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THE CHEMICAL BASIS OF MOKPHOGENESIS 

BY A. M. TURING, F.R.S. University Manchester 

(Received 9 November 1951-Revised 15 March 1952)  

I t  is suggested that a system of chemical substances, called morphogens, reacting together and 
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. 
Such a system, although it may originally be quite homogeneous, may later develop a pattern 
or structure due to an instability of the homogeneous equilibrium, which is triggered off by 
random disturbances. Such reaction-diffusion systems are considered in some detail in the case 
of an isolated ring of cells, a mathematically convenient, though biolo::icdliy unusual system. 
The investigation is chiefly concerned with the onset of instability. I t  is found that there are six 
essentially different forms which this may take. In  the most interesting form stationary waves 
appear on the ring. I t  is suggested that this might account, for instance, fbr the tentacle patterns 
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con- 
sidered. Such a system appears to account for gastrulation. Another reaction system in two 
dimensions gives rise to patterns reminiscent of dappling. I t  is also suggested that stationary 
waves in two dimensions could account for the phenomena of phyllotaxis. 

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote 
may determine the anatomical structure of the resulting organism. The theory does not make any 
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account 
for many of the facts. The full understanding of the paper requires a good knowledge of mathe- 
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be 
experts in all of these subjects, a number of elementary facts are explained, which can be found in 
text-books, but whose omission would make the paper difficult reading. 

In  this section a mathematical model of the growing embryo will be described. This model 
will be a simplification and an idealization, and consequently a falsification. I t  is to be 
hoped that the features retained for discussion are those of greatest importance in the 
present state of knowledge. 

The model takes two slightly different forms. In  one of them the cell theory is recognized 
but the cells are idealized into geometrical points. In  the other the matter of the organism 
is imagined as continuously distributed. The cells are not, however, completely ignored, 
for various physical and physico-chemical characteristics of the matter as a whole are 
assumed to have values appropriate to the cellular matter. 

With either of the models one proceeds as with a physical theory and defines an entity 
called ' the state of the system'. One then describes how that state is to be determined from 
the state at  a moment very shortly before. With either model the description of the state 
consists of two parts, the mechanical and the chemical. The mechanical part of the state 
describes the positions, masses, velocities and elastic properties of the cells, and tlhe forces 
between them. In  the continuous form of the theory essentially the same information is 
given in the form of the stress, velocity, density and elasticity of the matter. The chemical 
part of the state is given (in the cell form of theory) as the chemical composition of each 
separate cell; the diffusibility of each substance between each two adjacent cells rnust also 
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be given. In  the continuous form of the theory the concentrations and diffusibilities of 
each substance have to be given at  each point. In determining the changes of state one 
should take into account 

(i) The changes of position and velocity as given by Newton's laws of motion. 
jii) The stresses as given by the elasticities and motions, also taking into account the 

osmotic pressures as given from the chemical data. 
(iii) The clieinical reactions. 
(iv) The diffusion of the chemical substances. The region in which this diffusion is 

possible is given from the mechanical data. 
This account of the problem omits many features, e.g. electrical properties and the 

internal structure of the cell. But even so it is a problem of formidable mathematical com- 
plexity. One cannot at  present hope to make any progress with the understanding of such 
systems except in very simplified cases. The interdependence of the chemical and mechanical 
data adds enormously to the difficulty, and attention will therefore be confined, so far as is 
possible, to cases where these can be separated. The mathematics of elastic solids is a well- 
developed subject, and has often been applied to biological systems. In  this paper it is 
proposed to give attention rather to cases where the mechanical aspect can be ignored and 
the chemical aspect is the most significant. These cases promise greater interest, for the 
characteristic action of the genes themselves is presumably chemical. The systems actually 
to be considered consist therefore of masses of tissues which are not growing, but within 
which certain substances are reacting chemically, and through which they are diffusing. 
These substances will be called morphogens, the word being intended to convey the idea 
of a form producer. I t  is not intended to have any very exact meaning, but is simply the 
kind of substance concerned in this theory. The evocators of Waddington provide a good 
example of morphogens (Waddington 1940).These evocators diffusinginto a tissue somehow 
persuade it to develop along different lines from those which would have been followed in 
its absence. The genes themselves may also be considered to be morphogens. But they 
certainly form rather a special class. They are quite indiffusible. Moreover, it is only by 
courtesy that genes can be regarded as separate molecules. I t  would be more accurate 
(at any rate at mitosis) to regard them as radicals of the giant molecules known as cliromo- 
somes. But presumably these radicals act almost independently, so that it is unlikely that 
serious errors will arise through regarding the genes as molecules. Hormones may also be 
regarded as quite typical morphogens. Skin pigments may be regarded as morphogens if 
desired. But those whose action is to be considered here do not come squarely within any 
of these categories. 

The function of genes is presumed to be purely catalytic. They catalyze the production 
of other morphogens, which in turn may only be catalysts. Eventually, presumably, the 
chain leads to some morphogens whose duties are not purely catalytic. For instance, a 
substance might break down into a number of smaller molecules, thereby increasing the 
osmotic pressure in a cell and promoting its growth. The genes might thus be said to in- 
fluence the anatomical form of the organism by determining the rates of those reactions 
which they catalyze. If the rates are assumed to be those determined by the genes, and if 
a comparison of organisms is not in question, the genes themselves may be eliminated from 
the discussion. Likewise any other catalysts obtained secondarily through the agency of 
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the genes may equally be ignored, if there is no question of their concentrations varying. 
There may, however, be some other morphogens, of the nature of evocators, which cannot 
be altogether forgotten, but whose role may nevertheless be subsidiary, from the point of 
view of the formation of a particular organ. Suppose, for instance, that a 'leg-evocator' 
morphogen were being produced in a certain region of an embryo, or perhaps diffusing into 
it, and that an attempt was being made to explain the mechanism by which the leg was 
formed in the presence of the evocator. I t  would then be reasonable to take the distribution 
of the evocator in space and time as given in advance and to consider the chemical reactions 
set in train by it. That  at  any rate is the procedure adopted in the few examples considered 
here. 

2. MATHEMATICALBACKGROUND REQUIRED 

The greater part of this present paper requires only a very moderate knowledge of 
mathematics. What is chiefly required is an understanding of the solution of linear differ- 
ential equations with constant coefficients. (This is also what is chiefly required for an under- 
standing of mechanical and electrical oscillations.) The solution of such an equation takes 
the form of a sum XA ebt, where the quantities A, b may be complex, i.e. of the form a+i,!l, 
where a and /?are ordinary (real) numbers and i = J- 1. I t  is of great importance that the 
physical significance of the various possible solutions of this kind should be appreciated, 
for instance, that 

(a) Since the solutions will normally be real one can also write them in the form BCA ebt 
or C9A ebt (Bmeans 'real part of'). 

(b)  	 That  if A = A' ei$ and b = a+$, where A', a, P, 41 are real, then 


,%?Aebt= A' eat cos (pt +4). 

Thus each such term represents a sinusoidal oscillation if a = 0, a damped oscillation if 
a <  0, and an oscillation of ever-increasing amplitude if a >  0. 

(c) If any one of the numbers b has a positive real part the system in question is unstable. 
(d) After a sufficiently great lapse of time all the terms A ebt will be negligible in com- 

parison with those for which b has the greatest real part, but unless this greatest real part is 
itself zero these dominant terms will eventually either tend to zero or to infinite values. 

( e )  That the indefinite growth mentioned in (b)  and (d) will in any physical or biological 
situation eventually be arrested due to a breakdown of the assumptions under which the 
solution was valid. Thus, for example, the growth of a colony of bacteria will normally be 
taken to satisfy the equation dyldt - ay (a> 0), y being the number of organisms at  time t, 
and this has the solution y = A eat. When, however, the factor eat has reached some billions 
the food supply can no longer be regarded as unlimited and the equation dyldt = ay will 
no longer apply. 

The following relatively elementary result will be needed, but may not be known to all 
readers : 

but = N  if s = O o r s = N .  


The first case can easily be proved when it is noticed that the left-hand side is a geometric 

~rogression. In  the second case all the terms are equal to 1. 
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The relative degrees of difficulty of the various sections are believed to be as follows. 
Those who are unable to follow the points made in this section should only attempt $$3, 4, 

11,12,14 and part of $13. Those who can just understand this section should profit also from 
$ $ 7 , 8, 9. The remainder, $ $ 5 , 10, 13, will probably only be understood by those definitely 
trained as mathematicians. 

I t  has been explained in a preceding section that the system to be considered consists of 
a number of chemical substances (morphogens) diffusing through a mass of tissue of given 
geometrical form and reacting together within it. What laws are to control the development 
of this situation ? They are quite simple. The diffusion follows the ordinary laws of diffusion, 
i.e. each morphogen moves from regions of greater to regions of less concentration, at  a 
rate proportional to the gradient of the concentration, and also proportional to the 'dif- 
fusibility' of the substance. This is very like the conduction of heat, diffusibility taking the 
place of conductivity. If it were not for the walls of the cells the diffusibilities would be 
inversely proportional to the square roots of the molecular weights. The pores of the cell 
walls put a further handicap on the movement of the larger molecules in addition to that 
imposed by their inertia, and most of them are not able to pass through the walls at all. 

The reaction rates will be assumed to obey the 'law of mass action'. This states that the 
rate at which a reaction takes place is proportional to the concentrations of the reacting 
substances. Thus, for instance, the rate at  which silver chloride will be formed and 
precipitated from a solution of silver nitrate and sodium chloride by the reaction 

Ag+-kc1- +AgCl 

will be proportional to the product of the concentrations of the silver ion Agf and the 
chloride ion C1-. I t  should be noticed that the equation 

AgNO, +NaC1+ AgCl$- NaNO, 

is not used because it does not correspond to an actual reaction but to the final outcome of 
a number of reactions. The law of mass action must only be applied to the actual reactions. 
Very often certain substances appear in the individual reactions of a group, but not in the 
final outcome. For instance, a reaction A+B may really take the form of two steps A +G-t C 
and C-t B+ G. In  such a case the substance G is described as a catalyst, and as catalyzing 
the reaction A+B. (Catalysis according to this plan has been considered in detail by 
Michaelis & Menten (19I3) .) The effect of the genes is presumably achieved almost entirely 
by catalysis. They are certainly not permanently used up in the reactions. 

Sometimes one can regard the effect of a catalyst as merely altering a reaction rate. Con- 
sider, for example, the case mentioned above, but suppose also that A can become detached 
from G, i.e. that the reaction C-t A+ G is taken into account. Also suppose that the reactions 
A+Gs C both proceed much faster than C+ B +G. Then the concentrations of A, G, C 
will be related by the condition that there is equilibrium between the reactions A +  G+ C 
and C+ A +G, so that (denoting concentrations by square brackets) [A] [GI - k[C] for 
some constant k. The reaction C+ B-t G will of course proceed at  a rate proportional to [C], 
i.e. to [A][GI. If the amount of C is always small compared with the amount of G one can 
say that the presence of the catalyst and its amount merely alter the mass action constant 
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for the reaction A+ B, for the whole proceeds at  a rate proportional to [A]. This situation 
does not, however, hold invariably. I t  may well happen that nearly all of G takes the com- 
bined forrn Cso long as any ofA is left. In  this case the reaction proceeds at a rate independent 
of the concentration of A until A is entirely consumed. In  either of these cases the rate of 
the complete group ofreactions depends only on the concentrations of the reagents, although 
usually not according to the law of mass action applied crudely to the chemical equation 
for the whole group. The same applies in any case where all reactions of the group with one 
exception proceed at speeds much greater than that of the exceptional one. I n  these cases 
the rate of the reaction is a function of the concentrations of the reagents. More generally 
again, no such approximation is applicable. One simply has to take all the actual reactions 
into account. 

