
level of LSMO is situated above the Fermi
level of Co and a maximum of inverse TMR
is expected when the Fermi level of LSMO is
approximately at the maximum of the spin2
DOS of Co. This is consistent with the max-
imum of inverse TMR observed at 20.4 V
for Co/STO/LSMO junctions (Fig. 3A). For a
positive bias, the TMR is expected to change
sign and become normal above 1 V when the
Fermi level of LSMO goes down into the
energy range of the majority spin d-band of
Co. This is also observed in Fig. 3A.

For ALO and ALO/STO barriers, a predom-
inant tunneling of s-character electrons (see ar-
row in Fig. 2B) is the usual explanation of the
positive polarization (6–8). The rapid drop
with bias (Fig. 3B) is similar to what has been
observed in most junctions with ALO barriers,
and completely different from what is obtained
when the tunneling is predominantly by d-char-
acter electrons (Fig. 3A). The origin of this
rapid decrease of the TMR at relatively small
bias has never been clearly explained. This is
roughly consistent with the energy dependence
of the DOS induced by sp-d bonding effects on
the first atomic layer of ALO in the calculation
of Nguyen-Mahn et al. (8) for the Co-ALO
interface. But Zhang et al. (13) have also shown
that a large part of the TMR drop can be
attributed to the excitation of spin waves.

The experiments reported here and in sev-
eral recent publications (3, 4) demonstrate the
important role of the electronic structure of the
metal-oxide interface in determining the spin
polarization of the tunneling electrons. The neg-
ative polarization for the Co-STO interface has
been ascribed to d-d bonding effects between
Al and Ti (4). This interpretation is similar to

that proposed to explain, in terms of sp-d bond-
ing, the positive polarization at the Co-ALO
interface (8). However, there is no general the-
ory predicting the trend of the experimental
results for Co—that is, a negative polarization
with oxides of d elements (STO, CLO, Ta2O5)
and a positive one when there are only s and p
states (ALO). It is likely that the spin polariza-
tion should also depend on the position of the
Fermi level with respect to the electronic levels
of each character above and below the gap of
the insulator. In addition, as an evanescent
wave in an insulator is a Bloch wave with an
imaginary wave vector, one can expect differ-
ent decay lengths for Bloch waves of different
character. This means that the final polarization
could also depend on the thickness of the bar-
rier, as illustrated by the calculations of Mac-
Laren et al. for Fe/ZnSe/Fe junctions (14).

The influence of the barrier on the spin
polarization opens new ways to shape and op-
timize the TMR. Interesting bias dependencies
can be obtained with barriers selecting the d
electrons and probing the fine structure of the
d-DOS, as in Fig. 3A. The DOS of a d-band can
also be easily tailored by alloying (for example,
by introduction of virtual bound states) to pro-
duce specific bias dependencies. Although here
we concentrated on the problem of the spin
polarization of the Co electrode and regarded
the strongly spin-polarized LSMO only as a
useful spin analyzer, the large TMR ratios ob-
tained by combining Co and LSMO electrodes
(50% with a STO barrier) are also an interesting
result. The drawback arising from the low
Curie temperature of LSMO (;350 K) is the
reduction of the TMR at room temperature,

down to about 5% at 300 K in Co/STO/
LSMO (4). However, other types of oxides of
the double-perovskite family (for example,
Sr2FeMoO6) combine electronic properties
similar to those of manganites with a defi-
nitely higher Curie temperature (15). Their
use in magnetic tunnel junctions is promising
for a new generation of tunnel junctions with
very high magnetoresistance for room-tem-
perature applications.
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Emergence of Scaling in
Random Networks

Albert-László Barabási* and Réka Albert

Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(ii) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars
of the individual systems.

The inability of contemporary science to de-
scribe systems composed of nonidentical el-
ements that have diverse and nonlocal inter-

actions currently limits advances in many
disciplines, ranging from molecular biology
to computer science (1). The difficulty of
describing these systems lies partly in their
topology: Many of them form rather complex
networks whose vertices are the elements of
the system and whose edges represent the
interactions between them. For example, liv-
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Fig. 3. Bias dependence of the TMR ratio in (A)
Co/STO/LSMO and (B) Co/ALO/STO/LSMO
tunnel junctions.
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ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ; k2g. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
gpower . 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent gcite 5 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent g between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p 5 0, the probability distri-
bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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these systems is that the network continuous-
ly expands by the addition of new vertices
that are connected to the vertices already
present in the system.

Second, the random network models as-
sume that the probability that two vertices are
connected is random and uniform. In con-
trast, most real networks exhibit preferential
connectivity. For example, a new actor is
most likely to be cast in a supporting role
with more established and better-known ac-
tors. Consequently, the probability that a new
actor will be cast with an established one is
much higher than that the new actor will be
cast with other less-known actors. Similarly,
a newly created Web page will be more likely
to include links to well-known popular doc-
uments with already-high connectivity, and a
new manuscript is more likely to cite a well-
known and thus much-cited paper than its
less-cited and consequently less-known peer.
These examples indicate that the probability
with which a new vertex connects to the
existing vertices is not uniform; there is a
higher probability that it will be linked to a
vertex that already has a large number of
connections.

