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Adaptive evolution, to a large extent, is a complex combinatorial optimization 
process. In this article we take beginning steps towards developing a general theory 
of adaptive "walks" via fitter variants in such optimization processes. We introduce 
the basic idea of a space of  entities, each a 1-mutant neighbor of many other entities 
in the space, and the idea of a fitness ascribed to each entity. Adaptive walks proceed 
from an initial entity, via fitter neighbors, to locally or globally optimal entities that 
are fitter than their neighbors. We develop a general theory for the number of  local 
optima, lengths of  adaptive walks, and the number of alternative local optima 
accessible from any given initial entity, for the baseline case of an uncorrelated 
fitness landscape. Most fitness landscapes are correlated, however. Therefore we 
develop parts of a universal theory of  adaptation on correlated landscapes by 
adaptive processes that have sufficient numbers of  mutations per individual to "jump 
beyond" the correlation lengths in the underlying landscape. In addition, we explore 
the statistical character of  adaptive walks in two independent complex combinatorial 
optimization problems, that of evolving a specific cell type in model genetic networks, 
and that of finding good solutions to the traveling salesman problem. Surprisingly, 
both show similar statistical features, encouraging the hope that a general theory 
for adaptive walks on correlated and uncorrelated landscapes can be found. In the 
final section we explore two limits to the efficacy of selection. The first is new, and 
surprising: for a wide class of systems, as the complexity of the entities under selection 
increases, the local optima that are attainable fall progressively closer to the mean 
properties of  the underlying space of entities. This may imply that complex biological 
systems, such as genetic regulatory systems, are "close" to the mean properties of 
the ensemble of  genomic regulatory systems explored by evolution. The second limit 
shows that with increasing complexity and a fixed mutation rate, selection often 
becomes unable to pull an adapting population to those local optima to which 
connected adaptive walks via fitter variants exist. These beginning steps in theory 
development are applied to maturation of  the immune response, and to the problem 
of radiation and stasis. Despite the limitations of  the adaptive landscape metaphor, 
we believe that further development along the lines begun here will prove useful. 
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Introduction 

Francois Jacob, in his 1977 essay, "Evolution and tinkering", eloquently explicated 
the ways in which adaptation is constrained by past history and by the nature of 
the evolutionary process itself: adaptation generally progresses through small 
changes involving a local search procedure in the space of possible genetic rearrange- 
ments. To understand the evolutionary process, we therefore must understand the 
constraints that such a local search procedure places on any optimization scheme. 
Moreover, by comparing local to more global search algorithms, we can gain some 
insight into how the nature of evolutionary change depends upon the genetic 
distances that can exist between parents and offspring. If, for example, the rate of 
mutation is increased, so that parents and offspring may differ at a larger number 
of loci, one result may be the appearance of qualitatively different patterns of 
evolution at the population level. 

The simplest paradigm of evolutionary change is one of local "hill climbing". 
Despite this transparent and simplistic metaphor, such evolutionary hill climbing 
involves a complex combinatorial optimization process. In such optimization proces- 
ses, typically, many parts and processes must become coordinated to achieve some 
measure of overall success, but conflicting requirements due to alternative simul- 
taneous optimization goals, or conflicting constraints due to the natures of the 
different parts and processes to be coordinated, limit the end result achieved. Our 
aim in this article is to explore some initial steps in the formulation of a general 
theory of such constrained adaptive "walks", which must proceed along a path of 
"fitter variants" towards the attainable local or global optima. The theory we derive 
is motivated by organic evolution; but in fact, it reaches beyond evolutionary biology 
towards a general theory of optimization. It is essential to note that viewing evolution 
as an optimization process does not presuppose some master-plan, or require 
teleology. Rather, it recognizes the nature of the process, and observes that it has 
features in common with deliberate optimization schemes. 

We note at the outset that the hill climbing analogy has many limitations (Levin, 
1978). The adaptive landscape undulates in response to environmental variation. 
Adaptation is a response to past environments, rather than an anticipation of the 
future. Furthermore, the fitness of a genotype may depend upon its frequency in 
the population, or upon coevolving properties of other species or habitat characteris- 
tics. Thus "fitness" is not a property of a genotype alone, but depends upon its 
environmental context. 

These caveats (and see also Provine, 1986) having been made, it remains the case 
that the powerful imagery created by Wright's adaptive landscape (Wright, 1932) 
and Fisher's Fundamental Theorem of Natural Selection are among the most 
important concepts in evolutionary theory. They apply strictly for a number of cases 
of interest, and are points of departure for others. When the genetic system is simple, 
involving a single locus or weak epistasis, and when fitnesses are constant in time, 
the mean fitness of individuals in the population will increase monotonically and 
asymptotically toward a maximum, or peak, in an adaptive landscape (see, for 
example, Levin, 1978; Ewens, 1979). In more realistic circumstances of strong 
epistasis in a complex genomic system, with intermediate levels of linkage and 
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recombination, the consequent genetical constraints, mirrored in the vigorous lability 
of phenotypic properties as the genome changes, guarantees that the fitness landscape 
will be very rugged, with many peaks, ridges and valleys. Yet we have essentially 
no theory of adaptation on such rugged landscapes. This paper, then, is only a 
beginning in developing a general theory of adaptive walks on rugged fitness 
landscapes. 

In the first section of this paper we introduce a general framework, give some 
preliminary intuitive examples, and specify some of the questions that arise naturally. 
In the second section we derive universal properties for adaptive walks in a statisti- 
cally uncorrelated "landscape". This important baseline case allows us to character- 
ize the numbers of local optima, the lengths of adaptive walks prior to attaining a 
local optimum, the number of alternative optima accessible to a given initial entity, 
etc. However, most fitness "landscapes" are correlated, rather than uncorrelated, 
in the sense that neighboring entities, which differ by a single "mutation", tend to 
have similar fitness. Therefore, in the third section, we derive universal features of 
adaptive evolution in the "long jump" limit, where adaptation occurs via multiple 
simultaneous mutations that "jump beyond" the correlation lengths in the fitness 
landscape. These results are simple and very general; they should apply to adaptation 
on a vast number of statistically rugged landscapes. In the fourth section we consider 
adaptation on correlated landscapes. No universal theory is in sight, but our hope 
is that many correlated fitness landscapes exhibit similar general features. Two 
numerical examples that reflect apparently different optimization problems have 
similar underlying statistical features, lending preliminary support to this hope. In 
the fifth section, we consider the correlation between the complexity of the entities 
under selection, and the difficulty in maintaining entities that are very fit. More 
precisely, we identify two general limitations on adaptive evolution: as entities 
become more complex, the attainable local optima become less fit; and, in the face 
of constant mutations, selection becomes less able to maintain populations "at" or 
"near" such optima. We argue that these limitations have deep implications for 
evolutionary biology. 

A General Framework 

In evolution, the generation of variability is underlain by mutational processes. 
These include point mutations, which substitute, insert, or delete a single nucleotide 
in the DNA or RNA sequences comprising the genome, and chromosomal mutations 
such as deletio.ns, inversions, duplications, translocations, transpositions, and con- 
versions, by which entire chromosomal regions are altered, deleted, duplicated, or 
moved and integrated into novel chromosomal locations. In sexual organisms, 
recombination is another powerful process for generating diversity, shuffling the 
extant variants within the gene pool. 

It is useful initially to restrict attention to simple point mutations that switch, 
insert, or delete single nucleotide bases, for such mutations are the fundamental 
form of mutational alteration in any contemporary population. All other forms can 
be thought of as mechanisms that achieve many such single mutations at once. Each 
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genotype is surrounded by a number of  other genotypes, its I-mutant neighbors, 
each accessible by a single mutational alteration. In turn, these new genotypes have 
some large number of  further 1-mutant neighbors, which again have 1-mutant 
neighbors. More formally, there is a space or ensemble of  genotypes, where each 
genotype is a point in that space, and has as its immediate neighbors those points 
representing 1-mutant neighboring genotypes. 

Suppose, to be concrete, we restrict attention to haploid organisms with DNA 
genotypes of some fixed length in nucleotides, say 100 000. Each position in the 
DNA sequence can be occupied by 4 alternative bases, thus by 3 alternatives to the 
base present in a given DNA sequence. Then each genome has 300 000 1-mutant 
neighbors in the very high dimensional space of  haploid genotypes. Thus, the basic 
notion is that of  a space or ordered ensemble of  entities, each "next  to"  all those 
alternative entities that are accessible by a single mutation step. Notice that a change 
in the elementary mutation mechanism could alter which genotypes are 1-mutant 
neighbors of  one another. That  is, the topology of  the space of  entities is determined 
by the mutational "move"  generator that specifies which entities can mutate in one 
step to one another. Note also that in the simplest cases, the "moves"  are symmetric: 
if genotype A is one step from B, then B is one mutational step from A. This 
restriction need not always hold. 

The second basic notion to be made explicit is that each entity, here genotype, 
is associated with some set of  attributes, or phenotypes,  that may serve as the basis 
for selection. That is, a "fitness" with respect to those attributes can be ascribed to 
each entity. Whatever the mapping of  attributes to fitness, we can ask about the 
distributions of  the attributes across the space of  entities, and derivatively, about 
the distribution of  "fitness" across the space of  entities. Any given attribute may 
be rare or common in the space, and may be scattered at random, or in a variety 
of  correlated ways across the space of  entities. Similarly, different fitness values 
may be rare or common, and scattered at random or in correlated ways across the 
space of  entities. We shall speak of  the distribution of  fitness values across the space 
of entities as the fitness landscape. Note that this landscape is a discrete one, since 
values are assigned to points on a lattice rather than on a continuum. Given this 
notion of  the distribution of  fitness values across the space of  entities, and the notion 
of 1-mutant accessible neighbors, it follows that each entity is surrounded by a large 
number of  neighbors, all, some, or none of  which may be of  higher fitness value 
than that entity. Conceive of  drawing an arrow from each entity to those of  its 
1-mutant neighbors with higher fitness. Then adaptive evolution in its simplest form, 
via 1-step fitter variants, can be thought of  as a directed walk uphill from some 
initial entity through fitter variants until a local or global opt imum is reached. Such 
an optimum at least must be fitter than its 1-mutant neighbors. That is, the fitness 
distribution across the space of  entities induces a directed graph, given by the arrows 
between each entity and its fitter 1-mutant variants; the structure of  the graph is 
fundamental  for adaptive walks to or towards local or global optima. Similar ideas 
have been introduced by Agur & Kerszberg (1987). 