According to the cell model then, the number and positions of the cells are given in 
advance, and so are the rates at which the various morphogens diffuse between the cells. 
Suppose that there are N cells and M morphogens. The state of the whole system is then 
given by MNnumbers, the quantities of the Mmorphogens in each of Ncells. These numbers 
change with time, partly because of the reactions, partly because of the diffusion. To  deter- 
mine the part of the rate of change of one of these numbers due to diffusion, at  any one 
moment, one only needs to know the amounts of the same morpliogen in the cell and its 
neighbours, and the diffusion coefficient for that morphogen. To  find the rate of change 
due to cliemical reaction one only needs to know the concentrations of all morpliogens at  
that moment in the one cell concerned. 

This description of the system in terms of the concentrations in the various cells is, of 
course, only an approximation. I t  would be justified if, for instance, the contents were 
perfectly stirred. Alternatively, it may often be justified on the understanding that the 
'concentration in the cell' is the concentration at a certain representative point, although 
the idea of 'concentration at  a point' clearly itself raises difficulties. The author believes 
that the approximation is a good one, whatever argument is used to justify it, and it is 
certainly a convenient one. 

I t  would be possible to extend much of the theory to the case of organisms immersed in 
a fluid, considering the diffusion within the fluid as well as from cell to cell. Such problems 
are not, however, considered here. 

4. THEBREAKDOWN OF SYMMETRY AND HOMOGENEITY 

There appears superficially to be a difficulty confronting this theory of morphogenesis, 
or, indeed, almost any other theory of it. An embryo in its spherical blastula stage has 
spherical symmetry, or if there are any deviations from perfect symmetry, they cannot be 
regarded as of any particular importance, for the deviations vary greatly from embryo to 
embryo within a species, though the organisms developed from them are barely distin- 
guishable. One may take it therefore that there is perfect spherical symmetry. But a system 
which has spherical symmetry, and whose state is changing because of chemical reactions 
and diffusion, will remain spherically symmetrical for ever. (The same would hold true if 
the state were changing according to the laws of electricity and magnetism, or of quantum 
mechanics.) I t  certainly cannot result in an organism such as a horse, which is not spheric- 
ally symmetrical. 
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There is a fallacy in this argument. I t  was assumed that the deviations froin spherical 
symmetry in the blastula could be ignored because it makes no particular difference what 
form of asymmetry there is. I t  is, however, important that there are some deviations, for 
the system may reach a state of instability in which these irregularities, or certain components 
of them, tend to grow. If this happens a new and stable equilibrium is usually reached, with 
the symmetry entirely gone. The variety of such new equilibria will normally not be so 
great as the variety of irregularities giving rise to them. In  the case, for instance, of the 
gastrulating sphere, discussed at  the end ofthis paper, the direction of the axis of the gastrula 
can vary, but nothing else. 

The situation is very similar to that which arises in connexion with electrical oscillators. 
I t  is usually easy to understand how an oscillator keeps going when once it has started, but 
on a first acquaintance it is not obvious how the oscillation begins. The explanation is that 
there are random disturbances always present in the circuit. Any disturbance whose 
frequency is the natural frequency of the oscillator will tend to set it going. The ultimate fate 
of the system will be a state of oscillation at  its appropriate frequency, and with an amplitude 
(and a wave form) which are also determined by the circuit. The phase of the oscillation 
alone is determined by the disturbance. 

If chemical reactions and diffusion are the only forms of physical change which are taken 
into account the argument above can take a slightly different form. For if the system origin- 
ally has no sort of geometrical symmetry but is a perfectly homogeneous and possibly irregu- 
larly shaped mass of tissue, it will continue indefinitely to be homogeneous. In  practice, 
however, the presence of irregularities, including statistical fluctuations in the numbers of 
molecules undergoing the various reactions, will, if the system has an appropriate kind of 
instability, result in this homogeneity disappearing. 

This breakdown of symmetry or homogeneity may be illustrated by the case of a pair of 
cells originally having the same, or very nearly the same, contents. The system is homo- 
geneous: it is also symmetrical with respect to the operation of interchanging the cells. 
The contents of either cell will be supposed describable by giving the concentrations X 
and Y of two morphogens. The chemical reactions will be supposed such that, on balance, 
the first morphogen (X) is produced at  the rate 5X- BY+ 1 and the second ( Y) at the rate 
6X- 7Y+ 1. When, however, the strict application of these formulae would involve the 
concentration of a morphogen in a cell becoming negative, it is understood that it is instead 
destroyed only at  the rate at which it is reaching that cell by diffusion. The first morphogen 
will be supposed to duffuse at  the rate 0.5 for unit difference of concentration between the 
cells, the second, for the same difference, at the rate 4.5. Now if both morphogens have unit 
concentration in both cells there is equilibrium. There is no resultant passage of either 
morphogen across the cell walls, since there is no concentration difference, and there is no 
resultant production (or destruction) of either morphogen in either cell since 5X- 6Y+-1 

and 6X- 7Y+ 1 both have the value zero for X - 1, Y = 1. But suppose the values are 
X ,  = 1-06, Y ,  = 1.02 for the first cell and X ,  = 0.94, Y,  = 0.98 for the second. Then the 
two morphogens will be being produced by chemical action at the rates 0.18, 0.22 respec- 
tively in the first cell and destroyed at the same rates in the second. At the same time there 
is a Aow due to diffusion from the first cell to the second at  the rate 0.06 for the first morpho- 
gen and 0.18 for the second. In  suin the effect is a flow from the second cell to the first at  the 
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rates 0.12, 0.04 for the two morphogens respectively. This flow tends to accentuate the 
already existing differences between the two cells. More generally, if 

at some moment the four concentrations continue afterwards to be expressible in this form, 
and 5 increases at the rate 2c. Thus there is an exponential drift away from the equilibrium 
condition. I t  will be appreciated that a drift away from the equilibrium occurs with almost 
any small displacement from the equilibrium condition, though not normally according 
to an exact exponential curve. A particular choice was made in the above argument in 
order to exhibit the drift with only very simple mathematics. 

Before it can be said to follow that a two-cell system can be unstable, with inhorr~ogeneity 
succeeding homogeneity, it is necessary to show that the reaction rate functions postulated 
really can occur. To specify actual substances, concentrations and temperatures giving 
rise to these functions would settle the matter finally, but would be difficult and somewhat 
out of the spirit of the present inquiry. Instead, it is proposed merely to mention imaginary 
reactions which give rise to the required functions by the law of' mass action, ii' suitable 
reaction constants are assumed. I t  will be sufficient to describe 

(i) A set of reactions producing the first morphogen at the constant rate 1, and a similar 
set forming the second morphogen at the same rate. 

(ii) A set destroying the second morphogen (Y) at the rate 7Y. 
(iii) A set converting the first morphogen (X) into the second (Y) at the rate 6X. 
(iv) A set producing the first morphogen (X) at the rate 11X. 
(v) A set destroying the first morphogen (X) at the rate 6Y, so long as any of it is present. 

The conditions of (i) can be fulfilled by reactions of the type A-t  X, B+ Y, where A and 
B are substances continually present in large and invariable concentrations. The conditions 
of (ii) are satisfied by a reaction of the form Y+ D, D being an inert substance and (iii) by 
the reaction X+ Y or X+ Y+ E. The remaining two sets are rather more difficult. 'I'o satisfy 
the conditions of (iv) one may suppose that Xis a catalyst for its own formal.ion from A. 
The actual reactions could be the formation of an unstable compound U by the reaction 
A+X+ U, and the subsequent almost instantaneous breakdown U+2X. To destroy X 
at a rate proportional to Y as required in (v) one may suppose that a catalyst Cis present in 
small but constant concentration and immediately combines with X, X+ C-t V. The 
modified catalyst reacting with Y, at a rate proportional to Y, restores the catalyst but not 
the morphogen X, by the reactions V+ Y+ W, W-t C'+ H, of which the latter is assumed 
instantaneous. 

I t  should be emphasized that the reactions here described are by no means those which 
are most likely to give rise to instability in nature. The choice of the reactions to be discussed 
was dictated entirely by the fact that it was desirable that the argument be easy to follow. 
More plausible reaction systems are described in $10. 

Unstable equilibrium is not, of course, a condition which occurs very naturally. I t  
usually requires some rather artificial interference, such as placing a marble on the top of 
a dome. Since systems tend to leave unstable equilibria they cannot often be in them. Such 
equilibria can, however, occur naturally through a stable equilibrium changing into an 
unstable one. For example, if a rod is hanging from a point a little above its centre of gravity 
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it will be in stable equilibrium. If, however, a mouse climbs up the rod the equilibrium 
eventually becomes unstable and the rod starts to swing. A chemical analogue of this mouse- 
and-pendulum system would be that described above with the same diffusibilities but with 
the two morphogens produced at  the rates 

( 3 f I )X-GY-i-1-1 and 6X--(9+1) Y-I+1.  

This system is stable if I< 0 but unstable if I> 0. If I is allowed to increase, corresponding 
to the mouse running up the pendulum, it will eventually become positive and the equi- 
librium will collapse. The system which was originally discussed was the case 1= 2, and 
might be supposed to correspond to the mouse somehow reaching the top of the pendulum 
without disaster, perhaps by falling vertically on to it. 

The object of this section is to discuss a certain difficulty which might be thought to show 
that the morphogen theory of morphogenesis cannot be right. The difficulty is mainly 
concerned with organisms which have not got bilateral symmetry. The argument, although 
carried through here without the use of mathematical formulae, may be found difficult 
by non-mathematicians, and these arc therefore recommended to ignore it unless they are 
already troubled by such a difficulty. 

An organism is said to have 'bilateral symmetry' if it is identical with its own reflexion 
in some plane. This plane of course always has to pass through some part of the organism, 
in particular through its centre of gravity. For the purpose of this argument it is more general 
to consider what may be called 'left-right symmetry '. An organism has left-right symmetry 
if its description in any right-handed set of rectangular Cartesian co-ordinates is identical 
with its description in some set of left-handed axes. An example of a body with left-right 
symmetry, but not bilateral symmetry, is a cylinder with the letter P printed on one end, 
and with the mirror image of a P on the other end, but with the two upright strokes of the 
two letters not parallel. The distinction may possibly be without a difference so far as the 
biological world is concerned, but mathematically it should not be ignored. 

