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images is defined by the inner edge of the ring system and/or
the effects of the ring shadow, and this is shown clearly in Fig.
2. The 7.8-um equatorial belt is parallel to the occulting inner
edge of the ring system, although uncertainties of up to 3° in
tilt and 5° in displacement with respect to the rotational equator
cannot be excluded because of latitude structure in the belt. The
position of the equatorial emission belt is therefore not incon-
sistent with the latitude of the magnetic-dip equator'? at 6° N.
The Earth exhibits thermospheric emission in the form of two
bright belts of 130-nm atomic-oxygen emission near the magnetic
Equator, associated with electron-density enhancements (the
Appleton anomalies)'®. The Earth also has a strong electric
current (the equatorial electrojet) flowing east-west along the
magnetic Equator and only a few degrees of latitude in width'®.
A similar current system may exist on Saturn, and electron
collisional excitation could contribute to the 7.8-um methane
vibrational emission observed. Other effects associated with
Saturn’s rings could be significant, including convective trans-
port of atmospheric gas to high altitudes along a sharp tem-
perature discontinuity at the inner edge of the ring shadow.
Such convective transport could lead to enhanced stratospheric
temperatures by ortho-para H, conversion'’. More exotic pro-
cesses, such as deposition of material from the rings, cannot be
excluded and will be considered as part of a subsequent program
of more detailed thermal infrared observations.
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Self-organized criticality in
the ‘Game of Life’
Per Bak, Kan Chen & Michael Creutz

Department of Physics, Brookhaven National Laboratory, Upton,
New York 11973, USA

THE ‘Game of Life’’? is a cellular automaton, that is, a lattice
system in which the state of each lattice point is determined by
local rules. It simulates, by means of a simple algorithm, the
dynamical evolution of a society of living organisms. Despite its
simplicity, the complex dynamics of the game are poorly under-
stood. Previous interest in ‘Life’ has focused on the generation of
complexity in local configurations; indeed, the system has been
suggested to mimic aspects of the emergence of complexity in
nature". Here we adopt a different approach, by using concepts
of statistical mechanics to study the system’s long-time and large-
scale behaviour. We show that local configurations in the ‘Game
of Life’ self-organize into a critical state. Such self-organized
criticality provides a %eneral mechanism for the emergence of
scale-free structures®”, with possible applications to earth-
quakes®’, cosmology®, turbulence’®, biology and economics'®. By
contrast to these previous studies, where a local quantity was
conserved, ‘Life’ has no local conservation laws and therefore
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represents a new type of universality class for self-organized
criticality. This refutes speculations that self-organized criticality
is a consequence of local conservation'', and supports its relevance
to the natural phenomena above, as these do not involve any locally
conserved guantities. The scaling is universal in the sense that the
exponents that characterize correlation functions do not depend
on details of the local rules.

The grand and general question is how the laws of physics—
which describe processes on the microscopic scale—can lead to
a world organized on all scales. The idea of ‘self-organized’ is
that it is in the nature of nonlinear processes to organize mathe-
matical systems into structures that have order on all length
scales. If this tendency is generally present in such mathematical
systems, then we would also expect the natural world to contain
structures on all scales. Here we demonstrate this by choosing
‘at random’ an entirely local algorithm, the ‘Game of Life’, and
showing that the model evolves to a stationary state where small
perturbations create objects of all sizes.

The canonical example of self-organized criticality is a ‘pile
of sand’. Imagine building the pile by slowly adding particles.
As the pile grows, there will be bigger and bigger avalanches.
Eventually a statistically stationary state is reached in which
avalanches of all sizes occur, that is, the correlation length is
infinite. Thus, in analogy with equilibrium thermodynamical
systems the state is ‘critical’. It is also self-organized because
no fine-tuning of external fields was needed to take the system
to the critical state: the criticality is unavoidable. This is in
contrast to the behaviour for an equilibrium phase transition,
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FIG. 1 a Log-log plot of distribution of cluster size for a 100 X 100 system.
b, Distribution of the duration for evolution of clusters. The deviation from
power-law behaviour for large clusters is a finite-size effect.
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in which one has to tune, for instance, the temperature to arrive
at the critical point.

The ‘Game of Life’ is defined on a square lattice. There are
two states on each lattice site, representing the presence or
absence of a live individual. The rules for the evolution of ‘Life’
are very simple. (1) The fate of a live individual depends on its
eight nearest neighbours; it will die at the next time step if there
are less than two (over-exposure) or more than three (over-
crowding) live neighbours; otherwise it will remain alive. (2)
At a dead site, a new individual will be born at the next time
step only if there are exactly three live neighbours. Figure 2
includes some configurations of still life, cyclic life and propa-
gating gliders. Numerous local stationary configurations can be
generated by these simple rules, representing variety and com-
plexity of local stable societies. We will focus, however, on the
collective behaviour of live organisms.

