
In [5]: pool = multiprocessing.Pool(processes=4)

In [6]: result = pool.map(task, [1,2,3,4,5,6,7,8])

PID = 29006 , args = 1
PID = 29009 , args = 4
PID = 29007 , args = 2
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PID = 29008 , args = 3
PID = 29006 , args = 6
PID = 29009 , args = 5
PID = 29007 , args = 8
PID = 29008 , args =7

In [7]: result

Out [7]: [(29006, 1),
(29007, 2),
(29008, 3),
(29009, 4),
(29009, 5),
(29006, 6),
(29008, 7),
(29007, 8)]

The multiprocessing package is very useful for highly parallel tasks that do not need to communicate
with each other, other than when sending the initial data to the pool of processes and when and collecting
the results.

8.2 IPython parallel

IPython includes a very interesting and versatile parallel computing environment, which is very easy to use.
It builds on the concept of ipython engines and controllers, that one can connect to and submit tasks to.
To get started using this framework for parallel computing, one first have to start up an IPython cluster of
engines. The easiest way to do this is to use the ipcluster command,

$ ipcluster start -n 4

Or, alternatively, from the “Clusters” tab on the IPython notebook dashboard page. This will start
4 TPython engines on the current host, which is useful for multicore systems. It is also possible to setup
IPython clusters that spans over many nodes in a computing cluster. For more information about possible
use cases, see the official documentation Using IPython for parallel computing.

To use the IPython cluster in our Python programs or notebooks, we start by creating an instance of
IPython.parallel.Client:

In [8]: from IPython.parallel import Client
In [9]: cli = Client()
Using the ‘ids’ attribute we can retreive a list of ids for the IPython engines in the cluster:
In [10]: cli.ids
Qut([10]: [0, 1, 2, 3]
Each of these engines are ready to execute tasks. We can selectively run code on individual engines:

In [11]: def getpid():
" return the unique ID of the current process
import os
return os.getpid()

mmnn

In [12]: # first try it on the notebook process
getpid()
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Out[12]: 28995

In [13]: # 7Tun it on one of the engines
cli[0] .apply_sync(getpid)

Out[13]: 30181

In [14]: # run it on ALL of the engines at the same time
cli[:].apply_sync(getpid)

Out[14]: [30181, 30182, 30183, 30185]

We can use this cluster of IPython engines to execute tasks in parallel. The easiest way to dispatch a
function to different engines is to define the function with the decorator:

@view.parallel(block=True)

Here, view is supposed to be the engine pool which we want to dispatch the function (task). Once our
function is defined this way we can dispatch it to the engine using the map method in the resulting class (in
Python, a decorator is a language construct which automatically wraps the function into another function
or a class).

To see how all this works, lets look at an example:

In [15]: dview = clil:]

In [16]: @dview.parallel(block=True)
def dummy_task(delay):
"rog dummy task that takes 'delay' seconds to fintsh """
import os, time

t0 = time.time()
pid = os.getpid()
time.sleep(delay)
tl = time.time()

return [pid, tO0, t1i]

In [17]: # generate random delay times for dummy tasks
delay_times = numpy.random.rand(4)

Now, to map the function dummy_task to the random delay time data, we use the map method in
dummy_task:

In [18]: dummy_task.map(delay_times)

Out[18]: [[30181, 1395044753.2096598, 1395044753.9150908],
[30182, 1395044753.2084103, 1395044753.4959202],
[30183, 1395044753.2113762, 1395044753.6453338],
[30185, 1395044753.2130392, 1395044754.1905618]]

Let’s do the same thing again with many more tasks and visualize how these tasks are executed on
different IPython engines:

In [19]: def visualize_tasks(results):
res = numpy.array(results)
fig, ax = plt.subplots(figsize=(10, res.shape[1]))
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yticks = []
yticklabels = []
tmin = min(res[:,1])
for n, pid in enumerate (numpy.unique(res[:,0])):

yticks.append(n)

yticklabels.append("%d" % pid)

for m in numpy.where(res[:,0] == pid) [0]:

ax.add_patch(plt.Rectangle((res[m,1] - tmin, n-0.25),
res[m,2] - res[m,1], 0.5, color="green", alpha=0.5))

ax.set_ylim(-.5, n+.5)

ax.set_x1im(0, max(res[:,2]) - tmin + 0.)
ax.set_yticks(yticks)
ax.set_yticklabels(yticklabels)
ax.set_ylabel("PID")
ax.set_xlabel("seconds")

In [20]: delay_times = numpy.random.rand(64)

In [21]: result = dummy_task.map(delay_times)
visualize_tasks(result)

30185

30183

PID

30182

30181

seconds

That’s a nice and easy parallelization! We can see that we utilize all four engines quite well.