If the organisms of a species are sufficiently alike, and the absence of left-right symmetry 
sufficiently pronounced, it is possible to describe each individual as either right-handed or 
left-handed without there being difficulty in classifying any particular specimen. In  man, 
for instance, one could take the X-axis in the forward direction, the Y-axis at right angles 
to it in the direction towards the side on which the heart is felt, and the Z-axis upwards. 
The specimen is classed as left-handed or right-handed according as the axes so chosen are 
left-handed or right-handed. A new classification has of course to be defined for each species. 

The fact that there exist organisms which do not have left-right symmetry does not in 
itself cause any difficulty. I t  has already been explained how various kinds of symmetry can 
be lost in the development of the embryo, due to the particular disturbances (or 'noise') 
influencing the particular specimen not having that kind of symmetry, taken in conjunction 
with appropriate kinds of instability. The difficulty lies in the fact that there are species in 
which the proportions of left-handed and right-handed types are very unequal. I t  will be 
as well to describe first an argument which appears to show that this should not happen. 
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The argument is very general, and might be applied to a very wide class of theories of 
inorphogenesis. 

An entity may be described as 'P-symmetrical' if its description in terms of one set of 
right-handed axes is identical with its description in terms of any other set of right-handed 
axes with the same origin. Thus, for instance, the totality of positions that a corkscrew 
would take up when rotated in all possible ways about the origin has P-symmetry. The 
entity will be said to be 'F-symmetrical' when changes from right-handed axes to left- 
handed may also be made. This would apply if the corkscrew were replaced by a bilaterally 
symmetrical object such as a coal scuttle, or a left-right symmetrical object. In  these terms 
one may say that there are species such that the totality of specimens from that species, 
together with the rotated specimens, is P-symmetrical, but very far from F-symmetrical. 
O n  the other hand, it is reasonable to suppose that 

(i) The laws of physics are F-symmetrical. 
(ii) The initial totality of zygotes for the species is F-symmetrical. 

(iii) The statistical distribution of disturbances is F-symmetrical. The individual dis- 
turbances of course will in general have neither F-symmetry nor P-symmetry. 

I t  should be noticed that the ideas of P-symmetry and F-symmetry as defined above 
apply even to so elaborate an entity as 'the laws of physics'. I t  should also be understood 
that the laws are to be the laws taken into account in the theory in question rather than some 
ideal as yet undiscovered laws. 

Now it follows from these assumptions that the statistical distribution of resulting or- 
ganisms will have F-symmetry, or more strictly that the distribution deduced as the result of 
working out such a theory will have such symmetry. The distribution of observed mature 
organisms, however, has no such symmetry In  the first place, for instance, men are more 
often found standing on their feet than their heads. This may be corrected by taking gravity 
into account in the laws, together with an appropriate change of definition of the two kinds 
of symmetry. But it will be more convenient if, for the sake of argument, it is imagined that 
some species has been reared in the absence of gravity, and that the resulting distribution of 
mature organisms is found to be P-symmetrical but to yield more right-handed specimens 
than left-handed and so not to have F-symmetry. I t  remains therefore to explain this 
absence of F-symmetry. 

Evidently one or other of the assumptions (i) to (iii) must be wrong, i.e. in a correct 
theory one of them would not apply. In  the morphogen theory already described these 
three assumptions do all apply, and it must therefore be regarded as defective to some 
extent. The theory may be corrected by taking into account the fact that the morphogens 
do not always have an equal number of left- and right-handed molecules. According to 
one's point of view one may regard this as invalidating either (i), (ii) or even (iii). Simplest 
perhaps is to say that the totality of zygotes just is not F-symmetrical, and that this could be 
seen if one looked at  the molecules. This is, however, not very satisfactory from the point 
of view of this paper, as it would not be consistent with describing states in terms of con- 
centrations only. I t  would be preferable if it was found possible to find more accurate laws 
concerning reactions and diffusion. For the purpose of accounting for unequal numbers 
of left- and right-handed organisms it is unnecessary to do more than show that there are 
corrections which would not be F-symmetrical when there are laevo- or dextrorotatory 
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morphogens, and which would be large enough to account for the effects observed. I t  is 
not very difficult to think of such effects. They do not have to be very large, but must, of 
course, be larger than the purely statistical effects, such as thermal noise or Brownian 
movement . 

There may also be other reasons why the totality of zygotes is not F-symmetrical, e.g. an 
asymmetry of the chromosomes themselves. If these also produce a sufficiently large effect, 
so much the better, 

Though these effects may be large compared with the statistical disturbances they are 
almost certainly small compared with the ordinary diffusion and reaction effects. This will 
mean that they only have an  appreciable effect during a short period in which the break- 
down of left-right symmetry is occurring. Once their existence is admitted, whether on a 
theoretical or experimental basis, it is probably most convenient to give them mathematical 
expression by regarding them as P-symmetrically (but not F-symmetrically) distributed 
disturbances. However, they will not be considered further in this paper. 

6. REACTIONSAND DIFFUSION IN A RING OF CELLS 

The original reason for considering the breakdown of homogeneity was an apparent 
difficulty in the diffusion-reaction theory of morphogenesis. Now that the difficulty is 
resolved it might be supposed that there is no reason for pursuing this aspect of the problem 
further, and that it would be best to proceed to consider what occurs when the system is 
very far from homogeneous. A great deal more attention will nevertheless be given to the 
breakdown of homogeneity. This is largely because the assumption that the system is still 
nearly homogeneous brings the problem within the range of what is capable of being treated 
mathematically. Even so many further simplifying assumptions have to be made. Another 
reason for giving this phase such attention is that it is in a sense the most critical period. That 
is to say, that if there is any doubt as to how the organism is going to develop it is conceivable 
that a minute examination of it just after instability has set in might settle the matter, but 
an  examination of it at  any earlier time could never do so. 

There is a great variety of geometrical arrangement of cells which might be considered, 
but one particular type of configuration stands out as being particularly simple in its theory, 
and also illustrates the general principles very well. This configuration is a ring of similar 
cells. One may suppose that there are N such cells. I t  must be admitted that there is no 
biological example to which the theory of the ring can be immediately applied, though it 
is not difficult to find ones in which the principles illustrated by the ring apply. 

I t  will be assumed at  first that there are only two morphogens, or rather only two inter- 
esting morphogens. There may be others whose concentration does not vary either in space 
or time, or which can be eliminated from the discussion for one reason or another. These 
other morphogens may, for instanse, be catalysts involved in the reactions between the 
interesting morphogens. An example of a complete system of reactions is given in 5 10. 
Some consideration will also be given in $5 8,9 to the case of three morphogens. The reader 
should have no difficulty in extending the results to any number of morphogens, but no 
essentially new features appear when the number is increased beyond three. 

The two morphogens will be called X and Y. These letters will also be used to denote 
their concentrations. This need not lead to any real confusion. The concentration of X in 
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cell r may be written X,, and Y, has a similar meaning. I t  is convenient to regard 'cell N' 
and 'cell 0 ' as synonymous, and likewise 'cell 1' and cell 'N+ 1 '. One can then say that 
for each r satisf~ring1 <r< N cell r exchanges material by diffusion with cells r- 1 and r f 1 .  
The cell-to-cell diffusion constant for X will be called ,u, and that for Y will be called v. 
This means that for unit concentration difference of X, this morphogen passes at the rate 
,u from the cell with the higher concentration to the (neighbouring) cell with the lower 
concentration. It is also necessary to make assumptions about the rates of chemical reaction. 
The most general assumption that can be made is that for concentrations X and Y chemical 
reactions are tending to increase X at the rate*f(X, Y )and Y at the rate g(X, Y). When the 
changes in X and Y due to diffusion are also taken into account the behaviour of the system 
may be described by the 2 N  differential equations 

dXr =f(X,, Y,) +p(X,+l-2x,-kx,-l)dt 
( r  = 1)...)N). (6.1)

d 
dt 
Y, == g(X,, Y,) - L V ( Y , + ~ - ~ Y , + -Y,-l) I 

If.f(h, k ) : g(h,k )  = 0, then an isolated cell has an equilibrium with concentrations X = h, 
Y = k. The ring system also has an equilibrium, stable or unstable, with each X,. equal to h 
and each Y,.equal to k. Assuming that the system is not very far from this equilibrium it is 
convenient to put X, = h tx,, Y, = k +y,. One may also write ax+ by for f(h+ x, y +k )  and 
cx -dy for g(h -x, y -k ) .  Since f (h, k )  =g(h,k )  = 0 no constant terms are required, and 
since x and y are supposed small the terms in higher powers of x and y will have relatively 
little effect and one is justisfied in ignoring them. The four quantities a, 6, c, d may be called 
the 'marginal reaction rates '. Collectively they may be described as the 'marginal reaction 
rate matrix '.When there are Ad morphogens this matrix consists of Ad2numbers. A rnarginal 
reaction rate has the dimensions of the reciprocal of a time, like a radioactive decay rate, 
which is in fact an example of a marginal (nuclear) reaction rate. 

With these assumptions the equations can be rewritten as 

To solve the equations one introduces new co-ordinates to,..., and 7,) ...,q,-, by 
putting 

These relations can also be written as 
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as may be shown by using the equations 

(referred to in $2) .  Making this substitution one obtains 

Likewise 

The equations have now been converted into a quite manageable form, with the variables 
separated. There are now two equations concerned with and yl, two concerned with 
c2and y,, etc. The equations themselves are also of a well-known standard form, being linear 
with constant coefficients. Letp, and pi be the roots of the equation 

(with 9p, 29~ :for definiteness), then the solution of the equations is of the form 

where, however, the coefficients A,, B,, &7,, D,are not independent but are restricted to 
satisfy 

If it should happen that p, =pi the equations (6.9) have to be replaced by 

[(.= (A, 4-B, t )e.0~t, i 
y, = (C,i-D, t) efist.j 

and (6.10) remains true. Substituting back into (6.3) and replacing the variables x,, y, by 
X,, & (the actual concentrations) the solution can be written 

X,. = h + 2N 
(A,eP5 

s = l  

N 
Y, =k + 2 (C, 

s= l 

Here A,, B,, C,, D,are still related by (6.10), but otherwise are arbitrary complex numbers; 
p, and pi are the roots of (6.8). 
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The expression (6.1 1)gives the general solution of the equations (6.1) when one. assumes 
that departures from homogeneity are sufficiently small that the functions f ( X ,  Y) and 
g ( X , Y) can safely be taken as linear. The form (6.1 1)given is not very informative. I t  will 
be considerably simplified in $8. Another implicit assumption concerns random disturbing 
influences. Strictly speaking one should consider such influences to be continuously at  
work. This would make the mathematical treatment considerably more difficult without 
substantially altering the conclusions. The assumption which is implicit in the analysis, 
here and in $ 8, is that the state of the system at t = 0 is not one of homogeneity, since it 
has been displaced from such a state by the disturbances; but after t = 0 further disturbances 
are ignored. In  $ 9  the theory is reconsidered without this latter assumption. 