We simulate ‘Life’ on finite lattices of sizes up to 150 x 150.
Open (absorbing) boundary conditions are generally chosen,
but the scaling region of the spatial and temporal correlations
is not affected by boundary conditions. Of course, the finite size
of the system cuts off very-large-scale features. We studied the
following process. Starting with a random distribution of live
sites, the system evolves according to rules (1) and (2) until it
comes to ‘rest’ in a simple periodic state with a distribution of
local still life and simple cyclic life (with our method of gener-
ation, cyclic structures of long period are extremely rare and
essentially never encountered). The system is then perturbed on
a randomly chosen local site, by adding a live individual, and
is then allowed to evolve according to the rules until it comes
to rest again. As the process is repeated, the system evolves into
a statistically stationary state, which does not depend on the
initial configuration. The properties of this state are the object
of our investigation.

First, we measure the total activity s, defined as the total
number of births and deaths following a single perturbation.
Figure 1a shows the distribution of ‘clusters’ of size s averaged
over 40,000 perturbations. The distribution seems to be a power
law, D(s)ocs™", r=~1.4. Figure 1b shows the distribution of
durations of perturbations D{T). This also seems to be a power
law, D(T)oc T™% with b=1.6. The fact that the activity does

o

FIG. 2 Configuration of a 100 X100 system responding to a perturbation.
Live passive sites are open circles, dying active sites are filled circles; the
dots indicate sites where birth will take place at the next time step. Note
configurations of still life (clusters of open circles), cyclic life with period 2,
and propagating gliders.
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FIG. 3 Number distribution of active sites at a distance r from a given active
sites near the centre of a 150 x 150 system.

not decay or explode exponentially (become chaotic) indicates
that life and death are highly correlated in time and space: the
system has evolved into a critical state. Figure 2 shows a configur-
ation of the activity in the middle of a perturbation. Notice the
clustering of the activity, which indicates that ‘Life’ is sustained
on a fractal. The number distribution of active sites at a distance
r from a given active site in an active cluster increases with r
as D(r)ocr®7!, where the fractal dimension D=1.7 (Fig. 3).
The fractal structure of the activity is not apparent in a single
configuration of our rather small system, but becomes clear
when averaged over many configurations. These power laws
indicate that the stationary state of ‘Life’ is critical, with
avalanches through the system on all scales. In biology, these
avalanches may be thought of as the response to slow changes
in the environment.

We have shown numerically that the ‘Game of Life’ operates
at a self-organized critical state, characterized by critical
exponents 7, b, D and others. By analogy with traditional critical
phenomena, we do not expect the critical properties to depend
on the particular features of the rule, and thus they are universal.
Also the model could be ‘accidentally’ critical, in the sense that
modifications drive it away from criticality (or the model could
be operating close to, but not at, the critical point so that
deviations from power laws were not detected in the calculation).
To check this, we have constructed a three-state model, which
does not exhibit complex local configurations, but nevertheless
seems to be critical, with exponents which seem to be the same
as those of the ‘Game of Life’®. The essential feature of the
simplified model is the existence of propagating particles acting
as messengers communicating between different parts of space.
The simplified model is defined in any number of dimensions,
and thus may be more tractable to standard renormalization-
group methods known from critical phenomena. Further studies
of this model may help to elucidate the critical properties of
‘Life’.

The ‘Game of Life’ is not meant to be a realistic model for
any particular system, but serves to demonstrate how large-scale
structures can arise is complicated extended dynamical systems.
Nevertheless, it has been suggested from studies on much more
complicated mathematical models of co-evolution (S. Kauffman,
personal communication) that biology indeed operates at a
self-organized critical state like the one described here. O
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Entropy of amorphous ice
Edward Whalley, D. D. Klug & Y. P. Handa
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THE configurational entropies of amorphous solids reflect certain
aspects of their structures, in particular the numbers of accessible
molecular configurations. The configurational entropy of vitreous
silica has been estimated theoretically' as no more than
5.8J K " mol™', which agrees reasonably with experiment. That
of low-density amorphous ice has been estimated theoretically” as
~6.3J K ' mol™" more than that of ice Ih, using a model that
assumes a continuous random network of hydrogen bonds. This
value corresponds to ~2.1 more configurations per molecule than
in ice Ih, and seems consistent with the result for vitreous silica’.
In principle, these entropies can be obtained from the change of
heat capacity from the glass to the liquid and the entropy of
freezing of the liquid at equilibrium, but such measurements have
not proved possible because the liquid generally crystallizes too
quickly. Here we show that the entropies can be estimated approxi-
mately by another method: from the thermodynamics of the trans-
formations of, for example, both ice Th* and low-density amorphous
ice® to high-density amorphous ice. The entropy of high-density
amorphous ice relative to that of ice Ih is estimated as 2+
1JK ' mol”", and that of high-density relative to low-density
amorphous ice is estimated as 1+ 0.5J K~' mol™". The entropy of
low-density amorphous ice relative to ice Th is therefore
~1J K~ mol™". The earlier estimates> of this quantity are there-
fore several times too high. These low values limit the amount of
disorder that can be present in the amorphous phases.

