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Wllit;: . Brown, and
Fractal Music

“For when there are no words [accompanying music] it is very difficult
to recognize the meaning of the harmony and rhythm, or to see that any wor-
thy object is imitated by them.”

__PLaTO, Laws, Book II

lato and Aristotle agreed that in some fashion all the fine arts,
including music, “imitate” nature, and from their day until the

== late 18th century “imitation” was a central concept in west-
ern aesthetics. It is obvious how representational painting and
sculpture “represent,” and how fiction and the stage copy life,
but in what sense does music imitate?

By the mid-18th century philosophers and critics were
still arguing over exactly how the arts imitate and whether
the term is relevant to music. The rhythms of music may be
said to imitate such natural rhythms as heartbeats, walking,
running, flapping wings, waving fins, water waves, the peri-
odic motions of heavenly bodies and so on, but this does not
explain why we enjoy music more than, say, the sound of ci-



cadas or the ticking of clocks. Musical pleasure derives mainly
from tone patterns, and nature, though noisy, is singularly de-
void of tones. Occasionally wind blows over some object to
produce a tone, cats howl, birds warble, bowstrings twang. A
Greek legend tells how Hermes invented the lyre: he found a
turtle shell with tendons attached to it that produced musical
tones when they were plucked.

Above all, human beings sing. Musical instruments may
be said to imitate song, but what does singing imitate? A sad,
happy, angry or serene song somehow resembles sadness, joy,
anger or serenity, but if a melody has no words and invokes
no special mood, what does it copy? It is easy to understand
Plato’s mystification.

There is one exception: the kind of imitation that plays a
role in “program music.” A lyre is severely limited in the nat- |
ural sounds it can copy, but such limitations do not apply to
symphonic or electronic music. Program music has no diffi-
culty featuring the sounds of thunder, wind, rain, fire, ocean
waves and brook murmurings; bird calls (cuckoos and crow-
ing cocks have been particularly popular), frog croaks, the
gaits of animals (the thundering hoofbeats in Wagner’s Ride
of the Valkyries), the flights of bumblebees; the rolling of trains,
the clang of hammers; the battle sounds of marching soldiers,
clashing armies, roaring cannons and exploding bombs.
Slaughter on Tenth Avenue includes a pistol shot and the wail
of a police-car siren. In Bach’s Saint Matthew Passion we hear
the earthquake and the ripping of the temple veil. In the Al-
pine Symphony by Richard Strauss, cowbells are imitated by
the shaking of cowbells. Strauss insisted he could tell that a
certain female character in Felix Mottl's Don Juan had red
hair, and he once said that someday music would be able to
distinguish the clattering of spoons from that of forks.

Such imitative noises are surely a trivial aspect of music
even when it accompanies opera, ballet or the cinema; be-
sides, such sounds play no role whatsoever in “absolute mu-
sic,” music not intended to “mean” anything. A Platonist might
argue that abstract music imitates emotions, or beauty, or the
divine harmony of God or the gods, but on more mundane lev-
els music is the least imitative of the arts. Even nonobjective
paintings resemble certain patterns of nature, but nonobjec-
tive music resembles nothing except itself.

Since the turn of the century most critics have agreed
that “imitation” has been given so many meanings (almost all
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are found in Plato) that it has become a useless synonym for
“resemblance.” When it is made precise with reference to lit-
erature or the visual arts, its meaning is obvious and trivial.
When it is applied to music, its meaning is too fuzzy to be
heipful. In this chapter we take a look at a surprising discov-
ery by Richard F. Voss, a physicist from Minnesota who joined
the Thomas J. Watson Research Center of the International
Business Machines Corporation after obtaining his Ph.D. at
the University of California at Berkeley under the guidance
of John Clarke. This work is not likely to restore “imitation”
to the lexicon of musical criticism, but it does suggest a cu-
rious way in which good music may mirror a subtle statistical
property of the world.