But one short coming so far is that the tasks are not load balanced, so one engine might be idle while
others still have more tasks to work on.

However, the IPython parallel environment provides a number of alternative “views” of the engine cluster,
and there is a view that provides load balancing as well (above we have used the “direct view”, which is why
we called it “dview”).

To obtain a load balanced view we simply use the load _balanced view method in the engine cluster
client instance cli:

In [22]: 1lbview = cli.load_balanced_view()

In [23]: @lbview.parallel(block=True)
def dummy_task_load_balanced(delay):
"t dummy task that takes 'delay' seconds to fintish """
import os, time

t0 = time.time()

pid = os.getpid()
time.sleep(delay)
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tl = time.time()
return [pid, tO0, t1i]

In [24]: result = dummy_task_load_balanced.map(delay_times)
visualize_tasks(result)

30185

30183

FID

30182

30181

seconds

In the example above we can see that the engine cluster is a bit more efficiently used, and the time to
completion is shorter than in the previous example.

8.2.1 Further reading

There are many other ways to use the IPython parallel environment. The official documentation has a nice
guide:

e http://ipython.org/ipython-doc/dev/parallel/

8.3 MPI

When more communication between processes is required, sophisticated solutions such as MPI and OpenMP
are often needed. MPI is process based parallel processing library/protocol, and can be used in Python
programs through the mpi4py package:

http://mpidpy.scipy.org/

To use the mpidpy package we include MPI from mpidpy:

from mpi4py import MPI

A MPI python program must be started using the mpirun -n N command, where N is the number of
processes that should be included in the process group.

Note that the IPython parallel enviroment also has support for MPI, but to begin with we will use mpi4py
and the mpirun in the follow examples.

8.3.1 Example 1
In [25]: %file mpitest.py

from mpi4py import MPI

MPI.COMM_WORLD
comm.Get_rank()

comm
rank
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if rank == 0O:
data = [1.0, 2.0, 3.0, 4.0]
comm.send(data, dest=1, tag=11)
elif rank ==
data = comm.recv(source=0, tag=11)

print "rank =", rank, ", data =", data

Overwriting mpitest.py

In [26]: !'mpirun -n 2 python mpitest.py

rank = 0 , data =

1.0, 2.
rank = 1 , data 0, 2

1.

L
(

B

8.3.2 Example 2

Send a numpy array from one process to another:

In [27]: 7J%file mpi-numpy-array.py

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank ==
data = numpy.random.rand(10)
comm.Send(data, dest=1, tag=13)

elif rank ==
data = numpy.empty(10, dtype=numpy.float64)
comm.Recv(data, source=0, tag=13)

print "rank =", rank, ", data =", data

Overwriting mpi-numpy-array.py

In [28]: !mpirun -n 2 python mpi-numpy-array.py

rank = 0 , data = [ 0.71397658 0.37182268 0.25863587 0.08007216 0.50832534 0.80038331
0.90613024 0.99535428 0.11717776 0.48353805]

rank = 1 , data = [ 0.71397658 0.37182268 0.25863587 0.08007216 0.50832534 0.80038331
0.90613024 0.99535428 0.11717776 0.48353805]

8.3.3 Example 3: Matrix-vector multiplication

In [29]: # prepare some random data
N = 16
A = numpy.random.rand(N, N)
numpy . save ("random-matrix.npy", A)
X = numpy.random.rand (N)
numpy . save ("random-vector.npy", x)
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In [30]: %%file mpi-matrix-vector.py

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
p = comm.Get_size()

def matvec(comm, A, x):
m = A.shape[0] / p
y_part = numpy.dot(A[rank * m:(rank+1)*m], x)
y = numpy.zeros_like(x)
comm.Allgather ([y_part, MPI.DOUBLE], [y, MPI.DOUBLE])
return y

A = numpy.load("random-matrix.npy")
x = numpy.load("random-vector.npy")
y_mpi = matvec(comm, A, x)

if rank ==
y = numpy.dot(A, x)
print (y_mpi)
print "sum(y - y_mpi) =", (y - y_mpi).sum()

Overwriting mpi-matrix-vector.py

In [31]: !'mpirun -n 4 python mpi-matrix-vector.py

[ 6.40342716 3.62421625 3.42334637 3.99854639 4.95852419 6.13378754
5.33319708 5.42803442 5.12403754 4.87891654 2.38660728 6.72030412
4.05218475 3.37415974 3.90903001 5.82330226]

sum(y - y-mpi) = 0.0

8.3.4 Example 4: Sum of the elements in a vector

In [32]: # prepare some random data
N = 128
a = numpy.random.rand(N)
numpy . save ("random-vector.npy", a)