As an alternative to a ring of separate cells one might prefer to consider a continuous ring 
of tissue. In  this case one can describe the position of a point of the ring by the angle 0 
which a radius to the point makes with a fixed reference radius. Let the diffusibilities of 
the two substances be y' and v'. These are not quite the same a sp  and v of the last section, 
since p and v are in effect referred to a cell diameter as unit of length, whereas y' and v' are 
referred to a conventional unit, the same unit in which the radius p of the ring is measured. 
Then 

dX y' a2xThe equations are -.. = a(x'--h) + 6( Y k )-4----
dt p2 do2 , 

dY v' d2Y 
-= ~ ( X - h ) + d ( Y - k ) + ~ ~ ,
dt 

which will be seen to be the limiting case of (6.2). The marginal reaction rates a, b, c, dare, 
as before, the values at  the equilibrium position of df/dX, df/dY, dg/dX, dg/dY. The general 
solution of the equations is 

CO 

X = h+ 2 (A,ePst+ B, eiso, 
s=-m i 

and 

This solution may be justified by considering the limiting case of the solution (6.11).Alter-
natively, one may observe that the formula proposed is a solution, so that it only remains 
to prove that it is the most general one. This will follow ifvalues of A,, B,, C,, D,can be found 
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to fit any given initial conditions. I t  is well known that any function of an angle (such as X) 
can be expanded as a ' Fourier series ' 

m 

X(0) = 2 G, eisB (X(0) being values of X at t = o), 
,=-m 

provided, for instance, that its first derivative is continuous. If also 
m 

Y(0) = 2 H, eid"Y(B) being values of Y at  t = O),  
,=-m 

then the required initial conditions are satisfied provided A,+B, - G, and C,i-D, = H,. 
Values A,, B,, C,, D,to satisfy these conditions can be found unlessp, = p i .  This is an excep- 
tional case and its solution if required may be found as the limit of the normal case. 

-4s the reader was reminded in 5 2, after a lapse of time the behaviour of an expression of 
the form of (6.11) is eventually dominated by the terms for which the corresponding p, has 
the largest real part. There may, however, be several terms for which this real part has the 
same value, and these terms will together dominate the situation, the other terms being 
ignored by comparison. There will, in fact, normally be either two or four such 'leading' 
terms. For ifp,, is one of them then p,-,, = pso,since 

so that p,, and p,-,, are roots of the same equation (6.8). If also p,, is complex then 
Li?pSo= Bp;,,, and so in all 

.gpso= %pio= 9p,..,, - %l,:,_,". 

One need not, however, normally anticipate that any further terms will have to be included. 
If$,, andp,, are to have the same real part, then, unless s, = so or so +s, = N the quantities 
a, b, c, d, ,u, v will be restricted to satisfy some special condition, which they would be unlikely 
to satisfy by chance. I t  is possible to find circumstances in which as many as ten terms have 
to be included if such special conditions are satisfied, but these have no particular physical 
or biological importance. I t  is assumed below that none of these chance relations hold. 

I t  has already been seen that it is necessary to distinguish the cases where the value of 
psofor one of the dominant terms is real from those where it is complex. These may be called 
respectively the stationary and the oscillatory cases. 

Stationary case. After a sufficient lapse of time X, -h and Y,-k approach asymptotically 
to the forms ,IX,-h = 2Li?A,, exp ['";'.'+It] 

Y, - = 2 9 % ~ ~ ~ ~k exp [2"$'+~t] .i 
Oscillatory case. After a sufficient lapse of time X,-h and Y,- k approach the forms 
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The real part ofpSo has been represented by I,standing for 'instability', and in the oscillatory 
case its imaginary part is w. By the use of the 2 operation (real part of), two terms have in 
each case been combined in one. 

The meaning of these formulae may be conveniently described in terms of waves. In  
the stationary case there are stationary waves on the ring having so lobes or crests. The 
coefficients A,, and C,, are in a definite ratio given by (6.10), so that the pattern for one 
morphogen determines that for the other. With the lapse of time the waves become more 
pronounced provided there is genuine instability, i.e. if Iis positive. The wave-length of the 
waves may be obtained by dividing the number of lobes into the circumference of the ring. 
In  the oscillatory case the interpretation is similar, but the waves are now not stationary but 
travelling. As well as having a wave-length they have a velocity and a frequency. The 
frequency is w/2n, and the velocity is obtained by multiplying the wave-length by the 
frequency. There are two wave trains moving round the ring in opposite directions. 

The wave-lengths of the patterns on the ring do not depend only on the chemical data 
a, b, c, d, p', v' but on the circumference of the ring, since they must be submultiples of the 
latter. There is a sense, however, in which there is a 'chemical wave-length' which does not 
depend on the dimensions of the ring. This may be described as the limit to which the wave- 
lengths tend when the rings are made successively larger. Alternatively (at any rate in the 
case of continuous tissue), it may be described as the wave-length when the radius is chosen 
to give the largest possible instability I. One may picture the situation by supposing that 
the chemical wave-length is true wave-length which is achieved whenever possible, but 
that on a ring it is necessary to 'make do' with an approximation which divides exactly 
into the circumference. 

Although all the possibilities are covered by the stationary and oscillatory alternatives 
there are special cases of them which deserve to be treated separately. One of these occurs 
when so == 0, and may be described as the 'case of extreme long wave-length', though this 
term may perhaps preferably be reserved to describe the chemical data when they are such 
that so is zero whatever the dimensions of the ring. There is also the case of '  extreme short 
wave-length'. This means that sin2 (nso/N) is as large as possible, which is achieved by so 
being either &N, or i ( N -  1). If the remaining possibilities are regarded as forming the 
'case of finite wave-length', there are six subcases altogether. I t  will be shown that each 
of these really can occur, although two of them require three or more morphogens for their 
realization. 

(a) Stationary case with extreme long wave-length. This occurs for instance if p = v = $, 
ITSb = c = 1,a = d. Then p, = a -sin2 	--N + 1. This is certainly real and is greatest when s = 0. 

In  this case the contents of all the cells are the same; there is no resultant flow from cell to 
cell due to diffusion, so that each is behaving as if it were isolated. Each is in unstable 
equilibrium, and slips out of it in synchronism with the others. 

( 6 )  	Oscillatory case with extreme long wave-length. This occurs, for instance, if ,u = v = 4, 
ns

b = -c = 1, a = d. Then p, = a .-sin2 -N &i. This is complex and its real part is greatest 

when s = 0. As in case (a) each cell behaves as ifit were isolated. The difference from case (a) 
is that the departure from the equilibrium is oscillatory. 
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(c) Stationary waves of extreme short wave-length. This occurs, for instance, if v = 0, p = 1, 

d = I , a = I - - 1 , b = - c =  1.$,is 

and is greatest when sin2 (ns/N) is greatest. If Nis even the contents of each cell are similar 
to those of the next but one, but distinctly different from those of its immediate neighbours. 
If, however, the number of cells is odd this arrangement is impossible, and the magnitude 
of the difference between neighbouring cells varies round the ring, from zero at  one point 
to a maximum at  a point diametrically opposite. 

FIGURE1. Values of 2 p  (instability or growth rate), and / Yp1 (radian frequency of oscillation), 
related to wave-length 2nU-* as in the relation (8.3) with I=0. This is a case of stationary waves 
with finite wave-length. Full line, g p ;  broken line, - / Yfi I (zero for U >0.071) ; dotted line, 
$2~'. The full circles on the curve for gfi indicate the values of U,p actually achievable on 
the finite ring considered in 5 10, with s =0 on the extreme left, s = 6 on the right. 

(d) Stationary waves ofjnite wave-length. This is the case which is of greatest interest, and 
has most biological application. I t  occurs, for instance, if a = 1-2, b = 2.6, c --1.25, 

d =  14-1.5 p' = 1 v ' = ~and - As before p is the radius of the ring, and N- -  - (cd2.
2' P' v' 

the number of cells in it. If one writes U for (;I2- sin2:-, then equation (6.8) can, with these 

special values, be written 

This has a solution fl = I if U = +.O n  the other hand, it will be shown that if U has any 
other (positive) value then both roots for $-I have negative real parts. Their product is 
positive being &(U--&)2, so that if they are real they both have the same sign. Their sum in 
this case is -+ -$Uwhich is negative. Their common sign is therefore negative. If, however, 
the roots are complex their real parts are both equal to -$-$U, which is negative. 
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If the radius p of the ring be chosen so that for some integer so, 4= U = -(:I2 :,sin2 -O 

there will be stationary waves with so lobes and a wave-length which is also equal to the 
chemical wave-length, for pSowill be equal to I, whereas every otherp, will have a :real part 

smaller than I. If, however, the radius is chosen so that I- sin2-;- = ;- cannot hold with an 

integral s, then (in this example) the actual number of lobes will be one of the two1 integers 
nearest to the (non-integral) solutions of this equation, and usually the nearest. E,xamples 
can, however, be constructed where this simple rule does not apply. 

Figure 1 shows the relation (8.3) in graphical form. The curved portions of the graphs 
are hyperbolae. 

The two remaining possibilities can only occur with three or more morphogens. With one 
morphogen the only possibility is (a). 

( e )  Oscillatory case with ajnite wave-length. This means that there are genuine travelling 
waves. Since the example to be given involves three morphogens it is not possible to use 
the formulae of 9 6. Instead, one must use the corresponding three morphogen formulae. 
That which corresponds to (6.8) or (7.3) is most conveniently written as 

;.sin2 

where h is the wave-length.) The four marginal reactivities are superseded by nine a,l, ...,a,,, 
and the three diffusibilities are p,, p,, p,. Special values leading to travelling waves are 

and with them (8.4) reduces to 

If U = 1 the roots are fi and -2. If U is near to I they are approximately -1 -U and 

i + ( i - I ) ,  and all have negative real parts. If the greatest real part is not the 

value zero, achieved with U = 1, then the value zero must be reached again at  some inter- 
mediate value of U. Since P is then pure imaginary the even terms of (8.6) must vanish, 
i.e. (p2+ 1) (U+ 1) = 0. But this can only happen ifp = fi, and the vanishing of the odd 
terms then shows that U = 1. Hence zero is the largest real part for any root p of (8.6). 
The corresponding p is f i and U is 1. This means that there are travelling waves with unit 
(chemical) radian frequency and unit (chemical) velocity. If I i s  added to a,,, a,, and a,,, 
the instability will become Iin place of zero. 

where again U has been written for (;I2 (This means essentially that U = 
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(J)Oscillatory case with extreme short wave-length. This means that there is metabolic 
oscillation with neighbouring cells nearly 180" out of phase. I t  can be achieved with three 
morphogens and the following chemical data : 

P 1, PL P3 - 0, 

all = -1, a = -1 a,, = 0, 

~ ~ ~ - 1 ,  ~ ~ ~ ' - 1 ,a22==0, 

a31- 0, aj2= I t  = 0. I 

With these values (8.4) reduces to 

$3 , f i 2 ( C I + l )  4-2p+ CL1 = 0. (8.8) 

This may be shown to have all the real parts of its roots negative if U20,  fbr if U =  0 the 
roots are near to -0.6, -0 . 2 i  1.3i, and if U be continuously increased the values ofp will 
alter continuously. If they ever attain values with a positive real part they must pass through 
pure imaginary values (or zero). But if p is pure imaginary k3+ 2p and (p2-i-1) ( U C1) 
must both vanish, which is impossible if U 3  0. As U approaches infinity, however, one of 
the roots approaches i. Thus %p = 0 can be approached as closely as desired by large values 
of Ii; but not attained. 