The key concepts behind Voss’s discovery are what math-
ematicians and physicists call the spectral density (or power
spectrum) of a fluctuating quantity, and its “autocorrelation.”
These deep notions are technical and hard to understand. Be-
noit Mandelbrot, who is also at the Watson Research Center, 5
and whose work makes extensive use of spectral densities and |
autocorrelation functions, has suggested a way of avoiding them
here. Let the tape of a sound be played faster or slower than
normal. One expects the character of the sound to change
considerably. A violin, for example, no longer sounds like a
violin. There is a special class of sounds, however, that be-
have quite differently. If you play a recording of such a sound
at a different speed, you have only to adjust the volume to
make it sound exactly as before. Mandelbrot calls such sounds
“scaling noises.”

By far the simplest example of a scaling noise is what in
electronics and information theory is called white noise (or
“Johnson noise”). To be white is to be colorless. White noise
is a colorless hiss that is just as dull whether you play it faster
or slower. Its autocorrelation function, which measures how
its fluctuations at any moment are related to previous fluctua-
tions, is zero except at the origin, where of course it must be
1. The most commonly encountered white noise is the ther-
mal noise produced by the random motions of electrons through
an electrical resistance. It causes most of the static in a radio
or amplifier and the “snow” on radar and television screens
when there is no input.

With randomizers such as dice or spinners it is easy to
generate white noise that can then be used for composing a
random “white tune,” one with no correlation between any

e e gt
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two notes. Our scale will be one octave of seven white keys
on a piano: do, re, me, fa, so, la, ti. Fa is our middle fre-
quency. Now construct a spinner such as the one shown at
the left in Figure 1. Divide the circle into seven sectors and
label them with the notes. It matters not at all what arc lengths
are assigned to these sectors; they can be completely arbi-
trary. On the spinner shown, some order has been imposed
by giving fa the longest arc (the highest probability of being
chosen) and assigning decreasing probabilities to pairs of notes
that are equal distances above arid below fa. This has the ef-
fect of clustering the tones around fa.

To produce a “white melody” simply spin the spinner as
often as you like, recording each chosen note. Since no tone
is related in any way to the sequence of notes that precedes
it, the result is a totally uncorrelated sequence. If you like,
you can divide the circle into more parts and let the spinner
select notes that range over the entire piano keyboard, black
keys as well as white.

To make your white melody more sophisticated, use an-
other spinner, its circle divided into four parts (with any pro-
portions you like) and labeled 1, 1/2, 1/4 and 1/8 so that you
can assign a full, a half, a quarter or an eighth of a beat to
each tone. After the composition is completed, tap it out on
the piano. The music will sound just like what it is: random
music of the dull kind that a two-year-old or a monkey might
produce by hitting keys with one finger. Similar white music
can be based on random number tables, or the digits in an
irrational number.

A more complicated kind of scaling noise is one that is
sometimes called Brownian noise because it is characteristic
of Brownian motion, the random movements of small particles
suspended in a liquid and buffeted by the thermal agitation of
molecuiles. Each particle executes a three-dimensional “ran-
dom walk,” the positions in which form a highly correlated
sequence. The particle, so to speak, always “remembers” where
it has been.

When tones fluctuate in this fashion, let us follow Voss
and call it Brownian music or brown music. We can produce
it easily with a spinner and a circle divided into seven parts
as before, but now we label the regions, as shown at the right
in Figure 1, to represent intervals between successive tones.
These step sizes and their probabilities can be whatever we
like. On the spinner shown, plus means a step up the scale of
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. A +3
FIGURE 1 Spinners for white music (left) and brown music (right)
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one, two or three notes and minus means a step down of the
same intervals.

Start the melody on the piano’s middle C, then use the
spinner to generate a linear random walk up and down the
keyboard. The tune will wander here and there, and will
eventually wander off the keyboard. If we treat the ends of
the keyboard as “absorbing barriers,” the tune ends when we
encounter one of them. We need not go into the ways in which
we can treat the barriers as reflecting barriers, allowing the
tune to bounce back, or as elastic barriers. To make the bar-
riers elastic we must add rules so that the farther the tone
gets from middle C, the greater is the likelihood it will step
back toward C, like a marble wobbling from side to side as it
rolls down a curved trough.