In [33]: %/file mpi-psum.py

from mpid4py import MPI
import numpy as np

def psum(a):
r = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
m = len(a) / size
locsum = np.sum(al[r*m: (r+1)*m])
rcvBuf = np.array(0.0, 'd')
MPI.COMM_WORLD.Allreduce([locsum, MPI.DOUBLE], [rcvBuf, MPI.DOUBLE], op=MPI.SUM)
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return rcvBuf

= np.load("random-vector.npy")
psum(a)

n
I

if MPI.COMM_WORLD.Get_rank() == 0:
print "sum =", s, ", numpy sum =", a.sum()

Overwriting mpi-psum.py

In [34]: !'mpirun -n 4 python mpi-psum.py

sum = 64.948311241 , numpy sum = 64.948311241

8.3.5 Further reading
e http://mpidpy.scipy.org
e http://mpidpy.scipy.org/docs/usrman/tutorial.html

e https://computing.llnl.gov/tutorials/mpi/

8.4 OpenMP

What about OpenMP? OpenMP is a standard and widely used thread-based parallel API that unfortunaltely
is not useful directly in Python. The reason is that the CPython implementation use a global interpreter
lock, making it impossible to simultaneously run several Python threads. Threads are therefore not use-
ful for parallel computing in Python, unless it is only used to wrap compiled code that do the OpenMP
parallelization (Numpy can do something like that).

This is clearly a limitation in the Python interpreter, and as a consequence all parallelization in Python
must use processes (not threads).

However, there is a way around this that is not that painful. When calling out to compiled code the GIL
is released, and it is possible to write Python-like code in Cython where we can selectively release the GIL
and do OpenMP computations.

In [35]: N_core = multiprocessing.cpu_count()
print ("This system has %d cores" % N_core)

This system has 12 cores

Here is a simple example that shows how OpenMP can be used via cython:
In [36]: %load_ext cythonmagic
In [37]: YZ%cython -f -c-fopenmp --link-args=-fopenmp -c-g

cimport cython
cimport numpy
from cython.parallel import prange, parallel
cimport openmp

def cy_openmp_test():
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cdef int n, N

# release GIL so that we can use OpenMP
with nogil, parallel():
N = openmp.omp_get_num_threads()
n = openmp.omp_get_thread_num()
with gil:
print ("Number of threads %d: thread number %d" % (N, n))

In [38]: cy_openmp_test()

Number of threads 12: thread number O

Number of threads 12: thread number 10
Number of threads 12: thread number 8
Number of threads 12: thread number 4
Number of threads 12: thread number 7
Number of threads 12: thread number 3
Number of threads 12: thread number 2
Number of threads 12: thread number 1
Number of threads 12: thread number 11
Number of threads 12: thread number 9
Number of threads 12: thread number 5
Number of threads 12: thread number 6

8.4.1 Example: matrix vector multiplication

In [39]: # prepare some random data
N = 4 * N_core

M = numpy.random.rand(N, N)

x = numpy.random.rand(N)
y = numpy.zeros_like(x)

Let’s first look at a simple implementation of matrix-vector multiplication in Cython:
In [40]: Y%cython
cimport cython

cimport numpy
import numpy

@cython.boundscheck(False)

@cython.wraparound(False)

def cy_matvec(numpy.ndarray[numpy.float64_t, ndim=2] M,
numpy .ndarray [numpy.float64_t, ndim=1] x,
numpy .ndarray [numpy.float64_t, ndim=1] y):

cdef int i, j, n = len(x)
for i from 0 <= i < n:
for j from 0 <= j < n:

y[i]l += M[i, jl =* x[j]

return y
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In [41]: # check that we get the same results
y = numpy.zeros_like(x)
cy_matvec(M, x, y)
numpy.dot(M, x) -y

Out[41]: array([ 0., O.
0., 0.,
0., 0.
0. 0.

>

>

>

O O O O
O O O O
O O O O
O O O O
oooo
O O O O
O O O O
o
o
o
o

] L)

In [42]: Jtimeit numpy.dot(M, x)

100000 loops, best of 3: 2.93 pus per loop

In [43]: ’timeit cy_matvec(M, x, y)

100000 loops, best of 3: 5.4 us per loop

The Cython implementation here is a bit slower than numpy.dot, but not by much, so if we can use
multiple cores with OpenMP it should be possible to beat the performance of numpy.dot.