9. FURTHERCONSIDER.4TION OF THE MATIIEMATICS OF TI-IE RING 

In  this section some of the finer points concerning the development of wave patterns arc 
considered. These will be of interest mainly to those who wish to do further research on 
the subject, and can well be omitted on a first reading. 

(1) Generalfomnzclaefor the two rnorp/zogen case. Taking the limiting case of a ring of large 

radius (or a filament), one may write 

in (7.3) and obtain 
(P--a-+plU) (p---d+vfU) = bc, 

which has the solution 

One may put I (U)  for the real part of this, representing the instability for waves of wave- 
length R = 27rU--+. The dominant waves correspond to the maximum of I(U). This maxi- 
mum may either be at U = 0 or U = m or at a stationary point on the part of the curve which 
is hyperbolic (rather than straight). When this last case occurs the values of p (or I)and U 
at  the maximum are 

j = I - (dp' -av' -2 ,l(p'v') J(-bc) (p' -- v') - l, j 

The conditions which lead to the four cases (a), ( h ) ,  (c), (d) described in the last section are 
(a) (Stationary waves of extreme long wave-length.) This occurs if either 


d-a p'fv' d-a

(i) bc>O, (ii) bc<O and J(fif)(iii) bc<, 0 and -- < -2.

J(- bC-1: ,/ ( -bc) 

The condition for instability in either case is that either bc> ad or a + d> 0. 
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(6) (Oscillating case with extreme long wave-length, i.e. synchronized oscillations.) 
This occurs if 

d-a 4 J(pfv')
bc<O and -2<-

J( -bc )<  pf+v' ' 

There is instability if in addition n +d> 0. 
(c) (Stationary waves of extreme short wave-length.) This occurs if bc <0, p' :> v' = 0. 

There is instability if, in addition, a+d> 0. 
(d) (Stationary waves of finite wave-length.) This occurs if 

4J(pfv') d-a pf+v'
bc<0 and <-<--

p' +v' J(-bc) (Jp'v') 

and there is instability if also 

I t  has been assumed that v' <p' >0. The case where p' <v '  >0 can be obtained by inter- 
changing the two morphogens. In  the case p' = v' = 0 there is no co-operation between 
the cells whatever. 

Some additional formulae will be given for the case of stationary waves of finite wave- 
length. The marginal reaction rates may be expressed parametrically in terms of the 
diffusibilities, the wave-length, the instability, and two other parameters cw. an.d X. Of 
these cw. may be described as the ratio of X-h to Y-k in the waves. The expressions for the 
marginal reaction rates in terms of these parameters are 

a =p'(v'-pf)-I (2vfU0+x)+I, 

b =p' (v' .-p')-' ((p'+v') U, t X) a, 

c - vf(p'-v')-' ((p'+ v f )  U"+X)a-l, 

d - v'(p'-v')-' (2pfU0+x)+I, 

and when these are substituted into (9.2) it becomes 

Here 27rU;;* is the chemical wave-length and 27~U-t the wave-length of the Fourier com- 
ponent under consideration. x must be positive for case (d) to apply. 

If s be regarded as a continuous variable one can consider (9.2) or (9.6) as relating s top, 
and dp/ds and d2p/ds2 have meaning. The value of d2p/ds2 at the maximum is of some 
interest, and will be used below in this section. Its value is 

( 2 )  In §§ 6,7,8 it was supposed that the disturbances were not continuously operative, 
and that the marginal reaction rates did not change with the passage of time. These assump- 
tions will now be dropped, though it will be necessary to make some other, less drastic, 

7-2 
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approximations to replace them. The (statistical) amplitude of the 'noise' disturbances 
will be assumed constant in time. Instead of (6.6), (6-7), one then has 

where 5, p have been written for ts,p, since s may now be supposed fixed. For the same 

reason a -4,usin2
7TS 
- has been replaced by a' and d- 4v sin2

7TS 
- by d'. The noise disturbances 

N N 
may be supposed to constitute white noise, i.e. if (t,, t,) and (t,, t,) are two non-overlapping 

intervals then R, (t) dt and [R2(t) dt are statistically independent and each is normally 

distributed with variancesp, (t, -t,) andp, (t, -t,) respectively,P, being a constant describing 
the amplitude of the noise. Likewise for R2(t), the constant 1,being replaced by p2. I f p  
and p' are the roots of (p-a') (p-d') = bc and p is the greater (both being real), one can 
make the substitution 

[= b ( u + v ) ,  


p = (fl-- a') u + (pr-a') v, 
I 

which transforms (9.8) into 

with a similar equation for v, of which the leading terms are dvldt =prv. This indicates 
that v will be small, or at  least small in comparison with u after a lapse oftime. Ifit  is assumed 
that v = 0 holds (9.11) may be written 

where 

The solution of this equation is 

One is, however, not so much interested in such a solution in terms of the statistical dis- 
turbances as in the consequent statistical distribution of values of u, 5 and 7 at  various 
times after instability has set in. In  view of the properties o f '  white noise' assumed above, 
the values of u at  time t will be distributed according to the normal error law, with the 
variance 

(9.15)St-n[pI(L,(w))  '+ IP~(L~(w) )  2 q(z) dz I dw.,Iexp [J,:, 
There are two commonly occurring cases in which one can simplify this expression consider- 
ably without great loss of accuracy. If the system is in a distinctly stable state, then q(t), 
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which is near to $(t), will be distinctly negative, and exp [l iq(z) dz] will be small unless 
W 

w is near to t. But then L, (w) and L,(w) may be replaced by L,(t) and L,(t) in the integral, 
and also q(z) may be replaced by q(t). With these approximations the variance is 

A second case where there is a convenient approximation concerns times when the system is 
t 

unstable, so that q(t) > 0. For the approximation concerned to apply 2 1 q(z)dz must have 
J 11) 

its maximum at the last moment w (=  to) when q(to) = 0, and it must be the maxirrlum by a 
considerable margin (e.g. at least 5) over all other local maxima. These conditions would 
apply for instance if q(z) were always increasing and had negative values at a sufficiently 
early time. One also requires q'(to) (the rate of increase of q at time to) to be reasonably large; 
it must at least be so large that over a period of time of length (q'(to))-"ear to to the changes 
in L,(t) and L2(t) are small, and q'(t) itself must not appreciably alter in this period. Under 
these circumstances the integrand is negligible when w is considerably different from to, 
in comparison with its values at that time, and therefore one may replace L1(w) and L,(w) 
by L,(t,) and L2(t0), and q' (w) by q1(t0). This gives the value 

~~(q'(t~))-~[81(~l(t~))~-+h(~~(t0))~1ex~[2~'q(z)
to dz], (9.17) 

for the variance of u. 
The physical significance of this latter approximation is that the disturbances near the 

time when the instability is zero are the only ones which have any appreciable ultimate 
effect. Those which occur earlier are damped out by the subsequent period of stability. 
Those which occur later have a shorter period of instability within which to develop to 
greater amplitude. This principle is familiar in radio, and is fundamental to the theory of 
the superregenerative receiver. 

Naturally one does not often wish to calculate the expression (9.17), but it is valuable as 

justifying a common-sense point of view of the matter. The factor exp [jt:q(z)isdz] 

essentially the integrated instability and describes the extent to which one would expect 
disturbances of appropriate wave-length to grow between times to and t. Taking the terms 
in /I,,P2into consideration separately, the factor JnPl (q'(to))- I  (Ll (to)) indicates that the 
disturbances on the first morphogen should be regarded as lasting for a time 

The dimensionless quantities bLl(to), bL2(to) will not usually be sufficiently large or small 
to justify their detailed calculation. 

(3) The extent to which the component for whichp, is greatest may be expected to out- 
distance the others will now be considered in case (d). The greatest of the $, will be called 
pSo.The two closest competitors to so will be so -1and so + 1; it is required to determine how 
close the competition is. Ifthe variation in the chemical data is sufficiently small it may be 
assumed that, although the exponents $so-l, js0,$,,+, may themselves vary appreciably 
in time, the differences $,, -$,,-, and A. -pso+, are constant. I t  certainly can happen that 
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one of these differences is zero or nearly zero, and there is then 'neck and neck' competition. 
The weakest competition occurs when $I,,-, =p,,,, . In  this case 

~s0- -Pso-1  = T ~ s o - P s o , l= - & ( ~ s f l + ~ - ~ P ~ " + P s o - ~ ) ~  
But if so is reasonably large $I,,+, -2ps,+p ,,-, can be set equal to (d2p/ds2),=,,. I t  may be 
concluded that the rate at which the most quickly growing component grows cannot exceed 
the rate for its closest competitor by more than about 4(d2p/ds2),=,,. The formula (9-7),by 
which d2p/ds2 can be estimated, may be regarded as the product of two factors. The dimen- 
sionless factor never exceeds 4. The factor ,/(p'v')/p2 may be described in very rough terms 
as 'the reciprocal of the time for the morphogens to diffuse a length equal to a radius'. In  
equally rough terms one may say that a time of this order of magnitude is required for the 
most quickly growing component to get a lead, amounting to a factor whose logarithm is of 
the order of unity, over its closest competitors, in the favourable case where pS,-, = p,,, ,. 

(4) Very little has yet been said about the effect of considering non-linear reaction rate 
functions when far from homogeneity. Any treatment so systematic as that given for the 
linear case seems to be out of the question. I t  is possible, however, to reach some qualitative 
conclusions about the effects of non-linear terms. Suppose that 2, is the amplitude of the 
Fourier component which is most unstable (on a basis of the linear terms), and which may 
be supposed to have wave-length A. The non-linear terms will cause components with wave- 
lengths +A, +A, $A, . . . to appear as well as a space-independent component. Ifonly quadratic 
terms are taken into account and if these are somewhat small, then the component of wave- 
length +R and the space-independent component will be the strongest. Suppose these have 
amplitudes z, and 2,. The state ofthe system is thus being described by the numbers z,, z,, 2,. 

I n  the absence of non-linear terms they would satisfy equations 

and if there is slight instability~, would be a small positive number, butpo andp, distinctly 
negative. The effect of the non-linear terms is to replace these equations by ones of the form 

As a first approximation one may put dz,/dt = dz,/dt - 0 and ignore zt and higher powers; 
2, and 2, are then found to be proportional to z:, and the equation for 2, can be written 
dz,/dt =pozl-kzl. The sign of k in this differential equation is of great importance. If it 
is positive, then the effect of the term kz! is to arrest the exponential growth ofz, at  the value 
J(@, /k ) .The 'instability' is then very confined in its effect, for the waves can only reach 
a finite amplitude, and this amplitude tends to zero as the instability (p , )  tends to zero. If, 
however, k is negative the growth becomes something even faster than exponential, and, 
if the equation dz,/dt =$I, z, -kz: held universally, it would result in the amplitude becoming 

mailto:J(@,/k)
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infinite in a finite time. This phenomenon may be called 'catast:rophic instability'. In  
the case of two-dimensional systems catastrophic instability is almost universal, and 
the corresponding equation takes the form dzl/dt = z, +kzf. Naturally enough in the 
case of catastrophic instability the amplitude does not really reach infinity, but: when it 
is sufficiently large some effect previously ignored becomes large enough to halt the 
growth. 