As before, we can make our brown music more sophisti-
cated by varying the tone durations. If we like, we can do this
in a brown way by using another spinner to give not the dura-
tion but the increase or decrease of the duration—another
random walk but one along a different street. The result is a
tune that sounds quite different from a white tune because it
is strongly correlated, but a tune that still has little aesthetic
appeal. It simply wanders up and down like a drunk weaving
through an alley, never producing anything that resembles good
music.

If we want to mediate between the extremes of white and
brown, we can do it in two essentially different ways. The
way chosen by previous composers of “stochastic music” is to
adopt transition rules. These are rules that select each note
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on the basis of the last three or four. For example, one can
analyze Bach’s music and determine how often a certain note
follows, say, a certain triplet of preceding notes. The random
selection of each note is then weighted with probabilities de-
rived from a statistical analysis of all Bach quadruplets. If
there are certain transitions that never appear in Bach's mu-
sic, we add rejection rules to prevent the undesirable transi-
tions. The result is stochastic music that resembles Bach but
only superficially. It sounds Bachlike in the short run bhut ran-
dom in the long run. Consider the melody over periods of four
or five notes and the tones are strongly correlated. Compare
a run of five notes with another five-note run later on and you
are back to white noise. One run has no correlation with the
other. Almost all stochastic music produced so far has been
of this sort. It sounds musical if you listen to any small part
but random and uninteresting when you try to grasp the pat-
tern as a whole.

Voss's insight was to compromise between white and
brown input by selecting a scaling noise exactly halfway be-
tween. In spectral terminology it is called 1/f noise. (White
noise has a spectral density of 1/f 0 brownian noise a spectral
density of 1/f2. In “one-over-f” noise the exponent of fis 1 or
very close to 1.) Tunes based on 1/f noise are moderately cor-
related, not just over short runs but throughout runs of any
size. It turns out that almost every listener agrees that such
music is much more pleasing than white or brown music.

In electronics 1/f noise is well known but poorly under-
stood. It is sometimes called flicker noise. Mandelbrot, whose
book The Fractal Geometry of Nature (W. H. Freeman and
Company, 1982) has already become a modern classic, was
the first to recognize how widespread 1/f noise is in nature,
outside of physics, and how often one encounters other scal-
ing fluctuations. For example, he discovered that the record
of the annual flood levels of the Nile is a 1/f fluctuation. He
also investigated how the curves that graph such fluctuations
are related to “fractals,” a term he invented. A scaling fractal
can be defined roughly as any geometrical pattern (other than
Euclidean lines, planes and surfaces) with the remarkable
property that no matter how closely you inspect it, it always
looks the same, just as a slowed or speeded scaling noise al-
ways sounds the same. Mandelbrot coined the term fractal
because he assigns to each of the curves a fractional dimen-
sion greater than its topological dimension.
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Among the fractals that exhibit strong regularity the best-
known are the Peano curves that completely fill a finite region
and the beautiful snowflake curve discovered by the Swedish
mathematician Helge von Koch in 1904. The Koch snowflake
appears in Figure 2 as the boundary of the dark “sea” that
surrounds the central motif. (For details on the snowflake’s
construction, and a discussion of fractals in general, see
Chapter 3 of my Penrose Tiles to Trapdoor Ciphers (W. H.
Freeman, 1989).

FIGURE 2 Mandelbrot’s Peano-snowflake as it appeared on the
cover of Scientific American (April, 1978). The curve was drawn by a
program written by Sigmund Handelman and Mark Laff.
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The most interesting part of Figure 2 is the fractal curve
that forms the central design. It was discovered by Mandel-
brot and published for the first time as the cover of Scientific
American’s April 1978 issue. If you trace the boundary be-
tween the black and white regions from the tip of the point of
the star at the lower left to the tip of the point of the star at
the lower right, you will find this boundary to be a single curve.
It is the third stage in the construction of a new Peano curve.
At the limit this lovely curve will completely fill a region
bounded by the traditional snowflake! Thus Mandelbrot’s curve
brings together two pathbreaking fractals: the oldest of them
all, Giuseppe Peano’s 1890 curve, and Koch’s later snow-
flake!