In [44]: YJcython -f -c-fopenmp --link-args=-fopenmp -c-g

cimport cython

cimport numpy

from cython.parallel import parallel
cimport openmp

@cython.boundscheck(False)

@cython.wraparound(False)

def cy_matvec_omp(numpy.ndarray[numpy.float64_t, ndim=2] M,
numpy .ndarray [numpy.float64_t, ndim=1] x,
numpy .ndarray [numpy.float64_t, ndim=1] y):

cdef int i, j, n = len(x), N, r, m

# release GIL, so that we can use OpenMP
with nogil, parallel():
N = openmp.omp_get_num_threads()
r = openmp.omp_get_thread_num()
m=n/N

for i from 0 <= i < m:
for j from 0 <= j < n:
ylr *m + i] += M[r * m + i, jl * x[j]

return y

In [45]: # check that we get the same results
y = numpy.zeros_like(x)
cy_matvec_omp(M, x, y)
numpy.dot(M, x) -y
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Qut[45]: array([ 0., O0., o©0., O., O., 0., O., O., 0., O., 0., 0., O.,
6., o., o., o0., 0., 0., 0., 0., 0., 0., 0., 0., O.,
6., o., o., o0., 0., 0., 0., 0., 0., 0., 0., 0., O.,
0., 0., 0., 0., 0., 0., 0., 0., 0.1

In [46]: Jtimeit numpy.dot(M, x)

100000 loops, best of 3: 2.95 us per loop

In [47]: Jtimeit cy_matvec_omp(M, x, y)

1000 loops, best of 3: 209 us per loop

Now, this implementation is much slower than numpy.dot for this problem size, because of overhead
associated with OpenMP and threading, etc. But let’s look at the how the different implementations compare
with larger matrix sizes:

In [48]: N_vec = numpy.arange(25, 2000, 25) * N_core

In [49]: duration_ref = numpy.zeros(len(N_vec))
duration_cy = numpy.zeros(len(N_vec))
duration_cy_omp = numpy.zeros(len(N_vec))

for idx, N in enumerate(N_vec):
M = numpy.random.rand(N, N)

X = numpy.random.rand (N)
y = numpy.zeros_like(x)

t0 = time.time()
numpy .dot (M, x)
duration_ref[idx] = time.time() - tO

t0 = time.time()
cy_matvec(M, x, y)
duration_cy[idx] = time.time() - tO

t0 = time.time()
cy_matvec_omp(M, x, y)
duration_cy_omp[idx] = time.time() - tO

In [50]: fig, ax = plt.subplots(figsize=(12, 6))

ax.loglog(N_vec, duration_ref, label='numpy')
ax.loglog(N_vec, duration_cy, label='cython')
ax.loglog(N_vec, duration_cy_omp, label='cython+openmp')

ax.legend(loc=2)

ax.set_yscale("log")

ax.set_ylabel("matrix-vector multiplication duration")
ax.set_xlabel("matrix size");
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For large problem sizes the the cython+OpenMP implementation is faster than numpy.dot.
With this simple implementation, the speedup for large problem sizes is about:

In [51]: ((duration_ref / duration_cy_omp) [-10:]) .mean()
Out [51]: 3.0072232987815148

Obviously one could do a better job with more effort, since the theoretical limit of the speed-up is:
In [52]: N_core

Out[52]: 12

8.4.2 Further reading

e http://openmp.org
e http://docs.cython.org/src/userguide/parallelism.html

8.5 OpenCL

OpenCL is an API for heterogenous computing, for example using GPUs for numerical computations. There
is a python package called pyopencl that allows OpenCL code to be compiled, loaded and executed on
the compute units completely from within Python. This is a nice way to work with OpenCL, because the
time-consuming computations should be done on the compute units in compiled code, and in this Python
only server as a control language.

In [53]: %%file opencl-dense-mv.py
import pyopencl as cl
import numpy

import time

# problem size
n = 10000
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# platform
platform_list = cl.get_platforms()
platform = platform_list[0]

# device
device_list = platform.get_devices()
device = device_list[0]

if False:
print ("Platform name:" + platform.name)
print ("Platform version:" + platform.version)
print ("Device name:" + device.name)
print("Device type:" + cl.device_type.to_string(device.type))
print ("Device memory: " + str(device.global_mem_size//1024//1024) + ' MB')
print("Device max clock speed:" + str(device.max_clock_frequency) + ' MHz')
print("Device compute units:" + str(device.max_compute_units))

# context
ctx = cl.Context([device]) # or we can use cl.create_some_context()

# command queue
queue = cl.CommandQueue(ctx)

# kernel
KERNEL_CODE = """
//
// Matrix-vector multiplication: r =m * v
//
#define N %(mat_size)d
__kernel
void dmv_cl(__global float *m, __global float *v, __global float *r)
{
int i, gid = get_global_id(0);

r[gid]l = 0;
for (i = 0; i < N; i++)
{

r[gid] += m[gid * N + i] * v[i];
¥
¥

kernel_params = {"mat_size": n}
program = cl.Program(ctx, KERNEL_CODE %, kernel_params).build()