We next show that a model based on these
two ingredients naturally leads to the ob-
served scale-invariant distribution. To incor-
porate the growing character of the network,
starting with a small number (m0 ) of vertices,
at every time step we add a new vertex with
m(#m0 ) edges that link the new vertex to m
different vertices already present in the sys-
tem. To incorporate preferential attachment,
we assume that the probability P that a new
vertex will be connected to vertex i depends
on the connectivity ki of that vertex, so that
P(ki ) 5 ki /Sj kj. After t time steps, the
model leads to a random network with t 1
m0 vertices and mt edges. This network
evolves into a scale-invariant state with the
probability that a vertex has k edges, follow-
ing a power law with an exponent gmodel 5
2.9 6 0.1 (Fig. 2A). Because the power law
observed for real networks describes systems
of rather different sizes at different stages of
their development, it is expected that a cor-
rect model should provide a distribution
whose main features are independent of time.
Indeed, as Fig. 2A demonstrates, P(k) is
independent of time (and subsequently inde-
pendent of the system size m0 1 t), indicat-
ing that despite its continuous growth, the
system organizes itself into a scale-free sta-
tionary state.

The development of the power-law scal-
ing in the model indicates that growth and
preferential attachment play an important role
in network development. To verify that both
ingredients are necessary, we investigated
two variants of the model. Model A keeps the
growing character of the network, but prefer-
ential attachment is eliminated by assuming

that a new vertex is connected with equal
probability to any vertex in the system [that
is, P(k) 5 const 5 1/(m0 1 t 2 1)]. Such
a model (Fig. 2B) leads to P(k) ;
exp(2bk), indicating that the absence of
preferential attachment eliminates the scale-
free feature of the distribution. In model B,
we start with N vertices and no edges. At
each time step, we randomly select a vertex
and connect it with probability P(ki ) 5 ki /
Sj k j to vertex i in the system. Although at
early times the model exhibits power-law
scaling, P(k) is not stationary: because N is
constant and the number of edges increases
with time, after T . N 2 time steps the system
reaches a state in which all vertices are con-
nected. The failure of models A and B indi-
cates that both ingredients—growth and pref-
erential attachment—are needed for the de-
velopment of the stationary power-law distri-
bution observed in Fig. 1.

Because of the preferential attachment, a
vertex that acquires more connections than
another one will increase its connectivity at a
higher rate; thus, an initial difference in the
connectivity between two vertices will in-
crease further as the network grows. The rate
at which a vertex acquires edges is ]ki /]t 5
ki / 2t, which gives ki(t) 5 m(t/ti )

0.5, where
ti is the time at which vertex i was added to
the system (see Fig. 2C), a scaling property
that could be directly tested once time-re-
solved data on network connectivity becomes
available. Thus older (with smaller ti ) verti-
ces increase their connectivity at the expense
of the younger (with larger ti ) ones, leading
over time to some vertices that are highly
connected, a “rich-get-richer” phenomenon
that can be easily detected in real networks.
Furthermore, this property can be used to
calculate g analytically. The probability that
a vertex i has a connectivity smaller than k,
P[ki(t) , k], can be written as P(ti .
m2t/k2). Assuming that we add the vertices
to the system at equal time intervals, we
obtain P(ti . m2t/k2) 5 1 2 P(ti #

m2t/k2) 5 1 2 m2t/k2(t 1 m0). The prob-
ability density P(k) can be obtained from
P(k) 5 ]P[ki(t) , k]/]k, which over long
time periods leads to the stationary solution

P~k! 5
2m2

k3

giving g 5 3, independent of m. Although it
reproduces the observed scale-free distribu-
tion, the proposed model cannot be expected
to account for all aspects of the studied net-
works. For that, we need to model these
systems in more detail. For example, in the
model we assumed linear preferential attach-
ment; that is, P(k) ; k. However, although
in general P(k) could have an arbitrary non-
linear form P(k) ; ka, simulations indicate
that scaling is present only for a 5 1. Fur-
thermore, the exponents obtained for the dif-
ferent networks are scattered between 2.1 and
4. However, it is easy to modify our model to
account for exponents different from g 5 3.
For example, if we assume that a fraction p of
the links is directed, we obtain g( p) 5 3 2
p, which is supported by numerical simula-
tions (16). Finally, some networks evolve not
only by adding new vertices but by adding
(and sometimes removing) connections be-
tween established vertices. Although these
and other system-specific features could
modify the exponent g, our model offers the
first successful mechanism accounting for the
scale-invariant nature of real networks.