For the situations described above, adaptive evolution by mutation and selection 
in a constant environment drives a populat ion across a fitness landscape from some 
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initial distribution as a more or less dispersed cloud in the space to a distribution 
that, subject to the constraints imposed by the genetic system, in general, has a 
higher average fitness. Although individual genotypes are associated with points on 
a lattice, the population mean varies on a continuum formed by interpolation among 
the nodes on the lattice. 

Adaptive hill climbing by mutation and selection, the most basic form of trial 
and error learning, is only the simplest of schemes used in dealing with complex 
optimization problems. It is of general interest to compare its capacities as an 
optimization process with other processes such as simulated annealing (Kirkpatrick 
et al., 1983; Brady, 1985). We return in the final section to discuss some of the 
limitations of mutation and selection as a means to attain and maintain local or 
global fitness optima. 

Preliminary Examples 

By way of examples we mention four related optimization problems, two biological 
and two not, in each of which the process of improvement by local mutation and 
selection is important. We introduce these here to clarify the nature of the problem. 
We return later to apply our analyses to two of them. 

1. P E P T I D E  S P A C E  

Consider the space of all peptides of some specified length, e.g. 50 amino acids, 
each amino acid being one of 20 types, (Smith, 1970; Nino, 1979; Eigen, 1985). 
Then each peptide has 19x 50 "neighboring" peptides that differ from the first 
peptide in a single amino acid. The set of all 2050 peptides can be arranged in the 
appropriate high-dimensional discrete space such that each point vertex in that 
space represents one peptide, and each vertex is adjacent to 19 × 50 neighboring 
peptides. Peptides differ in terms of capacity to catalyze a specific reaction, or to 
bind a specific ligand. Any such property induces a "fitness" function on the peptide 
space, and suggests an optimization process to find peptides that perform best. 

2. T H E  T R A V E L I N G  S A L E S M A N  P R O B L E M  

Consider N cities located on a plane, and connected by roads of defined length. 
The famous traveling salesman problem requires a salesman to start at any initial 
city, visit each city once, and return to the initial city, by the shortest possible total 
route. This simply stated problem, one of the most studied complex combinatorial 
optimization problems, is known to be NP complete (Johnson & Papadimitriou, 
1985). That is, as N grows, exhaustive search for the shortest route grows faster 
than polynomially. Any potential solution to the traveling salesman problem is a 
cyclic permutation among the N cities, each of which occurs once. Consequently 
there are N! possible solutions, if we relax the specification of the initial city. Each 
possible legitimate circuit can be deformed to N ( N - 1 ) / 2  "neighboring" circuits 
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by elementary permutations exchanging the positions of two cities in the circuit. 
Thus, with this "'l-mutant move generator", the possible solutions can be arranged 
in a high dimensional space, each next to its 1-mutant neighbors. Note that other 
"elementary" changes, such as exchanging 4 cities, or links between cities, would 
generate a different set of neighbors to each solution, hence alter the topology of 
the space of solutions, but not the set of possible solutions. Given any definition 
of "neighbors" specifying the space of solutions, an adaptive walk is one that starts 
at a solution and moves by some algorithm or procedure, including mutation and 
selection, toward better solutions. Techniques of this sort are commonly used as 
part of schemes to solve the traveling salesman problem (e.g. Lin & Kernighan, 1973). 

3. S P I N  G L A S S E S  

Spin glasses derive from condensed matter physics and are models of disordered 
magnetic materials, where two adjacent spins might prefer to orient in the same 
direction, or might instead prefer to orient in the opposite direction (Sherrington 
& Kirkpatrick, 1975). A simple mathematical model of a spin glass consists of a 
lattice of spins, each only up or down, each adjacent to a fixed set of neighboring 
sites in the lattice. The disordered aspect of spin glasses is modeled by deciding, at 
random, for each pair of adjacent spins, if they prefer to orient in the same or 
opposite directions. Thus, the coupling between spins is symmetric. Further, the 
strength of the coupling is chosen at random from some fixed underlying distribution. 
This process creates a lattice that is a clear example of conflicting constraints. 

Consider a single "square" loop of four adjacent neighbors in a cubic lattice. 
The random "'preference" assignment might create a loop where all four spins prefer 
to be in the same orientation. This preference is satisfied easily for all four simul- 
taneously. Alternatively all four might prefer the opposite orientation to their 
neighbors, a condition again easily satisfied by having the spins at two corners "up" 
and the spins at the remaining two corners of the square loop "down". But if three 
of the four pairs prefer to be in the same orientation, while one prefers to be in the 
opposite orientation, then no configuration of the four spins simultaneously satisfies 
all preferences. Such a loop is said to be frustrated. The widespread existence of 
frustrated loops in spin glasses means that, when an appropriate dynamics is 
imposed, the system as a whole has very many metastable states, that is, local energy 
minima. More precisely, a lattice of N spins, each up or down, has 2 N configurations, 
each with a defined energy. Each configuration has N neighboring configurations, 
attained by flipping one spin to the opposite orientation. Thus, at any finite tem- 
perature, the system evolves towards configurations with lower energy, via 1-flip 
neighbors. An enormous literature exists characterizing the number of local energy 
minima, which appears to rise exponentially in N; the energy spectrum of these 
minima with respect to the global minimum; the sizes of the potential wells for 
high and low energy local minima; the overlap between spin states in different 
minima, etc. 

Consider now an adaptive game, whose aim is to obtain a spin glass with a defined 
configuration of its N spins as the global minimum for that spin glass, or more 
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generally, as a local minimum with some specified low energy. Then consider a 
space of spin glasses, where each vertex in the space is one entire spin glass, and 
has as its 1-mutant neighbors those spin glasses obtained by altering one preference 
rule for one pair of coupled spins. Since each spin glass assigns a specific energy 
to the desired configuration, the space of spin glasses, each a 1-mutant neighbor of 
the others, has assigned the energy of the desired configuration to each spin glass, 
and an adaptive walk from an initial spin glass towards those in which the desired 
configuration has lower energy is well specified. The abundance of frustrated loops 
leads to the intuition that such walks might not lead very far. We will return to this 
theme in a more general context. 

4. G E N E T I C  R E G U L A T O R Y  N E T W O R K S  

Ontogeny is underlain by a complex "cybernetic" network by which genes and 
their products regulate one another's activities. The most famous example, and the 
first, is the lactose operon in E. coli. Another is the C 1-tof mutually inhibitory control 
loop underlying lysogeny or lysis in bacteriophage lambda. 

A higher eukaryote has on the order of 100 000 structural genes and perhaps as 
many regulatory (cis acting and trans acting) genes, coordinating the expression of 
the entire genome. Kauffman (1969, 1974, 1984) has modeled genetic regulatory 
networks by idealizing the activity of any gene to be "on" or "off", and any product 
to be "present" or "absent". The resulting Boolean models of genetic networks are 
spiritually similar to spin glasses, but predated that concept. A network with N 
binary genes has 2 N combinations of gene activities. A genetic regulatory network 
is a dynamical system that specifies for each such combination, or state of gene 
activities, what successive state of activities will occur. The analogue to the potential 
wells of spin glasses are basins of attraction and attractors in these network models. 
Any such system, started in an initial configuration or state of gene activities, settles 
into one of a small number of alternative recurrent patterns of gene activity, 
analogous to local potential minima. These alternative patterns can be considered 
as the alternative model "cell types" in the repertoire of one genomic system 
underlying cellular differentiation. A large body of work (Kauffman, 1969, 1974, 
1984, 1985; Gelfand & Walker, 1984; Fogelman-Soulie et aL, 1982; Derrida & 
Weisbuch, 1986) has shown that, subject to the simple constraint that any gene is 
directly regulated by few other genes, such otherwise random networks have many 
features similar to real cells. Conceive again of an evolutionary game. New cell 
types can be supposed to evolve both by emergence of new structural genes, and 
by alteration ~n the cis and trans acting regulatory genes controlling existing genes. 
Then a simple picture of the evolution of genetic regulatory systems is portrayed 
as occurring in a space of genetic regulatory systems, each of which differs from its 
1-mutant neighbors by a change in one regulatory connection, or one Boolean law 
prescribing the behavior of a regulated gene as a function of those regulating it. 
Thus, the lactose operator might mutate to be constitutively active. Then we can 
begin to explore obvious questions. For example, suppose a cell type were desirable 
that consisted in a specified steady state pattern of gene activities among the N 
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genes. Can mutations altering control connections and control rules start from some 
arbitrary genetic network and, via selection, attain a network with the desired pattern 
of gene activities as a dynamical steady state attractor of the system? Interestingly, 
the general answer appears to be "No", as will be described in more detail below. 

Natural Questions 

These preliminary examples from biology, physics and mathematics, suffice to 
indicate the host of questions that arise naturally. These fall into three classes: 
questions about the specific fitness landscape and its statistical structure, questions 
about what kinds of entities "live in" what kinds of landscapes and why, and 
questions about adaptive flow by mutation and selection (or other optimization 
algorithms) on any given landscape. 