( 5 )  Case (a) as described in 2j 8 represents a most extremely featureless form oi' pattern 
development. This may be remedied quite simply by making less drastic simplifying assump- 
tions, so that a less gross account of the pattern can be given by the theory. I t  was assumed 
in 5 9 that only the most unstable Fourier components would contribute appreciably to the 
pattern, though it was seen above (heading (3)  of this section) that (in case (d)) this will 
only apply if the period of time involved is adequate to permit the morphogens, supposed 
for this purpose to be chemically inactive, to diffuse over the whole ring or organ concerned. 
The same may be shown to apply for case (a). If this assumption is dropped a much more 
interesting form of pattern can be accounted for. To do this it is necessary to consider not 
merely the components with U = 0 but some others with small positive values of U. One may 
assume the form At -B U  for p. Linearity in U is assumed because only small values of U 
are concerned, and the term At is included to represent the steady increase in instability. 
By measuring time from the moment of zero instability the necessity for a constant term is 
avoided. The formula (9.17) may be applied to estimate the statistical distribution of the 

amplitudes of the components. Only the factor exp [2 st:q(z) dz I will depend very much 

on U, and taking q(t) =p(t) =At-BU, to must be BU/A and the factor is 

exp [A (t -B UIA)2]. 

The term in U2 can be ignored if At2 is fairly large, for then either B2U2/A2 is mii ill or the 
factor e-BUt is. But At2 certainly is large if the factor eAt2, applying when U = 0, is large. With 
this approximation the variance takes the form Ce-*k2u, with only the two parameters 
C, k to distinguish the pattern populations. By choosing appropriate units of concentration 
and length these pattern populations may all be reduced to a standard one, t:.g. with 
C = k = 1.  Random members of this population may be produced by considering any one 
of the type (a) systems to which the approximations used above apply. They are also pro- 
duced, but with only a very small amplitude scale, if a homogeneous one-morphogen system 
undergoes random disturbances without diffusion for a period, and then diffusion without 
disturbance. This process is very convenient for computation, and can also be applied to 
two dimensions. Figure 2 shows such a pattern, obtained in a few hours by a manual 
computation. 

To  be more definite a set of numbers u , ,  was chosen, each being f1,and taking the two 
values with equal probability. A functionf(x, y) is related to these numbers by the formula 

In  the actual computation a somewhat crude approximation to the function 
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was used and h was about 0.7. In the figure the set of points where f(x, y) is positive is shown 
black. The outlines of the black patches are somewhat less irregular than they should be 
due to an inadequacy in the computation procedure. 

1 
FIGURE2. An example of a 'dappled' pattern as resulting from a type (a) morphogen system. 

A marker of unit length is shown. See text, 59, 11. 

10. A NUMERICAL EXAMPLE 

The numerous approxitnations and assumptions that have been made in the foregoing 
analysis may be rather confusing to many readers. In the present section it is proposed to 
consider in detail a single example of the case of most interest, (d). This will be made as 
specific as possible. I t  is unfortunately not possible to specify actual chemical reactions with 
the required properties, but it is thought that the reaction rates associated with the imagined 
reactions are not unreasonable. 

The detail to be specified includes 
(i) The number and dimensions of the cells of the ring. 


lii) The diffusibilities of the morphogens. 

(iii) The reactions concerned. 
(iv) The rates at which the reactions occur. 
(v) Information about random disturbances. 

(vi) Information about the distribution, in space and time, of those morphogens which 
are of the nature of evocators. 

These will be taken in order. 
(i) I t  will be assumed that there are twenty cells in the ring, and that they have a diameter 

of 0.1 mm each. These cells are certainly on the large rather than the small side, but by 
no means impossibly so. The number of cells in the ring has been chosen rather small in 
order that it should not be necessary to make the approximation of continuous tissue. 

(ii) Two rnorphogens are considered. They will be called X and Y, and the same letters 
will be used for their concentrations. This will not lead to any real confusion. The diffusion 
constant for X will be assumed to be 5 x cmPS-I  and that for Y to be 2.5 x cm2 S-l. 
With cells of diameter 0.01 cni this means that X flows between neighbouring cells at the 
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rate 5 x lo-* of the difference of X-content of the two cells per second. In  other words, if 
there is nothing altering the concentrations but diffusion the difference of concentrations 
suffers an exponential decay with time constant 1000 s, or 'half-period' of 700 s. These 
times are doubled for Y. 

If the cell membrane is regarded as the only obstacle to diffusion the permeability of the 
membranes to the morphogen is 5 x cm/s or 0.018 cm/h. Values as large as 0.1 cm/h 
have been observed (Davson & Danielli 1943, figure 28). 

(iii) The reactions are the most important part of the assumptions. Four substances 
A, X, Y, B are involved; these are isomeric, i.e. the molecules of the four substances are all 
rearrangements ofthe same atoms. Substances 6,C', Wwill also be concerned. The thermo- 
dynamics of the problem will not be discussed except to say that it is contemplated that of 
the substances A, X, Y, B the one with the greatest free energy is A, and that with the least 
is B. Energy for the whole process is obtained by the degradation of A into B. The substance 
Cis in effect a catalyst for the reaction Y+ X, and may also be regarded as an evocator, the 
system being unstable if there is a sufficient concentration of C. 

The reactions postulated are 

Y+X+ w, 

TV-i-A+ ~ Y s - B  instantly, 


ax+ 
A+ X, 
Y-tB, 

Y+ C+ C' instantly, 
C ' - t X i C .  

(iv) For the purpose of stating the reaction rates special units will be introduced (for 
the purpose of this section only). They will be based on a period of 1000 s as units of time, 
and 10-11 mole/cm3 as concentration unit*. There will be little occasion to use any but these 
special units (s.u.). The concentration of A will be assumed to have the large value of 
1000 s.u. and the catalyst C, together with its combined form C' the concentration 10-3(1 +y) 
s.u., the dimensionless quantity y being often supposed somewhat small, though values over 
as large a range as from -0.5 to 0.5 may be considered. The rates assumed will be 

Y+X+ W at  the rate SYX,  

2X+ W at the rate AX2,  

A- tX at  the rate x 10-3A, 

C'+ X + C  at the rate x 1OL3C', 

Y-tB at the rate &Y. 

With the values assumed for A and C' the net effect of these reactions is to convert X into Y 
at  the rate &[50XY+ 7X2-55(1 +y)] at  the same time producing X at  the constant rate 
&, and destroying Y at  the rate Y/16. If, however, the concentration of Y is zero and the 
rate of increase of Y required by these formulae is negative, the rate of conversion of Y into 
Xis  reduced sufficiently to permit Y to remain zero. 

* A somewhat larger value of concentration unit (e.g. lop9mole/cm3) is probably more suitable. The 
choice of unit only affects the calculations through the amplitude of the random disturbances. 
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In  the special units p = +,v = $. 

(v) Statistical theory describes in detail what irregularities arise from the molecular 

nature of matter. In  a period in which, on the average, one should expect a reaction to 
occur between n pairs (or other combinations) of molecules, the actual number will differ 
from the mean by an amount whose mean square is also n, and is distributed according to 
the normal error law. Applying this to a reaction proceeding at  a rate F (s.u.) and taking 
the volume of the cell as cm3 (assuming some elongation tangentially to the ring) it 
will be found that the root mean square irregularity of the quantity reacting in a period 
7 of time (s.u.) is 0.004 ,/(Fr). 

first specimen second 'slow 


incipient pattern final pattern specimen: four-lobed 

-7 7-cell J--. incipient incipient

number X Y X P Y Y X' Y 

The diffusion of a morphogen from a cell to a neighbour may be treated a.s if the passage 
of a molecule from one cell to another were a non no molecular reaction; a molecule must be 
imagined to change its form slightly as it passes the cell wall. If the diffusion constant for 
a wall is p, and quantities M I ,M2of the relevant morphogen lie on the two sides of it, the 
root-mean-square irregularity in the amount passing the wall in a period r is 

These two sources of irregularity are the most significant of those which arise from truly 
statistical cause, and are the only ones which are taken into account in the calculations 
whose results are given below. There may also be disturbances due to the presence of 
neighbouring anatomical structures, and other similar causes. These are of great import- 
ance, but of too great variety and complexity to be suitable for consideration here. 

(vi) The only morphogen which is being treated as an evocator is C. Changes in the 
concentration of A might have similar effects, but the change would have to be rather great. 
I t  is preferable to assume that A is a 'fuel substance' (e.g. glucose) whose concentration does 
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not change. The concentration of C, together with its combined form C', will be supposed 
the same in all cells, but it changes with the passage of time. Two different varieties of the 
problem will be considered, with slightly different assumptions. 

The results are shown in table 1. There are eight columns, each of which gives the con- 
centration of a morphogen in each of the twenty cells; the circumstances to which these 
concentrations refer differ from column to column. The first five columns all refer to the same 
'variety' of the imaginary organism, but there are two specimens shown. The specimens 
differ merely in the chance factors which were involved. With this variety the value of 
y was allowed to increase at the rate of 2-7s.u. from the value -$  to +j'==.At this point 
a pattern had definitely begun to appear, and was recorded. The parameter y was then 
allowed to decrease at the same rate to zero and then remained there until there was no 

FIGURE3. Concentrations of Y in the development of the first specimen (taken from table 1). 
- - - - - - - original homogeneous equilibrium; ////// incipient pattern; ---final equilibrium. 

more appreciable change. The pattern was then recorded again. 'The concentrations of Y 
in these two recordings are shown in figure 3 as well as in table 1. For the second specimen 
only one column of figures is given, viz. those for the Y morphogen in the incipient pattern. 
At this stage the X values are closely related to the Y values, as may be seen from the first 
specimen (or from theory). The final values can be made almost indistinguishable from those 
for the first specimen by renumbering the cells and have therefore not been given. These 
two specimens may be said to belong to the 'variety with quick cook.ing', because the 
instability is allowed to increase so quickly that the pattern appears relatively solon. The 
effect of this haste might be regarded as rather unsatisfactory, as the incipient pattern is 
very irregular. In  both specimens the four-lobed component is present in considerable 
strength in the incipient pattern. I t  'beats' with the three-lobed component producing 
considerable irregularity. The relative magnitudes of the three- and four-lobed components 
depend on chance and vary from specimen to specimen. The four-lobed component may 
often be the stronger, and may occasionally be so strong that the final pattern is four-lobed. 
How often this happens is not known, but the pattern, when it occurs, is shown ixi the last 

8-2 
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two columns of the table. In  this case the disturbances were supposed removed for some time 
before recording, so as to give a perfectly regular pattern. 

The remaining column refers to a second variety, one with 'slow cooking'. In this the 
value of y was allowed to increase only at  the rate Its initial value was -0.010, but is 
of no significance. The final value was 0.003. With this pattern, when shown graphically, 
the irregularities are definitely perceptible, but are altogether overshadowed by the three- 
lobed component. The possibility of the ultimate pattern being four-lobed is not to be taken 
seriously with this variety. 