The secret of the curve’s construction is the use of line
segments of two unequal lengths and oriented in 12 different
directions. The curve is much less regular than previous Peano
curves and therefore closer to the modeling of natural phe-
nomena, the central theme of Mandelbrot’s book. Such natu-
ral forms as the gnarled branches of a tree or the shapes of
flickering flames can be seen in the pattern.

At the left in Figure 3 is the first step of the construction.
A crooked line of nine segments is drawn on and within an
equilateral triangle. Four of the segments are then divided

FIGURE 3 The first two steps in constructing Benoit Mandelbrot’s
Peano-snowflake curve
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into two equal parts, creating a line from A to B that consists
of 13 long and short segments. The second step replaces each
of these 13 segments with a smaller replica of the crooked
line. These replicas (necessarily of unequal size) are oriented
as is shown inside the star at the right in the illustration. A
third repetition of the procedure generates the curve in Fig-
ure 2. (It belongs to a family of curves arising from William
Gosper’s discovery of the “flow-snake,” a fractal pictured in
Chapter 3 of my above cited book.) When the construction is
repeated to infinity, the limit is a Peano curve that totally fills
a region bordered by the Koch snowflake. The Peano curve
has the usual dimension of 2, but its border, a scaling fractal
of infinite length, has (as is explained in Mandelbrot's book) a
fractal dimension of log 4/log 3, or 1.2618. . . .

Unlike these striking artificial curves, the fractals that
occur in nature—coastlines, rivers, trees, star clustering,
clouds and so on—are so irregular that their self-similarity
(scaling) must be treated statistically. Consider the profile of
the mountain range in Figure 4, reproduced from Mandel-
brot’s book. This is not a photograph, but a computer-gener-
ated mountain scene based on a modified Brownian noise. Any
vertical cross section of the topography has a profile that
models a random walk. The white patches, representing water
or snow in the hollows below a certain altitude, were added
to enhance the relief.

The profile at the top of the mountain range is a scaling
fractal. This means that if you enlarge any small portion of it,
it will have the same statistical character as the line you now
see. If it were a true fractal, this property would continue
forever as smaller and smaller segments are enlarged, but of
course such a curve can neither be drawn nor appear in na-
ture. A coastline, for example, may be self-similar when viewed
from a height of several miles down to several feet, but below
that the fractal property is lost. Even the Brownian motion of
a particle is limited by the size of its microsteps.

Since mountain ranges approximate random walks, one
can create “mountain music” by photographing a mountain
range and translating its fluctuating heights to tones that fluc-
tuate in time. Villa Lobos actually did this using mountain
skylines around Rio de Janeiro. If we view nature statically,
frozen in time, we can find thousands of natural curves that
can be used in this way to produce stochastic music. Such
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FIGURE 4 A modified Brownian landscape generated by a com-
puter program

music is usually too brown, too correlated, however, to be
interesting. Like natural white noise, natural brown noise may
do well enough, perhaps, for the patterns of abstract art but
not so well as a basis for music.

When we analyze the dynamic world, made up of quan-
tities constantly changing in time, we find a wealth of fractal-
like fluctuations that have 1/f spectral densities. In his book
Mandelbrot cites a few: variations in sunspots, the wobbling
of the earth’s axis, undersea currents, membrane currents in
the nervous system of animals, the fluctuating levels of rivers
and so on. Uncertainties in time measured by an atomic clock
are 1/f: the error is 10~ '? regardless of whether one is mea-
suring an error on a second, minute or hour. Scientists tend
to overlook 1/f noises because there are no good theories to
account for them, but there is scarcely an aspect of nature in
which they cannot be found.
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T. Musha, a physicist at the Tokyo Institute of Technol-
ogy, discovered that traffic flow past a certain spot on a Jap-
anese expressway exhibited 1/f fluctuation. In a more star-
tling experiment, Musha rotated a radar beam emanating from
a coastal location to get a maximum variety of landscape on
the radar screen. When he rotated the beam once, variations
in the distances of all objects scanned by the beam produced
a Brownian spectrum. But when he rotated it twice and then
subtracted one curve from the other the resulting curve—rep-
resenting all the changes of the scene—was close to 1/f.