When ice Ih is compressed to ~10kbar at 77 K (ref. 3) it
transforms to a high-density amorphous ice, several properties
of which have been measured®*°%. Low-density amorphous ice
transforms to a high-density form in a similar way*, but at less
than half the pressure at which ice Ih transforms. Both of these
amorphous phases can be recovered at 77 K and ambient press-
ure, apparently without any significant change except for a
uniform and reversible expansion®*.

The pressure p. at which the two phases are in equilibrium
with one another is described by the equation

AA, AU, ap

=2 + he
Pe="AV.” Tav. Te(ar)e )
= p.(1) +p.(2), (2)

where AA_, AV, and AU, are the difference between the Helm-
holtz functions, the volumes, and the internal energies of the
two phases at equilibrium, respectively, T, is the temperature
of the equilibrium, (4p/aT). is the slope of the equilibrium
line for the two phases, and p.(1)=—-AU./AV, and p.(2)=
T.(3p/aT).. The difference between the enthalpies of the two
phases at low pressure is the difference in the internal energy,
and the internal energy changes little with pressure because it
depends only on the thermal expansion and the compression.
Therefore, the difference between the internal energies of the
two phases under pressure can be represented, to a reasonable
approximation, by the difference in enthalpy at zero pressure.

The difference between the enthalpies of high-density amor-
phous ice and ice Th is —2,125 Jmol™" at ~100 K (ref. 6). As
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the change of volume at the transformation of ice Th to high-
density amorphous ice is —4.2+0.1 cm® mol ! (ref. 3), then, for
the equilibrium between the two phases

p(1)=5.1kbar 3)

if the effect of temperature on the enthalpy changes can be
neglected in a first approximation.

The contribution of the term T,(dp/dT), to equation (1) is
not known by direct experiment, but its range can be estimated
by plotting the equilibrium pressures of ice Ih and liquid water
in the range 253-273 K (ref. 9) (see curve 1, Fig. 1) and extrapol-
ating them to low temperature. Four extrapolations have been
made, assuming that the entropy change at the transformation
of ice Th to high-density amorphous ice is either 1, 2, 3 or
6J K 'mol™" and that the temperature of the glass transition
at these pressures is independent of the pressure and is 150 K.
This temperature is 25 K above the value measured by Klug
and Handa'® for low-density amorphous ice, and is the tem-
perature at which high-density amorphous ice crystallizes when
it is warmed in the range 10-30 kbar (ref. 11). The values of
p.(2) were then calculated from the temperature and the assumed
slopes, and the quantities p., from equation (2), are plotted as
the circles at 100 K in Fig. 1. The slopes of the equilibrium lines
were calculated from the known volume changes at the transfor-
mations and the assumed entropy changes, and the calculated
equilibrium lines are plotted in Fig. 1. The melting points at
high temperatures and pressures were extrapolated in three ways
to meet the slopes of the equilibrium lines for which the entropy
changes at the line are 1, 2, 3 and 6 J K™! mol™'. Three lines
extrapolate reasonably well, and they show that the entropy of
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FiG. 1 Curve 1 is the equilibrium line between ice Ih and the fiquid plotted
in the range O-2kbar (ref. 9) and extrapolated to zero temperature as
described in the text. Curve 2, below ~150 K, is the equilibrium line between
low-density and high-density amorphous ice, as described in the text. Curve
2 does not exist above ~150 K because the two amorphous forms of ice
melt; it is drawn only to suggest that a continuity of states might exist at
low temperatures, if measurements could be made quickly enough. The
equilibrium lines that would occur below the glass transition if the entropy
changes at the transformation of ice Ih to high-density amorphous ice were
6, 3 and 1 JK 1 mol™, are drawn through the equilibrium pressures p,
predicted by equation (1).

NATURE - VOL 342 - 14 DECEMBER 1989

© 1989 Nature Publishing Group