Growth and preferential attachment are
mechanisms common to a number of com-
plex systems, including business networks
(17, 18), social networks (describing individ-
uals or organizations), transportation net-
works (19), and so on. Consequently, we
expect that the scale-invariant state observed
in all systems for which detailed data has
been available to us is a generic property of
many complex networks, with applicability
reaching far beyond the quoted examples. A
better description of these systems would
help in understanding other complex systems

Fig. 2. (A) The power-law connectivity distribution at t 5 150,000 (E) and t 5 200,000 (h) as
obtained from the model, using m0 5 m 5 5. The slope of the dashed line is g 5 2.9. (B) The
exponential connectivity distribution for model A, in the case of m0 5 m 5 1 (E), m0 5 m 5
3 (h), m0 5 m 5 5 ({), and m0 5 m 5 7 (‚). (C) Time evolution of the connectivity for two
vertices added to the system at t1 5 5 and t2 5 95. The dashed line has slope 0.5.
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as well, for which less topological informa-
tion is currently available, including such
important examples as genetic or signaling
networks in biological systems. We often do
not think of biological systems as open or
growing, because their features are genetical-
ly coded. However, possible scale-free fea-
tures of genetic and signaling networks could
reflect the networks’ evolutionary history,
dominated by growth and aggregation of dif-
ferent constituents, leading from simple mol-
ecules to complex organisms. With the fast
advances being made in mapping out genetic
networks, answers to these questions might
not be too far away. Similar mechanisms
could explain the origin of the social and
economic disparities governing competitive
systems, because the scale-free inhomogene-
ities are the inevitable consequence of self-
organization due to the local decisions made
by the individual vertices, based on informa-
tion that is biased toward the more visible
(richer) vertices, irrespective of the nature
and origin of this visibility.
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Osmium Isotope Constraints on
Ore Metal Recycling in

Subduction Zones
Brent I. A. McInnes,1* Jannene S. McBride,2 Noreen J. Evans,1

David D. Lambert,2 Anita S. Andrew3

Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold
deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched
in copper, gold, platinum, and palladium than surrounding depleted arc mantle.
Gold ores have osmium isotope compositions similar to those of the underlying
subduction-modified mantle peridotite source region, indicating that the pri-
mary origin of the metals was the mantle. Because the mantle is relatively
depleted in gold, copper, and palladium, tectonic processes that enhance the
advective transport and concentration of these fluid soluble metals may be a
prerequisite for generating porphyry-epithermal copper-gold deposits.

The tectonic relationship between subduction-
related magmatism at convergent margins and
porphyry copper-gold (Cu-Au) ore formation
has long been recognized (1). However, the
physical and chemical processes that govern
Cu-Au metallogeny and the ultimate source(s)
of the metals in these ore deposits are poorly
understood. The rhenium-osmium (Re-Os) iso-
topic system (based on the b2 decay of 187Re

to 187Os) is a tracer of metallogenic processes at
convergent margins because both elements
have geochemical properties similar to metals
that occur in porphyry ore deposits (2, 3). Be-
cause Re is highly concentrated in crustal rocks
and Os is concentrated in the mantle (4, 5), this
isotopic system is particularly useful for quan-
tifying the flux of ore elements in island arc
settings where the two principal reservoirs for
metals are subducted crust and mantle wedge
peridotite.

Os isotope studies in subduction zones are
currently limited because of the rarity of
deep-seated suprasubduction samples (rocks
overlying a subducted slab). Previous studies
(6, 7) have demonstrated that radiogenic Os
is introduced into the subarc mantle by hy-
drous, oxidizing fluids derived during slab
dehydration. We report on results from a

suprasubduction xenolith locality, the Tubaf
seamount in the Lihir island group of the
Tabar-Lihir-Tanga-Feni island arc in Papua
New Guinea (Fig. 1). This xenolith locality is
important for the following reasons: (i) it
contains samples that represent a complete
section of oceanic lithosphere at an intraoce-
anic convergent margin, (ii) it is located ad-
jacent to one of the world’s largest and
youngest volcano-hosted Au deposits, and
(iii) it contains metasomatized mantle perido-
tite xenoliths with Au-enriched vein minerals
that crystallized in the mantle from oxidizing,
alkali- and sulfur-rich hydrous fluids.

During the oceanographic investigation of
submarine hydrothermal systems in Papua
New Guinea (8), a submarine cinder cone
(Tubaf volcano, 1280 m below sea level; 3°
15.259 S, 152° 32.509 E) was discovered 14
km southwest of the giant Ladolam gold mine
(.40 million oz contained Au) on Lihir Is-
land. Dredge and video-grab sampling of the
1-km-diameter volcanic cone returned 130
ultramafic, mafic, and sedimentary xenoliths.
The study of these samples has provided an
unprecedented view of the source region of
an island arc magmatic system with a propen-
sity to produce giant porphyry-epithermal ore
deposits. The xenolith assemblage includes
spinel lherzolite, harzburgite, websterite, or-
thopyroxenite, clinopyroxenite, syenite, ser-
pentinite, gabbro, hornblende gabbro, dia-
base, basalt, pelagic deep-sea sediment, and
shallow-water volcaniclastic sediment as well
as coralline and coralgal limestone. These
lithologies represent a cross section of the su-
prasubduction assemblage and can be reassem-
bled into an “ophiolite-type” model of oceanic
lithosphere (Fig. 1) (9).
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