# data
A = numpy.random.rand(n, n)
numpy .random.rand(n, 1)

X

# host buffers

h_y = numpy.empty (numpy.shape(x)) .astype (numpy.float32)
h_A = numpy.real(A).astype (numpy.float32)

h_x = numpy.real(x).astype (numpy.float32)
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# device buffers

mf = cl.mem_flags

d_A_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_A)
d_x_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_x)
d_y_buf = cl.Buffer(ctx, mf.WRITE_ONLY, size=h_y.nbytes)

# execute OpenCL code

t0 = time.time()

event = program.dmv_cl(queue, h_y.shape, None, d_A_buf, d_x_buf, d_y_buf)
event.wait ()

cl.enqueue_copy(queue, h_y, d_y_buf)

tl = time.time()

print "opencl elapsed time =", (t1-t0)

# Same calculation with numpy
t0 = time.time()

y = numpy.dot(h_A, h_x)

tl = time.time()

print "numpy elapsed time =", (t1-t0)

# see if the results are the same
print "max deviation =", numpy.abs(y-h_y).max()

Overwriting opencl-dense-mv.py

In [54]: !python opencl-dense-mv.py

/usr/local/lib/python2.7/dist-packages/pyopencl-2012.1-py2.7-1linux-x86_64.egg/pyopencl/__init__.py:36: Cc
"to see more.", CompilerWarning)

opencl elapsed time = 0.0188570022583

numpy elapsed time = 0.0755031108856

max deviation = 0.0136719

8.5.1 Further reading
e http://mathema.tician.de/software/pyopencl

8.6 Versions

In [55]: %load_ext version_information

Jversion_information numpy, mpidpy, Cython

Out [55] :
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Chapter 9

Revision control software

J.R. Johansson (jrjohansson at gmail.com)

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/
scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

In [13]: from IPython.display import Image

In any software development, one of the most important tools are revision control software (RCS).

They are used in virtually all software development and in all environments, by everyone and everywhere
(no kidding!)

RCS can used on almost any digital content, so it is not only restricted to software development, and is
also very useful for manuscript files, figures, data and notebooks!

9.1 There are two main purposes of RCS systems:

1. Keep track of changes in the source code.

e Allow reverting back to an older revision if something goes wrong.

e Work on several “branches” of the software concurrently.

e Tags revisions to keep track of which version of the software that was used for what (for example,
“release-1.0", “paper-A-final”, ...)

2. Make it possible for serveral people to collaboratively work on the same code base simultaneously.

e Allow many authors to make changes to the code.
e (Clearly communicating and visualizing changes in the code base to everyone involved.

9.2 Basic principles and terminology for RCS systems

In an RCS, the source code or digital content is stored in a repository.

e The repository does not only contain the latest version of all files, but the complete history of all
changes to the files since they were added to the repository.

e A user can checkout the repository, and obtain a local working copy of the files. All changes are made
to the files in the local working directory, where files can be added, removed and updated.

e When a task has been completed, the changes to the local files are commited (saved to the repository).

e If someone else has been making changes to the same files, a conflict can occur. In many cases conflicts
can be resolved automatically by the system, but in some cases we might manually have to merge
different changes together.
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e It is often useful to create a new branch in a repository, or a fork or clone of an entire repository,
when we doing larger experimental development. The main branch in a repository is called often
master or trunk. When work on a branch or fork is completed, it can be merged in to the master
branch /repository.

e With distributed RCSs such as GIT or Mercurial, we can pull and push changesets between different
repositories. For example, between a local copy of there repository to a central online reposistory (for
example on a community repository host site like github.com).

9.2.1 Some good RCS software

1. GIT (git) : http://git-scm.com/
2. Mercurial (hg) : http://mercurial.selenic.com/

In the rest of this lecture we will look at git, although hg is just as good and work in almost exactly the
same way.
9.3 Installing git
On Linux:
$ sudo apt-get install git
On Magc (with macports):
$ sudo port install git
The first time you start to use git, you’ll need to configure your author information:
$ git config --global user.name 'Robert Johansson'
$ git config --global user.email robert@riken.jp
9.4 Creating and cloning a repository
To create a brand new empty repository, we can use the command git init repository-name:

In [4]: # create a new gtit repository called gttdemo:
'git init gitdemo

Reinitialized existing Git repository in /home/rob/Desktop/scientific-python-lectures/gitdemo/.git/

If we want to fork or clone an existing repository, we can use the command git clone repository:
In [5]: !git clone https://github.com/qutip/qutip

Cloning into 'qutip'...

remote: Counting objects: 7425, done.

remote: Compressing objects: 100% (2013/2013), done.

remote: Total 7425 (delta 5386), reused 7420 (delta 5381)
Receiving objects: 100% (7425/7425), 2.25 MiB | 696 KiB/s, done.
Resolving deltas: 1007 (5386/5386), done.