Concerning any specific fitness landscape, some of the obvious questions are 
these: (1) How many local (and global) optima are in the space with respect to 
1-mutant moves, 2-mutant moves, etc? (2) If an adaptive process starts at one 
"entity" in the space and can move only via fitter neighbors, what is the expected 
number of improved variants passed on the way to a local optimum--that is, what 
is the expected length of the adaptive walk? (3) If a "greedy algorithm", always 
choosing the best of the neighboring variants, is used, how long are adaptive walks? 
(4) How many alternative fitter variants are 1-mutant neighbors to any entity and 
how does that vary as the "fitness" of an entity increases? Alternatively stated, if 
adaptation can only occur via fitter l-mutant variants, how many ways can the 
process "branch" at each step uphill? (5) Correspondingly, how many alternative 
local optima are accessible to an arbitrary initial entity via adaptive walks through 
successively fitter variants? How does that vary with the fitness of the initial entity? 
(6) Is the global optimum attainable? More broadly, how "fit" are the attainable 
local optima with respect to either the global optimum, or to the mean fitness of 
entities in the space? (7) If "neutral mutations" are allowed, or if adaptation can 
pass through less fit variants, what are the effects on the character of adaptive walks 
in the space of entities? 

With respect to the relations between the entities and the adaptive space in which 
they live, several basic questions arise. For example, we tend to suppose that similar 
peptides, differing by a single amino acid, will have strongly similar physicochemical 
properties. Thus we suppose that the fitness landscape in peptide space for each of 
many properties will be correlated. What is that correlation structure, and why? 
Similarly, a defined space of spin glasses, where each vertex is a neighboring spin 
glass due to alteration is a single spin coupling law, is expected to be correlated in 
many ways. We have no idea what that correlation structure is, nor how to character- 
ize it. The same may be said of model or real genetic regulatory networks, where 
the structure of the landscape must be critical to the evolution of differentiation 
and ontogeny. That is, we have, at present, no theory saying what kinds of entities 
inhabit what kinds of adaptive landscapes and why, nor do we have a theory that 
indicates whether, among the possible correlated fitness landscapes, these fall into 
rather few equivalence classes with similar statistical structures and a number of 
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pathological but very rare cases, or whether there are vastly many different kinds 
of correlation structures. A related general question is this: For a given class of 
entities, peptides, genetic regulatory systems, etc., as those entities become more 
complex, what happens to the adaptive landscapes they inhabit? Do accessible local 
optima fall closer to or further from the mean fitness of the entities in the space? 
We shall see that for a large class of systems, increased complexity leads to accessible 
local optima that are closer to the mean of the entities in the space. 

Given any specific adaptive landscape, the tools of population genetics provide 
a conceptual armamemtarium to ask many familiar questions (Ewens, 1979). Given 
specified fitness differences, can a haploid or diploid population, dispersed initially 
in some way across the space and driven by mutations occurring at a given frequency, 
be "pulled" to a given local or global optimum? Can the population be maintained 
by selection in the face of mutations at or near such an optimum? If near, how 
near? How long does it take for the population to flow to the optimum, or more 
generally to attain its stationary distribution, if any ? As the complexity of the entities 
under selection increases, what happens to the capacity of selection to pull the 
population to local optima and hold it there? How does population evolution by 
mutation and selection compare to other complex combinatorial optimization pro- 
cesses? When is it more efficient and why? Again, to compare the efficiency of 
evolution with other optimization schemes does not suggest that there is any reason 
why evolution should have selected for an efficient scheme. Such an argument would 
require a higher order selection for which we see no evidence at present. 

Obviously, these questions only scratch the surface. A new body of theory is 
needed. We turn to the first few steps. 

Adaptation on an Uncorrelated Landscape 

We consider in this section, the expected character of adaptive walks in uncorre- 
lated spaces, i.e. those having the property that the fitness value of each entity is 
drawn at random from some fixed underlying distribution. This benchmark case 
can be made both simpler, and more universal, by ignoring the actual fitness values 
assigned to the entities in the space, and replacing those values by their rank orders 
counted from the least fit entity (rank 1) to the top rank entity, rank T. (For simplicity, 
we assume that there are no "tie values".) In so far as adaptation is constrained to 
occur along walks from an initial entity through fitter variants, passage to a rank 
order model preserves completely most statistical features of the resulting adaptive 
walks, including lengths of walks to maxima, numbers of alternative optima that 
are accessible by connected walks, etc. However, passage to rank orders throws 
away information about "distances" between different rank order fitness values in 
the underlying distribution from which fitness values were drawn. To be concrete, 
for the remainder of this section we make the explicit assumption that the underlying 
fitness values are uniformly distributed on the real line. 

As partial biological justification for the concept of the population following an 
adaptive walk passing via the first fitter neighbor sampled by the mutational process, 
consider a fixed sized population of haploid entities that are initially identical; 
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hence "release" the population "a t"  a particular vertex or point in the space of  
possible entities. Suppose that mutations occur rarely. Then on a slow time scale 
the population will sample l-mutant neighbors, and if a fitter variant is found, that 
variant either will die out due to random fluctuations; or once above a rough 
threshold frequency, will sweep through the population on a fast time scale. Gillespie 
has argued that in this plausible limit, one can think of  the adaptive process as a 
continuous time, discrete state Markov process, in which the entire population is 
resident at one state--here ent i ty--and then jumps with fixed probabilities to each 
of its 1-step mutant fitter variants (Gillespie, 1983, 1984). We return later to consider 
the effects of  a larger mutation rate with respect to fitness differentials. 

Consider as a concrete example, a space of  length N peptides constrained to use 
two amino acids, say leucine and alanine. Then 1 and 0 can represent the two amino 
acids, and each peptide is a binary string, length N, of 1 and 0 values. Such strings 
are easily represented as vertices of  an N-dimensional  Boolean hypercube (Fig. 1). 
The number of  such strings is just 2 N, and rank order fitness values can be assigned 
at random by assigning rank orders 1 through 2 N, without replacement, to each of  
the vertices. 

0110 0111 

010 

0000 ~ 0 0 1 1  

FIG. 1. A four-dimensional Boolean hypercube, in which each of  the 16 vertices represents one of  
the possible strings of  four 0 or 1 values. Here each such string is interpreted as a specific tetrapeptide 
with two possible types of  amino acid at each position. Each peptide is a l-mutant neighbor of  the four 
peptides which can be obtained by altering a single amino acid at a single one of  the four positions in 
the tetrapeptide. 

The probability that any vertex, representing a specific peptide of  length N, is a 
local optimum, is just the probability that that vertex is of  higher rank order than 
any of  the N 1-mutant neighboring vertices obtained by altering any 1 to a 0, or 0 
to a 1. Since all rank orders are chosen at random, the probability that a vertex is 
a local maximum is just 

P ~ =  1 / ( N + I ) .  (1) 
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Since the total number of sequences, hence vertices, is 2 N, it follows that the 
expected number of local optima with respect to 1-mutant neighbors, MI, is 

2 N 
M1 = N + 1" (2) 

This generalizes trivially to I- and 2-step mutant neighbors, where the expected 
number of local optima, M2, falls to 

2N+I 
M2 - (3) 

2 + N ( N + I ) "  

The calculation is simple for any fixed number of  k mutants, since the denominator 
in (2) simply is replaced by the cumulative binomial sum 

where k equals 1 in (2) and 2 in (3). Thus for any fixed k, the numerator rises 
exponentially in N, while the denominator rises much more slowly as a function 
of  N. The first important result then is a scaling law; for any small fixed number k, 
of k-mutant neighbors, hence any fixed notion of  "'local", the number of local 
optima rises a bit less than exponentially as N increases. Thus, as N increases, 
there are a very large number of  possible peptides. But for an uncorrelated fitness 
landscape, the number of local (1-step) optima is nearly as large. Uncorrelated 
landscapes are rife with local optima. 

It is simple to generalize this result to peptides that use all 20 amino acids. If B 
represents the number of  amino acids, any peptide of length N has D = ( B - 1 ) N  
1-mutant neighbors. Hence the number of  local optima is just 

B N B N 

MI-  D+ 1-  N ( B -  1)+ 1" (4) 

Again, the number of local optima increases almost exponentially in N. 
The probability that a peptide sequence is a local optimum is related to its rank 

order, X, ranging from 1 to T, where T is the most fit. The fraction of  the other 
vertices having lower rank order is ( X - 1 ) / ( T - 1 ) ,  or approximately X/T. For 
large T and X, the probability that a given vertex has a higher rank order than any 
of its D 1-mutant neighbors, hence the probability, Pro, that the vertex (sequence) 
is a local optimum approaches 

For small X or D, account must be kept of  the lack of replacements in calculating 
Pro; thus, one obtains: 

P,~ = (X - 1) i ( T -  D - 1 ) ! / ( T -  1)!(X - D - 1)! (5b) 

These formulae imply that the probability that an entity in the space is a local 
optimum remains low until its rank order is high, then rises rapidly. 
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We estimate next the expected lengths of adaptive walks via fitter variants before 
a local optimum is attained. For concreteness, we assume that the process picks, 
with equal probability, any one of its fitter neighbors at each adaptive step, then 
iterates. Later we shall relax this assumption. In general, the starting position for 
an adaptive walk can be anywhere; but to get an upper bound, assume that we 
begin at the lowest rank entity, rank 1. All D neighbors are fitter, and their rank 
order positions are, on average, scattered uniformly between rank order 2 and rank 
order 7". The adaptive process samples among the D neighbors, one at a time, until 
the first fitter variant is found, then moves to that variant. Thus, on average, the 
rank order of that first fitter variant is halfway between the present rank order, 1, 
and the top, 7'. Moreover, the frequency distribution for the position of  the adaptive 
process is uniformly distributed about its mean. That symmetry will not last beyond 
the first step, after which the iterated distribution will become skewed to the right. 
Nonetheless, we can gain a bound on the adaptive process initially by assuming 
that at each adaptive step, the stochastic process is concentrated at its mean expected 
position. Thus, variance is ignored. On a second iteration, from an entity of relative 
rank order X/T=0 .5 ,  half the D neighbors are fitter, and the first sampled lies, 
on average, half way between the current entity and the top ranked entity, T. Thus, 
at each successive step, the process on average, moves half way from the current 
position toward the top rank, T; simultaneously, the expected number of the more 
fit neighbors is halved, on average, on each improvement step. Thus, the average 
position after "'K'" improvement steps is approximately T [ 1 - 0 . 5  K ], and we shall 
use this below to compute the probability that the nearest (integer) rank order is a 
local maximum. 