We are now approaching an understanding of Voss’s dar-
ing conjecture. The changing landscape of the world (or, to
put it another way, the changing content of our total experi-
ence) seems to cluster around 1/f noise. It is certainly not
entirely uncorrelated, like white noise, nor is it as strongly
correlated as brown noise. From the cradle to the grave our
brain is processing the fluctuating data that comes to it from
its sensors. If we measure this noise at the peripheries of the
nervous system (under the skin of the fingers), it tends, Man-
delbrot says, to be white. The closer one gets to the brain,
however, the closer the electrical fluctuations approach 1/,
The nervous system seems to act like a complex filtering de-
vice, screening out irrelevant elements and processing only
the patterns of change that are useful for intelligent behavior.

On the canvas of a painting, colors and shapes are static,
reflecting the world's static patterns. Is it possible, Mandel-
brot asked himself many years ago, that even completely non-
objective art, when it is pleasing, reflects fractal patterns of
nature? He is fond of abstract art, and maintains that there is
a sharp distinction between such art that has a fractal base
and such art that does not, and that the former type is widely
considered the more beautiful. Perhaps this is why photogra-
phers with a keen sense of aesthetics find it easy to take pic-
tures, particularly photomicrographs, of natural patterns that
are almost indistinguishable from abstract expressionist art.

Motion can be added to visual art, of course, in the form
of the motion picture, the stage, kinetic art and the dance,
but in music we have meaningless, nonrepresentational tones
that fluctuate to create a pattern that can be appreciated only
over a period of time. Is it possible, Voss asked himself, that
the pleasures of music are partly related to scaling noise of 1/
f spectral density? That is, is this music “imitating” the 1/f
quality of our flickering experience?
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That may or may not be true, but there is no doubt that
music of almost every variety does exhibit 1/f fluctuations in
its changes of pitch as well as in the changing loudness of its
tones. Voss found this to be true of classical music, jazz and
rock. He suspects it is true of all music. He was therefore not
surprised that when he used a 1/f flicker noise from a transis-
tor to generate a random tune, it turned out to be more pleas-
ing than tunes based on white and brown noise sources.

Figure 5, supplied by Voss, shows typical patterns of
white, 1/f and brown when noise values (vertical) are plotted
against time (horizontal). These patterns were obtained by a
computer program that simulates the generation of the three
kinds of sequences by tossing dice. The white noise is based
on the sum obtained by repeated tosses of 10 dice. These sums
range from 10 to 60, but the probabilities naturally force a
clustering around the median. The Brownian noise was gen-
erated by tossing a single die and going up one step on the
scale if the number was even and down a step if the number
was odd.

The 1/f noise was also generated by simulating the toss-
ing of 10 dice. Although 1/f noise is extremely common in na-
ture, it was assumed until recently that it is unusually cum-
bersome to simulate 1/f noise by randomizers or computers.
Previous composers of stochastic music probably did not even
know about 1/f noise, but if they did, they would have had
considerable difficulty generating it. As this article was being
prepared Voss was asked if he could devise a simple proce-
dure by which readers could produce their own 1/f tunes. He
gave some thought to the problem and to his surprise hit on a
clever way of simplifying existing 1/f computer algorithms that
does the trick beautifully.

The method is best explained by considering a sequence
of eight notes chosen from a scale of 16 tones. We use three
dice of three colors: red, green and blue. Their possible sums
range from 3 to 18. Select 16 adjacent notes on a piano, black
keys as well as'white if you like, and number them 3 through
18.