Git clone can take a URL to a public repository, like above, or a path to a local directory:
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In [6]: !git clone gitdemo gitdemo2

Cloning into 'gitdemo2'...
warning: You appear to have cloned an empty repository.
done.

We can also clone private repositories over secure protocols such as SSH:

$ git clone ssh://myserver.com/myrepository

9.5 Status

Using the command git status we get a summary of the current status of the working directory. It shows
if we have modified, added or removed files.

In [34]: !git status

# On branch master

#

# Initial commit

#

# Untracked files:

# (use "git add <file>..." to include in what will be committed)
#

# Lecture-7-Revision-Control-Software.ipynb

nothing added to commit but untracked files present (use "git add" to track)

In this case, only the current ipython notebook has been added. It is listed as an untracked file, and is
therefore not in the repository yet.
9.6 Adding files and committing changes
To add a new file to the repository, we first create the file and then use the git add filename command:

In [35]: %%file README

A file with information about the gitdemo repository.

Writing README

In [36]: !git status

On branch master
Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

Lecture-7-Revision-Control-Software.ipynb
README
nothing added to commit but untracked files present (use "git add" to track)

H oH O H HOH O H
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After having added the file README, the command git status list it as an untracked file.
In [37]: !git add README
In [38]: !git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: README

Untracked files:

#
#
#
#
#
#
#
#
#
#
#  (use "git add <file>..." to include in what will be committed)
#

#

Lecture-7-Revision-Control-Software.ipynb

Now that it has been added, it is listed as a new file that has not yet been commited to the repository.
In [39]: !git commit -m "Added a README file" README

[master (root-commit) 1f26ad6] Added a README file
1 file changed, 2 insertions(+)
create mode 100644 README

In [40]: !'git add Lecture-7-Revision-Control-Software.ipynb
In [41]: !'git commit -m "added notebook file" Lecture-7-Revision-Control-Software.ipynb

[master da8b6e9] added notebook file
1 file changed, 2047 insertions(+)
create mode 100644 Lecture-7-Revision-Control-Software.ipynb

In [42]: !git status

# On branch master
nothing to commit (working directory clean)

After committing the change to the repository from the local working directory, git status again reports
that working directory is clean.

9.7 Commiting changes
When files that is tracked by GIT are changed, they are listed as modified by git status:

In [43]: %%file README
A file with information about the gitdemo repository.

A new line.
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Overwriting README

In [44]: !'git status

# On branch master

# Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#
#
#
# modified: README
#

no changes added to commit (use "git add" and/or "git commit -a")

Again, we can commit such changes to the repository using the git commit -m "message" command.
In [45]: !git commit -m "added one more line in README" README

[master b6db712] added one more line in README
1 file changed, 3 insertions(+), 1 deletion(-)

In [46]: !git status

# On branch master
nothing to commit (working directory clean)

9.8 Removing files

To remove file that has been added to the repository, use git rm filename, which works similar to git add
filename:

In [47]: J%file tmpfile
A short-lived file.

Writing tmpfile

Add it:
In [48]: !git add tmpfile
In [49]: !'git commit -m "adding file tmpfile" tmpfile

[master 44ed840] adding file tmpfile
1 file changed, 2 insertions(+)
create mode 100644 tmpfile

Remove it again:
In [51]: !git rm tmpfile

rm 'tmpfile'
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In [52]: !git commit -m "remove file tmpfile" tmpfile

[master a9dcOa4] remove file tmpfile
1 file changed, 2 deletions(-)
delete mode 100644 tmpfile

9.9 Commit logs

The messages that are added to the commit command are supposed to give a short (often one-line) description
of the changes/additions/deletions in the commit. If the -m "message" is omitted when invoking the git
commit message an editor will be opened for you to type a commit message (for example useful when a
longer commit message is requried).