Before carrying out this calculation, however, what is the consequence of  ignoring 
the variance in the increase in rank order at each adaptive step, on the calculated 
expected length of  adaptive walks to local optima? Note that, at each step, the new 
conditional distribution is symmetric about its mean, and further deviations to lower 
rank order add much less to the conditional expected path length than do deviations 
to  higher rank orders subtract from it. Therefore, the approach ignoring variance 
overestimates the expected lengths of adaptive walks to optima. We carry this 
calculation out next. 

It is clear that, after each improvement step, the entity achieved at is fitter than 
at least one of its D neighbors: that from which it has just arrived. Therefore the 
probability that the current entity is a local optimum is then just its relative rank 
order raised to the ( D -  1) power. The probability that the adaptive walk continues 
for one more step from a given entity is simply the probability that the current entity 
is not a local optimum. The upper bound discussed above for the probability that 
the adaptive walk continues for K steps without stopping, PK, is 

[ PK= R~O ~ 1 - - \ ~ ]  j .  (6) 

On average, walks continue until PK <0-5. We can estimate the value of k where 
this occurs quite accurately. In particular, note that if R = log2 ( D - 1 ) ,  the corre- 
sponding term in PR is 1 -- (1 -- 1 / ( D -  1 ))D-t, which is extremely well approximated 



A G E N E R A L  T H E O R Y  O F  A D A P T I V E  W A L K S  23  

by l - 1 / e  =0.63. Moreover, if this represents the Rth term in PK, then, working 
backwards, it is easily shown that the preceding terms are approximately 1 - ( l /e  2) = 
0.86, 1 - ( 1 / e  4) =0.98. Thus, there is very little probability of the adaptive walk 
stopping more than one or two steps before this R value, and to a very high degree 
of accuracy, the upper bound on average walk length is given by R = log2 ( D - 1 ) .  

Another thing that becomes clear from this calculation is that the distribution of 
stopping times is very tight: if an adaptive walk has achieved relative rank order 
( D - 2 ) / ( D -  1), it has probability approximately 1/e of being at a local maximum 
and stopping. If it proceeds one step farther then, on average its rank order is 
(1 -½(D-1) ) ,  which has a probability of 1/e~/2=0-6 of being a local maximum. 
Arguing similarly, we can see that the great majority of walks will stop within one 
or two steps of achieving the rank order of ( D - 2 ) / ( D - 1 ) .  An upper estimate of 
the number of steps it takes the process to reach this rank is R = log2 ( D -  1). 

As D increases, the number of neighbors to an entity increases linearly, but the 
lengths of walks increase only as the logarithm base 2 of the number of neighbors. 
Thus, in an uncorrelated space of peptides of length N, with B = 20 amino acids, 
as N goes from 10 to 100, the numbers of peptides increases from 20 ~° to 20 ~°°, a 
vast increase; but the bound on walk lengths increases from log2 (190) to log2 (1900), 
or from about 7 or 8 to 11 steps. This, of course, reflects the fact that uncorrelated 
spaces are very richly dotted with local optima. 

It is of interest to compare these walks, which progress via the first fitter 1-step 
mutant neighbor found, to "greedy" walks, which proceed from any entity via the 
fittest of its D neighbors. In general, such walks will be shorter than those just 
considered, since they rise faster, and in fact reach their apogee rapidly. Begin at 
the lowest rank entity. On average, the fittest of its D neighbors is located at a 
relative rank order of (D- 1)/D. The chance that this entity itself is fitter than its 
remaining D - 1  untried neighbors is just 

which tends to 1/e for large D. Thus, in a single step, the expected position of a 
greedy process is already in the region where most adaptive walks end, and in fact 
has probability 0.37 of stopping. In 2 steps, this conditional probability rises to 
(1/e ~/2) = 0.6, and in 3 steps to (1/e ~/4) = 0.8. The average walk length associated 
with this process is less than 2, and this still represents an upper bound. It is a 
surprising result. Greedy walks are very short in an uncorrelated space. Giilespie 
has independently derived this result recently (Gillespie, personal communication). 

Branching Probabilities 

Because the predecessor to any entity in an adaptive walk necessarily was less 
fit, the expected number of fitter neighbors for any entity is derived simply from its 
rank order, X: approximately it is given by (T-X)(D-1)/7". Thus, the number 
of alternative pathways towards increased fitness values decreases linearly with rank 
order. From this, it is easy to calculate an upper bound on the expected number of 



24  s .  K A U F F M A N  A N D  S. L E V 1 N  

local optima accessible from the lowest ranked entity. D of  its neighbors are fitter. 
On average, after a single improvement step, ( D - l ) / 2 ,  or almost D/2 of the 
neighbors of  that first step variant are still fitter. After successive steps, on average 
D/4, D/8 neighbors are fitter. On average, as described before, walks continue for 
no more than log2 D steps, in which time the process could have taken on the order 
of  B =  D x D/2x D/4. . .x  DID alternative branching adaptive steps. Here We 
assume, without loss of  generality, that log2 D is an integer. Since many of these 
branching adaptive walks might rejoin one another,  B is an overestimate of  the true 
number of alternative local optima accessible from the lowest ranked entity. This 
upper bound is 

U(IOg2 D) 

B -  20ogz D)((log 2 D)+ I)/2 

o l o g .  D 

- -  D o o g ,  D4 1)/2 

= Dllog2 D - I ) / 2  (7) 

While the bound is an upper  estimate, it serves our purpose in demonstrating what 
a small fraction of the true local optima are attainable from any single starting 
entity. Thus, for a peptide space, using 20 amino acids, and N = 64 as the length, 
this gross upper bound on the number of  reachable local maxima from the lowest 
ranked peptide is about 101s; by contrast, the total number  of  local maxima in such 
an uncorrelated space is 1-5 x 108°. Thus, a critical conclusion is that only a tiny 
fraction of  all local optima are accessible from any entity on adaptive walks via 
1-mutant fitter variants in uncorrelated spaces. 

Some Implications 

We pause at this stage to consider some implications of  this baseline case of 
adaption on uncorrelated fitness landscapes. 

1. MATURATION OF THE I M M U N E  RESPONSE 

Adaptive walks to local optima in uncorrelated fitness landscapes are short, of  
the order of  tog_, D, where D is the number of  mutant neighbors. We will see below 
that walks on correlated landscapes often tend to be somewhat longer, depending 
upon the particular correlation structure. Uncorrelated landscapes are, as noted, 
the limiting baseline case to consider. Physico-chemical properties in peptide space 
may well be highly correlated, but it is possible that, for short peptides, the correlation 
is relatively weak: each amino acid alteration in a pentapeptide should make a 
larger difference in properties than in a protein of length 500. This intuition suggests 
that adaptation for such properties as ligand binding, or epitope features, might be 
rather uncorrelated for small peptides. 
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While no data as yet bear directly on this issue, data are available for a rather 
similar problem arising in maturation of the immune response. Faced with a specific 
exogenous antigen, the immune system undergoes clonal selection and amplification 
for a number of antibody-secreting B cells, each of which secretes an antibody 
molecule that has reasonably high affinity for the antigen (Tonegawa, 1983). Early 
in the immune response, each clonally selected B cell secretes an antibody molecule 
derived by combinatorial association of several disjoint genes, which when ligated 
together, form the gene for the variable (V) region of the heavy or light chain of 
the antibody molecule. These combinatorially prefabricated variants can be thought 
of as "'roughed in" antibody binding sites, more or less complementary in shape to 
the antigenic determinants. Subsequent matura t ion  of the immune response consists 
of somatic mutations to the heavy and light chain coding regions of these B cells. 
Those somatic mutations, which result in an alteration of the protein sequence of 
the V region, alter the binding affinity of the antibody molecule for the antigenic 
determinant. Subsequently, those mutated B cells whose antibodies bind the antigen 
with higher affinity than the initial roughed in V region proliferate more rapidly 
and come to dominate the immune response by clonal selection. Over a succession 
of somatic mutations to the V region of the initial roughed in B cell, the mean 
affinity of the antibodies increases to some maximum. Typical changes in affinity 
over the course of maturation are increases from 5 x 104 to 5 x 107. 

The V region, in the heavy or light chain, consists of about 100 amino acids 
embedded in the primary structure of the entire antibody heavy or light chain. Thus, 
the DNA coding sequence of the V region for either chain is on the order of 300-350 
base pairs. Each V region therefore has 3 x 300 or 3 x 350~ t000 1-mutant neighbor- 
ing DNA sequences. If the affinities of 1-mutant V regions for a given antigenic 
determinant are nearly uncorrelated with one another, the theory derived above is 
applicable. The expected number of improvement steps to a local optimum is about 
log2 D; hence the expected number of improvement steps to a local optimum is 
about log2 (1000) or about 10. In fact, the available data suggest that the typical 
range in the number of nucleotide changes is on the order of 6-8 during maturation 
of the immune response (Crews et al., 1981; Bothwell et al., 1982; Tonegawa, 1983; 
Heinrich et al., 1984; Berek et al., 1985; Clark et al., 1985). Since the immune 
response begins with antibodies of intermediate fitness, walk lengths should be 
shorter than the expected upper bound, log2 D, from the lowest rank order. 