The set of reactions chosen is such that the instability becomes 'catastrophic' when the 
second-order terms are taken into account, i.e. the growth of the waves tends to make the 
whole system more unstable than ever. This effect is finally halted when (in some cells) 
the concentration of Y has become zero. The constant conversion of Y into X through the 
agency of the catalyst Ccan then no longer continue in these cells, and the continued growth 
of the amplitude of the waves is arrested. When y = 0 there is of course an equilibrium with 
X = Y = 1 in all cells, which is very slightly stable. There are, however, also other stable 
equilibria with y = 0, two of which are shown in the table. These final equilibria may, with 
some trouble but little difficulty, be verified to be solutions of the equations (6.1) with 

and 32f(X, Y) = 57-50XY-7Y2, 32g(X, Y) = 50XY+7Y2-2Y-55. 

The morphogen concentrations recorded at  the earlier times connect more directly with 
the theory given in $5 6 to 9. The amplitude of the waves was then still sufficiently small for 
the approximation of linearity to be still appropriate, and consequently the 'catastrophic' 
growth had not yet set in. 

The functions f(X, Y) and g(X, Y) of 5 6 depend also on y and are 

f(X, Y) = &[-7X2-50XY+57+55y], 

g(X, Y) = &[7X2+ 50XY-2Y-55-55y]. 

In  applying the theory it will be as well to consider principally the behaviour of the system 
when y remains permanently zero. Then for equilibrium f(X, Y) = g(X, Y) = 0 which 
means that X = Y = 1, i.e. h = k = 1.  One also finds the following values for various 
quantities mentioned in $5 6 to 9: 

a = -2, b = -1.5625, c = 2, d = 1.500, s = 3.333, 


I- 0, a: = 0.625, x =-0.500, (d-a) ( - b ~ ) - ~- 1.980, 


(p+v) (p4-" 2.121, p, = -0.25&0.25i, 


p2= -0.0648, p3= -0.0034, p4-- -0.01?$. 


(The relation between p and U for these chemical data, and the values p,, can be seen in 
figure 1, the values being so related as to make the curves apply to this example as well as 
that intj8.) The values = 3.333 leads one to expect a three-lobed pattern as the commonest, 
and this is confirmed by the values p,L.The four-lobed pattern is evidently the closest com- 
petitor. The closeness ofthe competition may be judged from the difference$, -$, = 0.0084, 
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which suggests that the three-lobed component takes about 120s.u. or about 33 h to gain 
an advantage of a neper (i.e. about 2.7 : 1) over the four-lobed one. However, the fact that 
y is different from 0 and is changing invalidates this calculation to some extent. 

The figures in table 1 were mainly obtained with the aid of the Manchester University 
Computer. 

Although the above example is quite adequate to illustrate the mathematical principles 
involved it may be thought that the chemical reaction system is somewhat artificial. The 
following example is perhaps less so. The same 'special units' are used. The reactions 
assumed are 

A + X  at the rate 10-3A, -4 = 103, 

X+Y+C at the rate 1o3XY, 

C+ X+ Y at the rate 1o6C, 

C+D at the rate 62.5C) 

B+C+ W at the rate 0.125BC, B = 103, 

W-t Y+ C instantly, 

Y+E at the rate 0.0625Y, 

Y+ V+ V' instantly, 

V'+E+ V at the rate 62.5V', V' = 10-3P. 

The effect of the reactions X+ Y* C is that C = 1OP3XY. The reaction C+D destroys C, 
and therefore in effect both X and Y, at the rate &XY. The reaction A -tX forms X at the 
constant rate 1, and the pair Y + V+ V'-tEi-V destroys Y at the constant rate -tap. The 
pair B +  C+ W+ Y+ C forms Y at  the rate QXY, and Y+ E destroys it at the rate AY. 
The total effect therefore is that Xis produced at the rate f(X, Y) == h ( 1 6 - XY), and Y at 
the rate g(X, Y) = &(XY- Y-P). However, g(X, Y) = 0 if YGO. The diffusion constants 
will be supposed to be ,u = &, v =A.The homogeneity condition gives hk - 16, k =- 16-P. 

4 k
I t  will be seen from conditions (9.4a) that case (d) applies if and only if -4--<2.7ij, i.e. if k

k 4 
lies between 1.725 and 9.257. Condition (9.4b) shows that there will be instability if in 

8 k
addition --

k 
+-

8 
>,/3 +$,i.e. if k does not lie between 4-98 and 12.8. I t  will also be found 

that the wave-length corresponding to k = 4.98 is 4.86 cell diameters. 
In  the case of a ring of six cells with /?= 12 there is a stable equilibrium, as shown in 

table 2. 

cell 0 1 2 3 4 5 
X 7 . 5  3.5 2.5 2.5 3.5 7.5 
Y 0 8 8 8 8 0 

I t  should be recognized that these equilibria are only dynamic equilibria. The nnolecules 
which together make up the chemicalwaves are continuallychanging, though their concentra- 
tions in any particular cell are only undergoing small statistical fluctuations. Moreover, 

8-3 
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in order to maintain the wave pattern a continual supply of free energy is required. 
I t  is clear that this must be so since there is a continual degradation of energy through 
diffusion. This energy is supplied through the 'fuel substances' ( A ,B in the last example), 
which are degraded into 'waste products ' (D,E). 

Certain readers may have preferred to omit the detailed mathematical treatment of 
$5 6 to 10. For their benefit the assumptions and results will be briefly summarized, with 
some change of emphasis. 

The system considered was either a ring of cells each in contact with its neighbours, or 
a continuous ring of tissue. The effects are extremely similar in the two cases. For the 
purposes of this summary it is not necessary to distinguish between them. A system with two 
or three morphogens only was considered, but the results apply quite generally. The system 
was supposed to be initially in a stable homogeneous condition, but disturbed slightly from 
this state by some influences unspecified, such as Brownian movement or the effects of 
neighbouring structures or slight irregularities of form. I t  was supposed also that slow 
changes are taking place in the reaction rates (or, possibly, the diffusibilities) of the two or 
three morphogens under consideration. These might, for instance, be due to changes of 
concentration of other morphogens acting in the role of catalyst or of fuel supply, or to a 
concurrent growth of the cells, or a change of temperature. Such changes are supposed 
ultimately to bring the system out of the stable state. The phenomena when the system is just 
unstable were the particular subject of the inquiry. I n  order to make the problem mathe- 
matically tractable it was necessary to assume that the system never deviated very far from 
the original homogeneous condition. This assumption was called the 'linearity assumption ' 
because it permitted the replacement of the general reaction rate functions by linear ones. 
This linearity assumption is a serious one. Its justification lies in the fact that the patterns 
produced in the early stages when it is valid may be expected to have strong qualitative 
similarity to those prevailing in the later stages when it is not. Other, less important, assump- 
tions were also made at  the beginning of the mathematical theory, but the detailed effects 
of these were mostly considered in 5 9, and were qualitatively unimportant. 

The conclusions reached were as follows. After the lapse of a certain period of time from 
the beginning of instability, a pattern of morphogen concentrations appears which can best 
be described in terms of '  waves'. There are six types of possibility which may arise. 

(a) The equilibrium concentrations and reaction rates may become such that there would 
be instability for an isolated cell with the same content as any one of the cells of the ring. If 
that cell drifts away from the equilibrium position, like an upright stick falling over, then, 
in the ring, each cell may be expected to do likewise. In  neighbouring cells the drift may be 
expected to be in the same direction, but in distant cells, e.g. at opposite ends of a diameter 
there is no reason to expect this to be so. 

This is the least interesting of the cases. I t  is possible, however, that it might account for 
'dappled ' colour patterns, and an example of a pattern in two dimensions produced by this 
type of process is shown in figure 2 for comparison with 'dappling'. If dappled patterns are 
to be explained in this way they must be laid down in a latent form when the foetus is only 
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a few inches long. Later the distances would be greater than the morphogens could travel 
by diffusion. 

( b )  This case is similar to (a), except that the departure from equilibrium is not a uni- 
directional drift, but is oscillatory. As in case (a) there may not be agreement between the 
contents of cells a t  great distances. 

There are probably many biological examples of this metabolic oscillation, but no really 
satisfactory one is known to the author. 

(c) There may be a drift fiom equilibrium, which is in opposite directions in contiguous 
cells. 

No biological examples of this are known. 
(d )  There is a stationary wave pattern on the ring, with no time variation, apart from 

a slow increase in amplitude, i.e. the pattern is slowly becoming more marked. I n  the case 
of a ring of continuous tissue the pattern is sinusoidal, i.e. the concentration of one of the 
morphogens plotted against positioii on the ring is a sine curve. The peaks of the waves will 
be uniformly spaced round the ring. The number of such peaks can be obtained approxi- 
mately by dividing the so-called 'chemical wave-length 'of the system into the circunxference 
of the ring. The chemical wave-length is given for the case of two morphogens by the 
formula (9.3). This formula for the number of peaks of course does not give a whole number, 
but the actual number of peaks will always be one of the two whole numbers nearest to it, 
and will usually be the nearest. The degree of instability is also shown in (9.3). 

The mathematical conditions under which this case applies are given in equations 
(9.4a), (9.4 b) . 

Biological examples of this case are discussed at some length below. 
(e) For a two-morphogen system only the alternatives (a) to (d) are possible, but with 

three or more morphogens it is possible to have travelling waves. With a ring there would 
be two sets of waves, one travelling clockwise and the other anticlockwise. There is a natural 
chemical wave-length and wave frequency in this case as well as a wave-length; no attempt 
was made to develop formulae for these. 

In  looking for biological examples of this there is no need to consider only rings. The 
waves could arise in a tissue of any anatomical form. I t  is important to know what wave- 
lengths, velocities and frequencies would be consistent with the theory. These quantities 
are determined by the rates at  which the reactions occur (more accurately by the 'marginal 
reaction rates ', which have the dimensions of the reciprocal of a time), and the diffusi- 
bilities of the morphogens. The possible range of values of the reaction rates is so irrimensely 
wide that they do not even give an indication of orders of magnitude. The diffusibilities 
are more helpful. If one were to assume that all the dimensionless parameters in a system of 
travelling waves were the same as in the example given in $8, one could say that the product 
of the velocity and wave-length of the waves was 377 times the diffusibility of the most 
diffusible morphogen. But this assumption is certainly false, and it is by no means obvious 
what is the true range of possible values for the numerical constant (here 377). The move- 
ments of the tail of a spermatozoon suggest themselves as an example of these travelling 
waves. That the waves are within one cell is no real difficulty. However, the speed of 
propagation seems to be somewhat greater than can be accounted for except with a rather 
large numerical constant. 
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( f )  Metabolic oscillation with neighbouring cells in opposite phases. No biological 
examples of this are known to the author. 