We can look at the revision log by using the command git log:

In [53]: !git log

commit a9dc0a4b68e8b1b6d973be8f7e7b8£1c92393c17
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:41 2012 +0100

remove file tmpfile
commit 44ed840422571c62db55eabd8e8768be6c7784e4
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:31 2012 +0100

adding file tmpfile
commit b6db712506a45a68001c768a6cf6elbel1c62£89
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:26 2012 +0100

added one more line in README
commit da8b6e92b34fe3838873bdd27a94402ecc121c43
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:20 2012 +0100

added notebook file
commit 1£26ad648a791e266fbb951ef5c49b8d990e6461
Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 06:54:19 2012 +0100

Added a README file

In the commit log, each revision is shown with a timestampe, a unique has tag that, and author infor-
mation and the commit message.

9.10 Diffs

All commits results in a changeset, which has a “diff” describing the changes to the file associated with it.
We can use git diff so see what has changed in a file:
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In [54]: %/file README
A file with information about the gitdemo repository.

README files usually contains installation instructions, and information about how to get star

Overwriting README

In [65]: !git diff README

diff --git a/README b/README
index 4f51868..d3951c6 100644
--- a/README

+++ b/README

e -1,4 +1,4 Q@

A file with information about the gitdemo repository.

-A new line.

\ No newline at end of file

+README files usually contains installation instructions, and information about how to get started usin
\ No newline at end of file

That looks quite cryptic but is a standard form for describing changes in files. We can use other tools,
like graphical user interfaces or web based systems to get a more easily understandable diff.
In github (a web-based GIT repository hosting service) it can look like this:

In [24]: Image(filename='images/github-diff.png')

Out [24] :

9.11 Discard changes in the working directory

To discard a change (revert to the latest version in the repository) we can use the checkout command like
this:

In [58]: !git checkout -- README
In [59]: !git status

# On branch master
nothing to commit (working directory clean)

9.12 Checking out old revisions

If we want to get the code for a specific revision, we can use “git checkout” and giving it the hash code for
the revision we are interested as argument:

In [60]: !git log
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commit a9dc0a4b68e8b1b6d973be8f7e7b8£1c92393c17
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:41 2012 +0100

remove file tmpfile
commit 44ed840422571c62db55eabd8e8768be6c7784e4
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:31 2012 +0100

adding file tmpfile
commit b6db712506a45a68001c768a6cf6el15e11c62£89
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:26 2012 +0100

added one more line in README
commit da8b6e92b34fe3838873bdd27a94402ecc121c43
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:20 2012 +0100

added notebook file
commit 1£26ad648a791e266fbb951ef5c49b8d990e6461
Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 06:54:19 2012 +0100

Added a README file

In [61]: !git checkout 1f26ad648a791e266fbb951ef5c49b8d990e6461

Note: checking out '1f26ad648a791e266fbb951ef5c49b8d990e6461'.
You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch name

HEAD is now at 1f26ad6... Added a README file

Now the content of all the files like in the revision with the hash code listed above (first revision)

In [62]: !'cat README

A file with information about the gitdemo repository.

We can move back to “the latest” (master) with the command:
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In [63]: !git checkout master

Previous HEAD position was 1f26ad6... Added a README file
Switched to branch 'master'

In [64]: !cat README

A file with information about the gitdemo repository.

A new line.
In [65]: !git status

# On branch master
nothing to commit (working directory clean)

9.13 Tagging and branching

9.13.1 Tags

Tags are named revisions. They are useful for marking particular revisions for later references. For example,
we can tag our code with the tag “paper-1-final” when when simulations for “paper-1” are finished and the
paper submitted. Then we can always retreive the exactly the code used for that paper even if we continue
to work on and develop the code for future projects and papers.

In [66]: !git log

commit a9dc0a4b68e8b1b6d973be8f7e7b8£1c92393c17
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:41 2012 +0100

remove file tmpfile
commit 44ed840422571c62db55eabd8e8768be6c7784e4
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:31 2012 +0100

adding file tmpfile
commit b6db712506a45a68001c768a6cf6elb5el11c62£89
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:26 2012 +0100

added one more line in README
commit da8b6e92b34fe3838873bdd27a94402ecc121c43
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:20 2012 +0100

added notebook file

commit 1f26ad648a791e266fbb951ef5c49b8d990e6461
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Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:19 2012 +0100

Added a README file

In [67]: !git tag -a demotagl -m "Code used for this and that purpuse"
In [68]: !git tag -1

demotagl

In [69]: !git show demotagl

tag demotagl
Tagger: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:57:25 2012 +0100

Code used for this and that purpuse

commit a9dc0a4b68e8b1b6d973be8f7e7b8£1c92393c17
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:41 2012 +0100

remove file tmpfile

diff --git a/tmpfile b/tmpfile
deleted file mode 100644

index eedcle7..0000000

--- a/tmpfile

+++ /dev/null

@@ -1,2 +0,0 @@

-A short-lived file.