This correspondence between theory and data obviously is good, but must be 
considered cautiously. First, it rests on the interpretation that a B cell found secreting 
a high affinity.antibody at the mature stage of the immune response actually is 
derived by a sequence of mutations from a progenitor with a roughed in V region 
early in the immune response. The intermediate lineages are rarely if ever in hand. 
Second, some workers have observed up to 30 or so mutants, although these authors 
favor the view that this large number of mutations reflects, not 30 point mutations, 
but a small number of recombination events (Wysocki et al., 1986). It is less important 
at this stage to try to assert that the theory of adaptation on uncorrelated landscapes 
correctly predicts the behavior of the immune system, than to note that the correlation 
structure of 1-mutant variants with respect to binding a single antigenic determinant 
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can be discovered, and should yield a better theory predicting the lengths of  adaptive 
walks in the immune system. 

2. R A D I A T I O N  A N D  STASIS  

It is a fundamental feature of adaptation via 1-step fitter variants on an uncorre- 
lated landscape, that the number of fitter neighbors of an entity decreases (linearly) 
as its relative rank order fitness increases. That is, an initial low fit entity has many 
neighbors that are fitter, a highly fit entity has few, and a locally optimal entity has 
no fitter neighbors. This implies that any adaptive process constrained to begin at 
some entity, and proceed via fitter 1-mutant variants can branch to many alternative 
entities early in the process, and to successively fewer as adaptation achieves higher 
fitness. Thus, without being careful yet with respect to the ecological conditions of 
isolation etc. that might be needed to sustain biological branching lineages, we 
conclude that adaptation on uncorrelated landscapes inherently favors branching 
radiation, slowing to ultimate stasis. Further, it is characteristic that the radiation 
from an initial entity of low fitness is "bushy"  at the base, less bushy at higher 
levels, then becomes confined to single lineages that wend upward to local optima. 
Standard accounts of  radiation and stasis in biological populations ignore the 
structure of the underlying fitness landscapes (Valentine, 1980). We believe, and 
shall discuss further below, that this generic feature of  adaptation on uncorrelated 
landscapes extends to many correlated landscapes for complex combinatorial 
optimization problems and must hold relevance for branching phylogenies in 
biological and technological evolution. 

Changing Environments and Molecular Clock Data 

Gillespie (1983, 1984) has used a variant of  the model presented here to consider 
evolutionary data bearing on the molecular clock hypothesis. Gillespie notes that 
several sources support the claim that the variance in the rate of nucleotide or amino 
acid substitutions, compared to the mean rate of substitutions, is too high to be 
accounted for by the neutral theory. Rather, it appears as if substitutions occur in 
small bursts. Gillespie has presented an elegant way of  thinking about this problem. 
He supposes that in a given environment, DNA sequences or proteins may be more 
or less optimal for some given tasks. In a manner similar to ours, he considers a 
space of  DNA sequences or protein sequences, and rank orders the sequences with 
respect to the task. He then suggests that when the environment changes, it does 
so in a correlated way, such that the rank order of  any peptide changes a little, but 
not a lot. Specifically, a peptide which previously was a local optimum with respect 
to its 1-mutant neighbors might now find itself third or fourth best among the D 
neighbors. The global consequence of this, Gillespie shows, is that the number of 
adaptive steps from the old locally optimal sequence to the new locally optimal 
sequence after the environment changes, is a small number. This leads to a model 
in which adaptation occurs in small bursts, running from a former to a new local 
optimum. Gillespie shows that the results are robust for a number of  different 
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underlying fitness distributions, and suggests, in conclusion, that burst-like evolution 
fits with a selectionist theory better than with a neutral theory. 

Whether or not Gillespie's interpretation is correct, it is attractive to adopt  his 
idea that alterations in the environment can be modeled as more or less correlated 
alterations in the rank orders assigned to entities in the (correlated or uncorrelated) 
fitness landscape. 

Universal Features of "Long Jump" Adaption on Statistically 
Correlated Landscapes 

Most fitness landscapes are locally correlated in some way: l -mutant  neighbors 
will tend to have similar properties, hence similar rank orders. We return below to 
attempts to characterize adaptation via l-mutant  neighbors on correlated landscapes. 
First, however, it is of  considerable interest to investigate a universal theory for 
adaptation on correlated landscapes in the limit of  " long jumps",  where the number 
of  mutants occurring simultaneously in any one entity, J, is sufficiently large to 
" jump beyond"  the correlation lengths in the fitness landscape. (We show below 
that such processes are not rare.) The underlying intuition is simple. Consider a 
point in a very mountainous region, such as the Alps. If one moves horizontally 1 
metre, the altitude of  the point at which one lands is, even in the Alps, highly 
correlated with the altitude of  the initial point. If  one moves horizontally for 50 
kilometres, the altitude is essentially uncorrelated. That  is, if an adaptive process 
jumps far enough from the current entity in a correlated landscape, then the adaptive 
process actually experiences an uncorrelated landscape. Therefore, it should be 
possible to construct a universal theory for adaptation via sufficiently long jumps on 
any correlated, but rugged landscape. It will differ from the previous theory for 
uncorrelated landscapes in that, in the long jump limit, the notion of  a local optimum 
disappears: all points are accessible. As the number  of  mutants per individual, J, 
increases towards that limit, and wider and wider neighborhoods are explored, the 
correlation structure becomes weaker and weaker while the number  of  local optima 
diminishes. 

Consider peptide space, restricted to 20 amino acids and peptides of  length 100. 
The number  of  1-mutant variants of  any peptide is 1900. But the number of  J-mutant  
variants, J = 10, or 50, is enormous. The implication of the enormous number of  
J-mutant  variants is that is is not possible, in a reasonable time, for the adaptive 
process to sample all of the J-mutant  variants. Therefore,  it is not possible to 
determine, in that reasonable time, whether a given variant is actually a local 
opt imum with respect to its J-mutant  variants. In turn, this implies that the theory 
for adaptation via 1-mutant fitter variants on an uncorrelated landscape, must be 
recast for long jump adaptation on a correlated landscape. We must replace the 
idea of  a local opt imum with the concept of  the metastability of  a given entity, 
expressed as the expected waiting time to find a fitter J-mutant  variant. To develop 
this theory we shall simplify a real population and consider a fixed population of  
size N*, and assume that at each generation, or trial (N*  - 1) J-mutant  variants of  
the current entity are formed, while one entity remains unaltered. Below we will 
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generalize to consider a population with a spectrum of  number  of  mutants per 
individual from 0 to many, rather than exactly J. For N* large, N* ~ N* - 1. Further, 
we shall assume that if more than one fitter J-variant is found at a given generation, 
then the fittest among these is chosen in one generation, and the process iterates at 
the next generation with all N * -  1 exploring J-mutant  variants of  this new fitter 
variant. The assumption that the population "moves"  to the fittest variant encoun- 
tered is related to the biological fact that the rate at which a fitter variant sweeps 
through a population is proportional to the fitness difference between the wild type 
and the new fitter variant. The fittest of several fitter alternatives will tend to dominate 
by sweeping the population fastest. 

Consider an adaptive process begun with the entire population of  N* individuals 
located at a particular, randomly chosen entity. The relative rank order of  that 
entity, X~ T, is, on average, 0.5. Thus 0.5 N* of the J-mutant  variants sampled in 
the first generation are fitter than the initial entity. The best among these has an 
expected relative rank order  of  (N*-2 ) /N* .  At the second generation, ( N * - 1 )  
J-mutant variants are sampled, and the expected number of fitter variants is 2. The 
best of  these, on average, is 2/3 of  the rank order distance from the current entity, 
to the top ranking entity. At the third generation, the expected number  of  fitter 
variants uncovered by the ( N * - 1 )  J-mutants searched is 0.66. Consequently,  the 
expected waiting time until a third fitter variant is found is the reciprocal, 1/0-66 -- 1.5 
generations. On average, a single fitter variant is found, and on average it lies 
halfway between the last fittest variant and the top rank, T. Therefore after the third 
improvement step, the expected waiting time to find the next, fourth, improved 
variant, doubles to 3 generations. Again, on average the fourth fitter variant lies 
halfway between the third variant and the top rank. Thus, after each successively 
fitter variant is found, the waiting time to find the next fitter variant doubles. The 
cumulative number of  improved variants S uncovered in G generations is therefore 
approximately 

S = log2 G + 1. (8a) 

Remarkably this simple expression is almost independent  of  the population size, 
N*. The above was derived for large N*. At the opposite extreme, in the limit of 
N* = l, the result is not much different. The waiting time to find a first fitter variant 
is 2 generations, then becomes 4, 8 , . . .  generations. The expression simplifies to 

S = log2 G. (8b) 

Equations (8a) and (8b) can be thought of  as very simple, universal aspects of  
long jump adaptation on, presumably, any (sufficiently) rugged, multipeaked fitness 
landscape. The fact that, for N* large, we considered a process in which the fittest 
variant found is chosen makes a difference only initially, since after the first few 
steps it is unlikely that more than a single fitter variant is found per generation. 
Thus, if the process selects randomly one from among all fitter va~'iants found, it 
will take slightly longer to reach rank (N* - 2 ) / N * .  An upper bound for the average 
number of  improvements is log2 N* - 2 .  Thereafter,  the rate of  finding new improved 
variants will yield the same slope as that found in (8a) or (8b). The difference is 
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not great: for N* = 16, for example, the greedy algorithm saves less than one step 
on average. 