I t  is difficult also to find cases to which case (d) applies directly, but this is simply because 
isolated rings of tissue are very rare. O n  the other hand, systems that have the same kind of 
symmetry as a ring are extremely common, and it is to be expected that under appropriate 
chemical conditions, stationary waves may develop on these bodies, and that their circular 
symmetry will be replaced by a polygonal symmetry. Thus, for instance, a plant shoot may 
at  one time have circular symmetry, i.e. appear essentially the same when rotated through 
any angle about a certain axis; this shoot may later develop a whorl of leaves, and then it 
will only suffer rotation through the angle which separates the leaves, or any multiple of it. 
This same example demonstrates the complexity of the situation when more than one 
dimension is involved. The leaves on the shoots may not appear in whorls, but be imbricated. 
This possibility is also capable of mathematical analysis, and will be considered in detail 
in a later paper. The cases which appear to the writer to come closest biologically to the 
'isolated ring of cells' are the tentacles of (e.g.) Hydra, and the whorls of leaves of certain 
plants such as Woodruff (Asfierula odorata) . 

Hydra is something like a sea-anemone but lives in fresh water and has from about five 
to ten tentacles. A part of a Hydra cut off from the rest will rearrange itself so as to form a 
complete new organism. At one stage of this proceeding the organism has reached the form 
of a tube open at  the head end and closed at the other end. The external diameter is some- 
what greater at  the head end than over the rest of the tube. The whole still has circular 
symmetry. At asomewhat later stage the symmetry has gone to the extent that an appropriate 
stain will bring out a number of patches on the widened head end. These patches arise at  
the points where the tentacles are subsequently to appear (Child 1941,p. 101 and figure 30). 
According to morphogen theory it is natural to suppose that reactions, similar to those 
which were considered in connection with the ring of tissue, take place in the widened head 
end, leading to a similar breakdown of symmetry. The situation is more complicated than 
the case of the thin isolated ring, for the portion of the Hydra concerned is neither isolated 
nor very thin. I t  is not unreasonable to suppose that this head region is the only one in which 
the chemical conditions are such as to give instability. But substances produced in this 
region are still free to diffuse through the surrounding region of lesser activity. There is 
no great difficulty in extending the mathematics to cover this point in particular cases. 
But if the active region is too wide the system no longer approximates the behaviour of a 
thin ring and one can no longer expect the tentacles to form a single whorl. This also cannot 
be considered in detail in the present paper. 

In  the case of woodruff the leaves appear in whorls on the stem, the number of leaves 
in a whorl varying considerably, sometimes being as few as five or as many as nine. The 
numbers in consecutive whorls on the same stem are often equal, but by no means invari- 
ably. I t  is to be presumed that the whorls originate in rings of active tissue in the meri- 
stematic area, and that the rings arise at sufficiently great distance to have little influence 
on one another. The number of leaves in the whorl will presumably be obtainable by the 
rule given above, viz. by dividing the chemical wave-length into the circumference, though 
both these quantities will have to be given some new interpretation more appropriate 
to woodruff than to the ring. Another important example of a structure with polygonal 
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symmetry is provided by young root fibres just breaking out from the parent root. Initially 
these are almost homogeneous in cross-section, but eventually a ring of fairly evenliy spaced 
spots appear, and these later develop into vascular strands. In this case again the full 
explanation must be in terms of a two-dimensional or even a three-dimensional problem, 
although the analysis for the ring is still illuminating. When the cross-section is very large 
the strands may be in more than one ring, or more or less randomly or hexagonally arranged. 
The two-dimensional theory (not expounded here) also goes a long way to explain 
this. 

Flowers might appear superficially to provide the most obvious examples of polygonal 
symmetry, and it is probable that there are many species for which this 'waves round a ring' 
theory is essentially correct. But it is certain that it does not apply for all species. If it did it 
would follow that, taking flowers as a whole, i.e. mixing up all species, there would be no 
very markedly preferred petal (or corolla, segment, stamen, etc.) numbers. For when all 
species are taken into account one must expect that the diameters of the rings concerned 
will take on nearly all values within a considerable range, and that neighbouring diameters 
will be almost equally common. There may also be some variation in chemical wave-length. 
Neighbouring values of the ratio circumferences to wave-length should therefore be more 
or less equally frequent, and this must mean that neighbouring petal numbers will have 
much the same frequency. But this is not borne out by the facts. The number five is extremely 
common, and the number seven rather rare. Such facts are, in the author's opinion, capable 
of explanation on the basis of morphogen theory, and are closely connected with the theory 
of phyllotaxis. They cannot be considered in detail here. 

The case of a filament of tissue calls for some comment. The equilibrium patterns on 
such a filament will be the same as on a ring, which has been cut at a point where the 
concentrations of the morphogens are a maximum or a minimum. This could account for the 
segmentation ofsuch filaments. I t  should be noticed, however, that the theory will not apply 
unmodified for filaments immersed in water. 

The treatment of homogeneity breakdown on the surface of a sphere is not much more 
difficult than in the case of the ring. The theory of spherical harmonics, on which it is based, 
is not, however, known to many that are not mathematical specialists. Although the 
essential properties of spherical harmonics that are used are stated below, many readers 
will prefer to proceed directly to the last paragraph of this section. 

The anatomical structure concerned in this problem is a hollow sphere of continuous 
tissue such as a blastula. I t  is supposed sufficiently thin that one can treat it as a 'spherical 
shell'. This latter assumption is merely for the purpose of mathematical simplification; the 
results are almost exactly similar if it is omitted. As in § 7 there are to be twc~ morphogens, 
and a, b, c, d, p', I)', h, k are also to have the same meaning as they did there. The (operator 
V2 will be used here to mean the superficial part of the Laplacian, i.e. V 2 V  will be an 
abbreviation of 
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where 0 and 4 are spherical polar co-ordinates on the surface of the sphere and p is its radius. 
The equations corresponding to (7.1) may then be written 

It  is well known (e.g. Jeans 1927,chapter 8) that any function on the surface of the sphere, 
or at least any that is likely to arise in a physical problem, can be 'expanded in spherical 
surface harmonics'. This means that it can be expressed in the form 

The expression in the square bracket is described as a 'surface harmonic of degree n ' .  Its 
nearest analogue in the ring theory is a Fourier component. The essential property of a 
spherical harmonic of degree n is that when the operator V 2is applied to it the effect is the 
same as multiplication by - n ( n +  l ) / p 2 .  In view of this fact it is evident that a solution of 
(12-1) is 

where qn and gl, are the two roots of 

and 

This is the most general solution, since the coefficients 14; and Bk can be chosen to give any 
required values of X,  Y when t - 0, except when (12.3) has two equal roots, in which case 
a treatment is required which is similar to that applied in similar circumstances in 3 7. The 
analogy with 3 7 throughout will indeed be obvious, though the summation with respect 
to m does not appear there. The meaning of this summation is that there are a number of 
different patterns with the same wave-length, which can be superposed with various 
amplitude factors. Then supposing that, as in 3 8, one particular wave-length predominates, 
(12.2) reduces to 

In other words, the concentrations of the two morphogens are proportional, and both of 
them are surface harmonics of the same degree no, viz. that which makes the greater of the 
roots q,,, q:,, have the greatest value. 
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I t  is probable that the forms of various nearly spherical structures, such as radiolarian 
skeletons, are closely related to these spherical harmonic patterns. The most important 
application of the theory seems, however, to be to the gastrulation of a blastula. Suppose 
that the chemical data, including the chemical wave-length, remain constant as the radius 
of the blastula increases. To be quite specific suppose that 

With these values the system is quite stable so long as the radius is less than about 2. Near 
this point, however, the harmonics of degree 1begin to develop and a pattern of form (12.5) 
with a, = 1 makes its appearance. Making use of the facts that 

Pp(cos 0) - cos 0, Pi (cos 0) =PC'(cos 0) - sin 0, 

it is seen that X- h is of the form 

which may also be interpreted as 
X - h = A' cos Of ,  

where 0' is the angle which the radius 0, q5 makes with the-fixed direction having direction 
cosines proportional to B, C, A and A' = ./(A2 +B2+C2) .  

The outcome of the analysis therefore is quite simply this. Under certain not very 
restrictive conditions (which include a requirement that the sphere be relatively srnall but 
increasing in size) the pattern of the breakdown of homogeneity is axially symmetrical, not 
about the original axis of spherical polar co-ordinates, but about some new axis determined 
by the disturbing influences. The concentrations of the first morphogen are given by (12.7), 
where 0' is measured from this new axis; and Y-k is proportional to X- h. Supposing that 
the first morphogen is, or encourages the production of, a growth hormone, one must expect 
the blastula to grow in an axially symmetric manner, but at  a greater rate at  one end of the 
axis than at  the other This might under many circumstances lead to gastrulation, though 
the effects of such growth are not very easily determinable. They depend on the elastic 
properties of the tissue as well as on the growth rate at  each point. This growth will certainly 
lead to a solid of revolution with a marked difference between the two poles, unless, in 
addition to the chemical instability, there is a mechanical instability causing the breakdown 
of axial symmetry. The direction of the axis of gastrulation will be quite random according 
to this theory. I t  may be that it is found experimentally that the axis is normally in some 
definite direction such as that of the animal pole. This is not essentially contradictory to the 
theory, for any small asymmetry of the zygote may be sufficient to provide the 'disturbance ' 
which determines the axis. 

13. NON-LINEARTHEORY. USEOF DIGITAL COMPUTERS 

The 'wave' theory which has been developed here depends essentially on the assumption 
that the reaction rates are linear functions of the concentrations, an assumption which is 
justifiable in the case of a system just beginning to leave a homogeneous condition. Such 
systems certainly have a special interest as giving the first appearance of a pattern, but they 
are the exception rather than the rule. Most of an organism, most of the time, is developing 



72 A. M. TURING O N  THE CHEMICAL BASIS O F  MORPHOGENESIS 

from one pattern into another, rather than from homogeneity into a pattern. One would 
like to be able to follow this more general process mathematically also. The difficulties are, 
however, such that one cannot hope to have any very embracing theory of such processes, 
beyond the statement of the equations. I t  might be possible, however, to treat a few par- 
ticular cases in detail with the aid of a digital computer. This method has the advantage 
that it is not so necessary to make sirnpli5ing assunlptions as it is when doing a more 
theoretical type of analysis. I t  might even be possible to take the mechanical aspects of the 
problem into account as well as the chemical, when applying this type of method. The 
essential disadvantage of the method is that one only gets results for particular cases. But 
this disadvantage is probably of comparatively little importance. Even with the ring 
problem, considered in this paper, for which a reasonably complete mathematical analysis 
was possible, the computational treatment of a particular case was most illuminating. The 
morphogen theory of phyllotaxis, to be described, as already mentioned, in a later paper, 
will be covered by this computational method. Non-linear equations will be used. 

I t  must be admitted that the biological examples which it has been possible to give in 
the present paper are very limited. This can be ascribed quite simply to the fact that 
biological phenomena are usually very complicated. Taking this in combination with the 
relatively elementary mathematics used in this paper one could hardly expect to find that 
many observed biological phenomena would be covered. I t  is thought, however, that the 
imaginary biological systems which have been treated, and the principles which have been 
discussed, should be of some help in interpreting real biological forms. 
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