\ No newline at end of file

To retreive the code in the state corresponding to a particular tag, we can use the git checkout tagname
command:

$ git checkout demotagl

9.14 Branches

With branches we can create diverging code bases in the same repository. They are for example useful for
experimental development that requires a lot of code changes that could break the functionality in the master
branch. Once the development of a branch has reached a stable state it can always be merged back into the
trunk. Branching-development-merging is a good development strategy when serveral people are involved in
working on the same code base. But even in single author repositories it can often be useful to always keep
the master branch in a working state, and always branch/fork before implementing a new feature, and later
merge it back into the main trunk.
In GIT, we can create a new branch like this:

In [70]: !git branch exprl
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We can list the existing branches like this:
In [71]: !git branch

expril
* master

And we can switch between branches using checkout:
In [81]: !git checkout exprl

Switched to branch 'exprl'

Make a change in the new branch.

In [74]: 7%file README
A file with information about the gitdemo repository.
README files usually contains installation instructions, and information about how to get star

Experimental addition.

Overwriting README

In [76]: !git commit -m "added a line in exprl branch" README

[exprl a6dc24f] added a line in exprl branch
1 file changed, 3 insertions(+), 1 deletion(-)

In [77]: !'git branch
* exprl
master
In [78]: !git checkout master

Switched to branch 'master'

In [79]: !git branch
exprl

* master

We can merge an existing branch and all its changesets into another branch (for example the master
branch) like this:
First change to the target branch:

In [82]: !git checkout master

Switched to branch 'master'
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In [83]: !git merge exprl

Updating a9dcOa4..a6dc24f
Fast-forward
README | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)

In [84]: !git branch

exprl
* master

We can delete the branch exprl now that it has been merged into the master:
In [85]: !git branch -d exprl

Deleted branch exprl (was a6dc24f).

In [86]: !git branch

* master
In [88]: !'cat README

A file with information about the gitdemo repository.
README files usually contains installation instructions, and information about how to get started using

Experimental addition.

9.15 pulling and pushing changesets between repositories

If the respository has been cloned from another repository, for example on github.com, it automatically
remembers the address of the parant repository (called origin):

In [5]: !git remote

origin

In [4]: !git remote show origin

* remote origin
Fetch URL: git@github.com:jrjohansson/scientific-python-lectures.git
Push URL: git@github.com:jrjohansson/scientific-python-lectures.git
HEAD branch: master
Remote branch:
master tracked
Local branch configured for 'git pull':
master merges with remote master
Local ref configured for 'git push':
master pushes to master (up to date)
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9.15.1 pull

We can retrieve updates from the origin repository by “pulling” changesets from “origin” to our repository:
In [6]: !git pull origin
Already up-to-date.

We can register addresses to many different repositories, and pull in different changesets from different
sources, but the default source is the origin from where the repository was first cloned (and the work origin
could have been omitted from the line above).

9.15.2 push

After making changes to our local repository, we can push changes to a remote repository using git push.
Again, the default target repository is origin, so we can do:

In [7]: !git status

# On branch master
# Untracked files:

#  (use "git add <file>..." to include in what will be committed)
#
# Lecture-7-Revision-Control-Software.ipynb

nothing added to commit but untracked files present (use "git add" to track)

In [8]: !git add Lecture-7-Revision-Control-Software.ipynb
In [9]: !'git commit -m "added lecture notebook about RCS" Lecture-7-Revision-Control-Software.ipynb

[master d0d6a70] added lecture notebook about RCS
1 file changed, 2114 insertions(+)
create mode 100644 Lecture-7-Revision-Control-Software.ipynb

In [11]: !git push

Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 118.94 KiB, done.

Total 3 (delta 1), reused O (delta 0)

To git@github.com:jrjohansson/scientific-python-lectures.git
2495af4..d0d6a70 master -> master

9.16 Hosted repositories

Github.com is a git repository hosting site that is very popular with both open source projects (for which it
is free) and private repositories (for which a subscription might be needed).

With a hosted repository it easy to collaborate with colleagues on the same code base, and you get a
graphical user interface where you can browse the code and look at commit logs, track issues etc.

Some good hosted repositories are

e Github : http://www.github.com

e Bitbucket: http://www.bitbucket.org

In [14]: Image(filename='images/github-project-page.png')
Out [14]:
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9.17 Graphical user interfaces

There are also a number of graphical users interfaces for GIT. The available options vary a little bit from
platform to platform:
http://git-scm.com/downloads/guis

In [15]: Image(filename='images/gitk.png')

OQut[15] :

9.18 Further reading

e http://git-scm.com/book
e http://www.vogella.com/articles/Git/article.html
e http://cheat.errtheblog.com/s/git
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