The simplicity of the derivation does not vitiate the conclusion, which appears 
to be related to a similar simple and general result in the theory of  records (Feller, 
1971). Among the obvious implications of  (8a) and (8b), is that during long jump 
adaptation, the rate of  finding fitter variants is rapid at first, then slows. Since the 
waiting time doubles after each improvement step, after a modest number of  
improvement steps, apparent  stasis sets in. Note that the mean expected number of  
fitter variants found after G generations is rather insensitive to the rank order 
position of  the initial entity, as long as that rank order is 0.5 or less fit. However, 
if the initial relative rank order is above 0.5, the waiting time for the first few 
improvements is longer than given. 

Branching to more than one alternative is more common initially for long jump 
adaptation and progressively harder later. If  we require, for branching, that more 
than a single fitter variant be uncovered in one generation, or in a fixed number of  
adjacent generations, it is easy to calculate how many branches to fitter variants 
could occur as a function of  time and populat ion size, N*. Thus, long jump 
adaptation on rugged but correlated landscapes, will tend to yield branching radi- 
ation quieting to stasis. We return to this theme again. 

Numerical Tests of Long Jump Adaptation 

In order to test this general " law",  we have carried out numerical trials, attempting 
to evolve model genetic regulatory networks, via mutations to regulatory connections 
or the Boolean laws governing specific genes within the network, to attain a network 
having a model "cell type" with a defined steady state pattern of gene expression. 
Our simulations confirm the above theory of  long jump adaptation. More precisely, 
we considered Boolean model genetic networks with N binary genes, either active 
or inactive, each receiving K - 2  regulatory inputs from 2 genes chosen at random 
among the N. We assigned at random to each gene one of  the 16 possible Boolean 
functions specifying the activity of that gene as a function of  the activities of  its 
two input genes the moment  before. For example, a gene might be active if either 
or both of  its inputs were active before, hence the OR function, or active only if 
both were active, hence the AND function, etc. Such a network is a deterministic 
dynamical system, sampled at random from the ensemble of  N K  Boolean networks. 
With N genes, a network admits 2 N possible combinations of gene activities, each 
a state of  the network. At each clocked instant, each gene assesses the activities of  
its inputs, and, according to its own Boolean function, assumes the proper  next 
activity value; hence the network passes from a state to a unique successor state. 
There are a finite number of  states, and hence eventually the network arrives at a 
state visited previously. Thereafter,  the network cycles through this re-entrant 
sequence, called a state cycle. Many different states may flow onto the same state 
cycle, which is thus a dynamical  attractor for that collection of  states, called its 
basin of  attraction. One network may have a number of  different state cycle attractors. 
As noted earlier, these attractors, the asymptotic behaviors in the repertoire of  the 
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model genomic system, are interpreted naturally as cell types. Previous work 
(Kauffman, 1969, 1974, 1984) shows that K = 2 networks, sampled at random from 
the ensemble of N, K = 2 networks, typically exhibit biological like order, even in 
the absence of selection. For example, the number of attractors predicts the number 
of cell types as a function of genomic complexity; the similarity of gene activity 
patterns between cell types mimics real cells; the numbers of cell types into which 
one cell type can differentiate by transient reversal of the activity of any one gene 
is small, mirroring the fact that any cell type can differentiate directly into few other 
cell types in ontogeny, thus that branching pathways of differentiation occur in all 
metazoan and metaphyten ontogenies. These and other features suggest that N K  
Boolean models are interesting, hopefully plausible models for real genomic regula- 
tory systems (Kauffman, 1974, 1984). 

Evolution of novel cell types, utilizing the same structural genes, has required 
alterations in the cybernetic network regulating genetic activity. Thus, it has been 
attractive to examine whether mutation of regulatory connections between genes, 
or Boolean rules determining each gene's activity as a function of its inputs, coupled 
with selection, can begin with an arbitrary genetic network and evolve towards 
networks whose cell types exhibit predefined "target" patterns of gene activity. 

The natural space of N K  Boolean models, with N and K held at fixed values, 
such as 100 and 2, used two ideas of an elementary mutation. The first alters one 
"end" of a regulatory connection between two genes, changing the regulating gene. 
This models chromosomal mutations altering cis acting regulatory elements. The 
second elementary mutation alters the Boolean control rule, by changing one "bit" 
in the four bit table specifying the response of the regulated gene to each of the 
four activity patterns of its two inputs. In order to test the effects of long jump 
adaptation in Boolean genetic networks, at each generation we worked with Robert 
Smith at the University of Pennsylvania, and mutated either half the connections, 
or one quarter of the bits in the Boolean functions. We fixed a population size of 
networks. We measured the closest state of the closest state cycle to a predetermined 
"target" pattern of gene activities among the N genes, and took the overlap with 
the target pattern as the fitness of that network. At each generation, all networks 
were initiated as identical to the best network of the previous generation, all but 
one network were mutated as described, each was assessed, and the population as 
a whole moved to the best network found at that generation. Clearly this implements 
the adaptation procedure used to derive the simple, but presumably widely applicable 
law in eqns (8a) and (8b). 

Figures 2(a) and 2(b) show the results for networks with N = 50 and N = 100 
genes, mutating half the connections at each generation. Figures 2(c) and 2(d) show 
the results of mutating ¼ of the bits in the Boolean functions at each generation. As 
predicted by eqn (8a), the cumulative number of improved variants, on average, is 
equal to 1 plus the base 2 logarithm of the number of generations. The experimental 
and theoretical curves are closely coincident. In fact, the experimental curve is 
slightly displaced to the left, reflecting the fact that, if the initial network happened 
to be well above 0.5 in fitness, the waiting time until the first improved variant was 
encountered was increased. The fact that the observed curves fit the theoretical 
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curve, both for mutations to connections, and to bits in Boolean functions, supports 
the belief that the "universal law" should be very widespread indeed• Presumably, 
the topology of the fitness landscape under the two forms of mutation differs, yet 
for sufficiently long jump evolution, an uncorrelated landscape is encountered, and 
the general theorem applies. 

While the bounds on the applicability of eqn (8) need to be found, it presumably 
applies to vastly many complex combinatorial optimization problems where the 
landscape is sufficiently rugged and multipeaked, even if the landscape is correlated, 
so long as an adaptive process of sufficiently long jumps is considered. Thus, it 
should apply to the traveling salesman problem, and to the intervals between finding 
configurations of lower energy in spin glasses in the long jump limit of flipping 
many spins at once, etc. In fact, for the traveling salesman problem, the agreement 
is extremely good. Our procedure, working with Dennis Swaney at Cornell, was to 
simulate the long jump case by considering random rearrangements of the current 
tour, and accepting, as replacements "mutations" that represent improvements. The 
results, summarized in Figs 3 and 4 indicate that the average cumulative number 
of improvement steps rises in a linear relationship proportional to log2 G, with a 
slope of 0-8. As noted above, the approach we adopted should slightly overestimate 
the number of improvement steps to be expected, and that is what is observed. The 
slope of the curves one standard deviation above and below the mean, 1.2 and 0.6, 
bracket the theoretical slope nicely. 

12 
(n 

:> 

CL 

E 

J~ 

-5 

( J  

O L - 1 

2 4 

I I I I I I I 

Long-jump c a s e  

Sample s i z e ~  

, . • • "  . . . . . . .  . • "  

I I I I J I J 

8 16 32 64 128 256 512 1024 

Io0 number of g e n e r a t i o n s  

FIG. 3. Long-jump adaptation in the traveling salesman problem. At each generation, a population 
of 19 of 20 trial solutions was generated at random, while the current best solution was left unmodified. 
Slopes show mean and the +1 and -1 standard deviation curves for the cumulative number of improve- 
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Figures 5(a)-(d) show another revealing feature of adaptation on correlated 
landscapes as the mutations per individual, J, is increased. For the 1-mutant case, 
improvement is rapid initially, but after 60 steps or so settles down to stasis. For 2 
and 3 mutants per individual, the process continues to find improvements after the 
early flurry, mirroring the 1-mutant case, and only slows slightly thereafter. As the 
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generation a single random solution was tried and adopted if better than  the current  solution. 

number of mutants per individual is increased further, however, the asymptotic rate 
of finding improvements slows. Thus the rate is slower for the 4-mutant case than 
the 3-mutant case, and slower still for the long jump limit. The explanation, 
presumably, is that, having found a "good hill" to climb, the 4-mutant or long jump 
process makes the mistake of ignoring that information. An efficient adaptive 
procedure should ignore the correlation structure initially, but capitalize on it later. 
Rather strikingly as we shall see next, just such a process appears to occur almost 
inevitably in a population with a spectrum of mutations per individual. 

Long-jump evolution in biology is not merely a conceptual contrivance. A number 
of mechanisms assure that a single mutational event of a specific kind can achieve 
at once, a long jump. For example, a single nucleotide deletion causes a frame shift 
mutation, hence alters almost all of the amino acids incorporated into a protein 
downstream of the deletion. Duplication of structural genes, followed by recombina- 
tion, is widely suspected of breaking and joining different protein domains into new 
combinations. Such rearrangements are long-jump mutations from the point of view 
of nucleotide substitutions. The entire panoply of chromosomal mutations, shuffling 
cis acting genes into proximity to new sets of structural genes are long jump 
mutations, for a single event can drastically rearrange regulatory cascades. Most 
broadly, sex and recombination, which shuffle sets of dominant or recessive regula- 
tory and structural genes present in a diploid organism, constitute long-jump 
mutation across the space of genomes, although these may be difficult to maintain• 

Generalizations Toward Correlated Landscapes 

Most statistically rugged landscapes are correlated. Presumably, there are many 
ways in which such correlations can occur. A theory of long jump adaptation on 
rugged landscapes can be "universal" by jumping far enough to escape the correla- 
tion structure. But adaptation via 1-mutant neighbors cannot avoid such statistical 
features. The first step we take in considering this difficult problem is entirely 
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qualitative, but we hope, interesting. In a real biological population faced with some 
fixed mutation rate, the number of mutations per individual is given by some 
distribution from 0 to perhaps many. What, crudely, will be the evolutionary behavior 
of a population in a statistically correlated landscape, if "released" at a specified 
entity, then subjected to a spectrum of mutations? We recall the general result that 
the rate of invasion of the population by a fitter variant is proportional to the fitness 
differential. Thus, fitter variants sweep the population fast if the fitness differential 
is large. 

Begin with a randomly chosen entity. Its fitness, on average, is average. Early in 
the adaptive process, the population samples both near and far from that entity in 
the space of entities. Half of all mutant entities sampled will be fitter than the first 
entity. However, the nearby entities will typically be only slightly better than the 
initial entity, due to the correlations in the fitness landscape, which assures that 
nearby entities tend to have similar fitness values. By contrast, the more distant 
mutant entities are less constrained by the correlation structure, hence include 
variants of higher fitness than the nearby variants. Consequently, early in the adaptive 
process, distant long jump mutants will dominate the evolutionary process. Further, 
because early branching to many fitter mutants is characterist:,c of long jump 
adaptation, radiation will tend to occur. But as more improved long jump variants 
are encountered, the waiting time to find still fitter long jump variants increases by 
doubling each time. Thus, eventually the rate of finding distant fitter variants is 
substantially less than the rate of finding nearby but only slightly fitter variants. 
These nearby variants therefore will have the opportunity to sweep through the 
population. Consequently, in the midterm of the process, adaptation occurs by 
familiar local hill climbing to or toward local optima. As the local hill is climbed, 
or the local optimum is reached, the rate of finding nearby fitter variants dwindles; 
thus in the long term the process must wait until a long jump mutation lands on 
the side of some distant hill, whereafter local hill climbing recommences. 

Local hill climbing is a familiar idea in evolutionary biology. An intriguing feature 
of this new picture is that it enables a marriage of local and global search, coupled 
naturally to time scales in the adaptive process. A theory of long jump evolution 
gives us a picture of how long it takes the process to leave a local peak or its vicinity, 
and how that interval increases after each long jump. Further, since after each long 
jump typically a local hill is climbed, the interval before the next long jump fitter 
variant is found must typically more than double. 

It is also worth marrying this image to Gillespie's (1983, 1984) concept of modeling 
environmental change by more or less correlated alterations in the fitness landscape. 
In so far as such shuffling of rank orders is extensive, the process is repeatedly cast 
back to more average or slightly above average fitness, where long jump adaptation 
dominates the dynamics. This combined qualitative picture has a number of possible 
implications; we focus on one. 

Radiation and (relative) stasis are inherent in this picture of adaptation. For 
example, long jump adaptation and radiation should dominate early in the process. 
It is interesting that in the Cambrian-Ordovician radiation, it is well known that 
the major phyla were well established before their subsidiary classes, which in turn 
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were well established before their subsidiary orders, and so on (Raup, 1983). This 
is what our simple qualitative picture would suggest. 

It is of  interest to contrast our picture with classical accounts of radiation. Valentine 
(1980), for example, pictures an initially empty niche space. Organisms can occupy 
niches, mutate to distant or nearby niches, and survive in niches that are free, but  
cannot occupy a niche if already filled. To this he appends the hypothesis that most 
viable mutants are similar to the parental type, hence most jumps occur to nearby 
niches. This adaptive process supports radiation by jumps to distant niches; but as 
the niche space fills, the rate of  branching radiation slows or ceases. Thus Valentine 
sees the rate of  radiation as dominated by filling of  niche space, hence tied to 
competition both as the motor of  selection, and as the means of  vacant niche 
elimination. By contrast, we locate the rate of  radiation in the very structure of  the 
adaptive landscape: it is the rate at which fitter distant variants are found and sweep 
all or part of  the population. Mechanisms of  isolation of  subpopulations,  which 
may be further required to stabilize alternative branches, are important,  but are 
secondary to the fundamental mechanism. 

Our ideas are very general, and are not confined to biological evolution. They 
should apply to all sorts of  complex combinatorial optimization problems, including 
technological evolution. Thus, shortly after the invention of  the first crude bicycle, 
it was easy to conceive of  many alternative ways to improve the design. Branching 
radiation begins early. As successively refined versions are built, it becomes harder  
to keep making substantive radical improvements to the design, and eventually hard 
to make even minor improvements to each of the well wrought machines. Thus, it 
is of  interest to examine parallels between biological and technological evolution. 

Adaptation via 1-Mutant Neighbors on Correlated Landscapes 

We stressed earlier that it is possible to derive a universal theory of  adaptation 
on uncorrelated landscapes, and perhaps a universal theory of  long jump adaptation 
on correlated landscapes, but that the properties of  adaptation via 1-mutant neigh- 
bors on correlated landscapes promises to be more dit~cult. There may be indefinitely 
many families of  different correlation structure, each with its characteristic statistical 
features and implications for adaptive walks. Alternatively, there may turn out to 
be rather few dominant  kinds of correlation structures. In the latter case, we might 
eventually hope to classify those structures, discover what kinds of  entities live in 
what kinds of  landscapes, and build a generally useful body of  theory. In this section 
we describe briefly an analytic approach to this problem, which is simple but 
apparently inappropriate for the concrete cases we consider below numerically. 
Then we explore two numerical examples which, despite apparent  differences, appear  
to reveal a rather similar underlying statistical structure. 

The simplest picture we can imagine of  a correlated landscape is based on a rank 
ordering of  the entities in a space, subject to the constraint that an entity and all 
its 1-mutant neighbors have fitness values drawn at random from some defined " W  
Ball" or range of  rank orders W. That is, we assume that neighboring points do not 
differ by more than W/2. It is easy to verify that if the W ball range is large enough 
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with respect to the number  of  neighbors of  an entity, D, it is possible to assign 
values consistent with the constraint. 

The implications of  this model are derived simply. Begin at an arbitrary entity 
of average fitness. Half  of  its neighbors are expected to be fitter. Pick the first fitter 
variant encountered. On average, it lies half way from the current entity to the top 
of the local W ball, hence moves upward a distance of W/4. This new variant is 
fitter than that from which it just arrived, which is in the W ball of  the new variant. 
Thus on average, the new variant is slightly above the middle of  its own W ball. 
Therefore,  at each step, almost half the neighbors of  an entity are fitter. At each 
step, a local W ball roughly centered on the entity found is carried along. If the 
total range contains T entities, the adaptive process continues until the percentile 
rank order is within the top W/2T. Thereafter,  continued progression cannot carry 
the local W bali along centered on each fitter variant, and the process reverts to 
adaptation on an uncorrelated landscape, due to the hypothesis that fitness values 
are assigned at random within the W ball. This simple model shows that this type 
of correlation structure can greatly increase the lengths of  adaptive walks before 
local optima are found, compared to that in an uncorrelated landscape. Further, in 
the present case, the rate of  finding fitter variants is constant as fitness increases, 
until the top W ball is attained. For the same reason, branching radiation is constant 
as fitness increases until the top W ball is attained. As we wilt see shortly, this does 
not fit the cases we shall describe, where the rate of  finding fitter variants slows as 
fitness increases, as in the uncorrelated landscape and long jump adaptation. This 
means that the correlation structures of these problems are more complicated than 
are those we have just discussed. 

Lacking a good theory, we have resorted to numerical simulations to discover 
the features of  landscapes for two apparently dissimilar problems: (1) adaptation 
of  desired cell types via 1 to 5 connection or 1 to 5 Boolean function mutants in 
K = 2 input genetic networks; (2) heuristic approaches to the traveling salesman 
problem by 1-mutant to 4-mutant moves, where a one-mutant  move involves 
exchanging the positions of  two cities in the circuit through the N cities. Both 
complex combinatorial  optimization problems nevertheless exhibit similar features. 

Figure 6 shows typical results for genetic networks in which we mutated 1, 2 or 
5 connections in genetic networks with N = 50 genes and K = 2 inputs per gene. 
We mutated connections in all but one member of  a fixed size population,  and 
selected the best in each generation with respect to matching a predefined cell type 
pattern of  gene expression to seed the next generation. The first important  result is 
that fitness increases faster initially, then slows, and reaches a local opt imum well 
below a perfect match. In the many simulations we have done,  we have not yet 
encountered a case where the adaptive process actually created a network with the 
desired cell type matched perfectly (Kauffman & Smith, 1986). The rapid initial 
rate of  improvement  reflects the fact that initially, many neighbors of  low fit entities 
are fitter. Thus had we followed branching radiation, it would here again be bushy 
at the base, then quiet as adaptation proceeded upwards. We ignore many features 
of this process, and focus on only one. Figures 7(a) and 7(b) show the effect of 
network size, N, and numbers of  mutations per individual, on the rate of  finding 
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fitter variants, plotted against the logarithm of the number of generations; they 
exhibit the cumulative numbers of improvement steps. The interesting feature is 
that, in the midterm of the process, the data are roughly log linear, suggesting that 
the number of improvement steps is a function of the logarithm of the number of 
generations. This parallels the case for long jump adaptation where the slope is log 
2; however, in this case, the slope is far shallower. Many more steps, each a smaller 
increment in fitness, appear to be taken, but a general log linear relation is again 
evident. 

Figures 8(a)-(d) show similar results, replotting Figs 5(a)-(d) on a logarithmic 
scale of generations, for the traveling salesman problem. Adaptation is rapid at first, 
slows and reaches a local optimum for the 1-mutant case. For the 2, 3 and 4-mutant 
cases, the plots reveal a tendency for a rough log-linear relation in the midterm of 
the adaptive process. These results seem to indicate that these two correlated 
landscapes, and the cases of long jump adaptation and adaptation on uncorrelated 
landscapes, share very general statistical features. Although we cannot explain why 
these features are common, we can hope that they are sufficiently universal to build 
a useful general theory. 

We conclude this section with a simple statement of the view that discovering 
the kinds of correlation structures that are common to different real complex 
combinatorial optimization problems is a first step towards developing a useful 
theory of adaptive walks via 1-mutant neighbors on such spaces. 

Two Limitations on Adaptation in Rugged Landscapes in the 
Face of Complexity 

In the final section of this article, we show two general tendencies: (1) As the 
complexity of entities under selection increases, the fitness of the attainable local 
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opt ima to which pathways exist falls closer to the unselected mean of  the space. 
That  is, as complexity increases, the local opt ima become more typical o f  the space 
of  entities. (2) As complexity increases, selection becomes a weaker  force relative 
to mutation,  and becomes unable to hold an adapting populat ion at those local 
opt ima to which pathways exist. 

Adaptation on the Random Boolean Hypercube 

To be concrete, consider an N dimensional  Boolean hypercube.  In the normal 
hypercube,  each vertex is labeled with a vector of  N entries each a 0 or  1 value, in 
the natural order,  with (0000 . . .  00) at one vertex, (1111 . . .  111) at the antipode,  
etc. We here relabel the 2 N vertices by assigning to each at random,  and without 
replacement,  one of  the 2 N vectors of  N 0 and 1 values. We consider the fitness of  
each vertex to be the fraction of  1 values in the vector  assigned to it. Two features 
characterize the distribution of  fitness values. First it is uncorrelated on the space. 
Second, the fitness values are drawn from an underlying binomial  distribution. In 
order to break ties, let the 0 and 1 values at each position in the vectors be slightly 
above or below 0 or 1 by small values chosen at r andom from a distribution. We 
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explicitly note that we no longer are considering a landscape in which fitness is 
only rank ordered, but one in which the landscape, though uncorrelated, consists 
of fitness values drawn at random from a defined range, approximately 0.0 to 1.0. 

We already understand the character of adaptive walks on such an uncorrelated 
landscape. Begin with an arbitrary, hence average, vertex. Its fitness is about 0.5. 
Half of its neighbors are fitter. Adaptation will walk upward for about log2 N steps, 
where N = D is the number of neighbors of each vertex. The next question to 
consider is this: What happens to adaptive walks as N increases? N can be thought 
of as the complexity of the entities (here vectors) under selection. As N increases, 
the number of neighbors to each entity increases and the lengths of adaptive walks 
will increase. But what happens to the actualfitnesses of the local optima attained 
as N increases? 

A simple way to think about the lengths of adaptive walks is that such walks will 
continue until the expected number of fitter neighbors to an entity drops below 1. 
Each entity has N neighbors. So the stopping criterion is that fitness at which the 
expected number of fitter neighbors is 1/N. As fitness increases, the expected fraction 
of neighbors having a fitness greater than the fitness of that entity is given by the 
upper tail of the cumulative binomial distribution. For example, if N is 100, and a 
given entity has 60 1-values, then the cumulative binomial distribution showing the 
fraction of vectors having 61, 62 , . . .  100 1-values among the total 2 N vectors gives 
the probability that each neighbor will have a fitness higher than 0-6. As fitness 
increases, say to 70 1-values, this cumulative fraction decreases. Thus, walks will 
continue to higher fitness values until this probability falls to 1/N. But, it is a simple 
consequence of the Central Limit Theorem that, as N increases, the cumulative 
fraction of vectors with 0.6 N 1-values or more, decreases faster than linearly. The 
critical implication is that, as N increases, the fitness values of attainable local 
optima fall toward 0.5, the unselected average fitness of entities in the space. 

This is a very simple, but very general result. It rests only on two features of the 
space: First fitness is normalized in some sense, here as the fraction of 1-values. 
Second the fitness values are assigned from an underlying distribution such as 
Gaussian, to which the Central Limit Theorem applies. More precisely, the distribu- 
tion has an upper tail for above average fitness values having the property that as 
the complexity of the entities in the space increase, the cumulative distribution of 
entities above any fixed above average fitness value decreases faster than the number 
of neighbors to the entity increases. For any such space, as complexity increases, 
the actual local optima that are attainable from initially average entities, fall ever 
closer to the fitness of the average entities in the space. 

This result is not universal; landscapes that escape it can be constructed, in 
particular by having appropriated correlation features. Nevertheless, the general 
result seems to us to be of great significance. First, it should apply to long-jump 
adaptation on many correlated landscapes. In fact, in long-jump adaptation with 
model genetic nets, we have confirmed that as N, the number of genes in a network 
increases, the fitness attained after any fixed number of generations falls closer to 
the unselected mean fitness of an average network, 0.5 (Table 1). If this property 
holds true for adaptation on model genetic nets, it is reasonable to expect it to hold 
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TABLE 1 

Mean fitness achieved in ten independent selection experiments with genetic networks 
with N = 20, 50, or 100 genes, subjected to long-jump adaptation by mutating half of  
the regulatory connections in all but one of  the current best network in each generation: 
The population size in each selection experiment was 20 networks. Mean fitness at each 
generation decreases as the complexity of  the genetic network, N, increases, as predicted 

N 

Generation 20 50 100 

10 0.82 0.695 0.612 
20 0.831 0.724 0.625 
50 0.865 0.448 0.653 

100 0.88 0.766 0.669 

true quite widely. We have therefore identified a simple but probably powerful 
limitation of adaptation in complex systems. We are only beginning to understand 
the structures of fitness landscapes. However, for uncorrelated landscapes, and for 
long-jump adaptation on correlated landscapes where the underlying fitness values 
are drawn from something like a Gaussian or other appropriate distribution, it is 
to be expected that increased complexity is associated generically with a decreased 
capacity of selection to escape the average properties of the underlying space of 
entities. The more complex the entities, the more the best attainable by adaptive 
walks are typical of the entities in the space. Among the possible implications is 
this: If, as complexity increases, selection typically is unable to escape the average 
properties of the kinds of entities upon which it operates, and /f those entities 
exhibit spontaneous order even in the absence of selection, then that spontaneous 
order may be present in the entities not because selection has achieved it, but because 
selection is unable to avoid it. Such ordered properties, in short, might be "ahistorical 
universals", reflecting, not selection, but the inherent properties of the class of 
systems upon which selection operates. Genetic networks in which each gene is 
regulated by rather few other genes are only one among many examples of complex 
systems which exhibit surprising order in the absence of selection. Many typical 
features of such networks are surprisingly close parallels to real genetic regulatory 
networks. It is not a trivial question whether such parallels reflect the self organized 
properties of a class of genetic regulatory systems in the absence of selection, which 
persist in contemporary organisms because selection is unable to avoid those 
properties. 

We close by drawing attention to a classical result in population genetics which 
shows that as the complexity of a system increases, selection becomes progressively 
less able to hold an adapting population at local optima in the face of persistent 
mutation (Ewens, 1979). Consider a system of N loci, each with two alleles, one 
of higher fitness than the other, each contributing additively to overall fitness, and 
with equal forward and reverse mutation rates between the two alleles. As the 
number of loci, N, increases, the proportional contribution to overall fitness of the 
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more favored allele decreases inversely to N. Thus the selective force acting on any 
allele decreases, while the mutational force transforming it into the less favored 
allele remains constant. The consequence is that, as N increases, the expected 
number of less favored alleles that accumulates among the N increases as a square 
root function of N. For small N, selection can hold the population at the optimally 
fit entity with all N favored alleles. As N increases, a value is reached beyond 
which the population diverges away from that optimum. 

This result has been rediscovered by Eigen & Schuster (1979) who call it the error 
catastrophy, and by (Kauffman, 1985) in investigations into the precision with which 
selection can mold genetic regulatory networks. The general implication is that as 
complexity increases, selection often becomes too weak a force to hold a population 
"at" those local or global optima to which connected adaptive walks exist. Thus, 
for two rather different reasons, there must be a strong general tendency, as the 
complexity of entities increases, for the best attainable entities to become more 
typical of the underlying space of entities: (1) Local optima for many fitness 
landscapes fall closer to the mean properties of the space as complexity increases. 
(2) Selection becomes too weak to hold populations at rare improbable local or 
global optima, and the population falls toward the mean properties of the underlying 
space. 

Conclusions 

This article has begun to develop a theory of adaptation on statistically rugged 
landscapes. The simplest benchmark case is an uncorrelated landscape of rank 
ordered fitness values. Simple mean properties of adaptive walks via 1-mutant fitter 
neighbors have been worked out; the variances and higher moments of those features 
have not. We have not included the concept of "neutral mutations", which might 
be thought of as equivalence classes of neighbors of "nearly" the same fitness. We 
have been able to give simple general results for long-jump adaptation on correlated 
rugged landscapes. The requirements on the underlying landscapes such that the 
theorems hold are not worked out. We have examined two cases of adaptation via 
fitter 1-mutant neighbors on two cases of correlated landscapes and found that they 
exhibit statistical features similar to one another and to the case of adaptation on 
an uncorrelated landscape. This encourages the hope that quite general features 
may characterize a wide variety of fitness landscapes for diverse complex com- 
binatorial optimization problems. We have identified an unexpected limitation on 
selection: for many landscapes, as complexity increases, local optima fall toward 
the mean of the underlying space of entities. 

Obviously, the work reported is the crudest beginning of an area that deserves 
careful development. Evolutionary theory has grown without a body of theory 
concerning the structure of adaptive landscapes for the kinds of complex com- 
binatorial optimization that must occur in molding the "design" of organisms. We 
need to develop such a body of theory, exhibiting the "structures" of these land- 
scapes, then examine whether and when selection is sufficiently powerful to pull 
evolving populations across such spaces to or toward fitness optima. 
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