Write down the first eight numbers, 0 through 7, in binary
notation, and assign a die color to each column as is shown
in Figure 6. The first note of our tune is obtained by tossing
all three dice and picking the tone that corresponds to the
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FIGURE 5 Typical patterns of white, 1/f and Brownian noise
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B R P RO O O O-<— Blue
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FIGURE 6 Binary chart for Voss's 1/f dice algorithm

sum. Note that in going from 000 to 001 only the red digit
changes. Leave the green and blue dice undisturbed, still
showing the numbers of the previous toss. Pick up only the
red die and toss it. The new sum of all three dice gives the
second note of your tune. In the next transition, from 001 to
010, both the red and green digits change. Pick up the red
and green dice, leaving the blue one undisturbed, and toss
the pair. The sum of all three dice gives the third tone. The
fourth note is found by shaking only the red die, the fifth by
shaking all three. The procedure, in short, is to shake only
those dice that correspond to digit changes.

It is not hard to see how this algorithm produces a se-
quence halfway between white and brown. The least signifi-
cant digits, those to the right, change often. The more signif-
icant digits, those to the left, are more stable. As a result,
dice corresponding to them make a constant contribution to
the sum over long periods of time. The resulting sequence is
not precisely 1/f but is so close to it that it is impossible to
distinguish melodies formed in this way from tunes generated
by natural 1/f noise. Four dice can be used the same way for
a 1/f sequence of 16 notes chosen from a scale of 21 tones.
With 10 dice you can generate a melody of 2'°, or 1,024, notes
from a scale of 55 tones. Similar algorithms can of course be
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implemented with generalized dice (octahedrons, dodecahe-
drons and so on), spinners or even tossed coins.

With the same dice simulation program Voss has supplied
three typical melodies based on white, brown, and 1/f noise.
The computer printouts of the melodies are shown in Figures
7, 8, and 9. In each case Voss varied both the melody and the
tone duration with the same kind of noise. Above each tune
are shown the noise patterns that were used.

Over a period of two years, tunes of the three kinds were
played at various universities and research laboratories, for
many hundreds of people. Most listeners found the white mu-
sic too random, the brown too correlated and the 1/f “just about
right.” Indeed, it takes only a glance at the music itself to see
how the 1/f property mediates between the two extremes.
Voss's earlier 1/f music was based on natural 1/f noise, usu-
ally electronic, even though one of his best compositions de-
rives from the record of the annual flood levels of the Nile.
He has made no attempt to impose constant rhythms. When
he applied 1/f noise to a pentatonic (five-tone) scale and also
varied the rhythm with 1/f noise, the music strongly resem-
bled Oriental music. He has not tried to improve his 1/f music
by adding transition or rejection rules. It is his belief that
stochastic music with such rules will be greatly improved if
the underlying choices are based on 1/f noise rather than the
white noise so far used.

Note that 1/f music is halfway between white and brown
in a fractal sense, not in the manner of music that has tran-
sition rules added to white music. As we have seen, such mu-
sic reverts to white when we compare widely separated parts.
But 1/f music has the fractal self-similarity of a coastline or a
mountain range. Analyze the fluctuations on a small scale, from
note to note, and it is 1/f. The same is true if you break a long
tune into 10-note sections and compare them. The tune never
forgets where it has been. There is always some correlation
with its entire past.

It is commonplace in musical criticism to say that we en-
joy good music because it offers a mixture of order and sur-
prise. How could it be otherwise? Surprise would not be sur-
prise if there were not sufficient order for us to anticipate
what is likely to come next. If we guess too accurately, say in
listening to a tune that is no more than walking up and down
the keyboard in one-step intervals, there is no surprise at all.
Good music, like a person’s life or the pageant of history, is a
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wondrous mixture of expectation and unanticipated turns.
There is nothing new about this insight, but what Voss has
done is to suggest a mathematical measure for the mixture.

I cannot resist mentioning three curious ways of trans-
forming a melody to a different one with the same 1/f spectral
density for both tone patterns and durations. One is to write
the melody backward, another is to turn it upside down and
the third is to do both. These transformations are easily ac-
complished on a player piano by reversing and/or inverting
the paper roll. If a record or tape is played backward, un-
pleasant effects result from a reversal of the dying-away qual-
ity of tones. (Piano music sounds like organ music.) Reversal
or inversion naturally destroys the composer’s transition pat-
terns, and that is probably what makes the music sound so
much worse than it does when it is played normally. Since
Voss composed his tunes without regard for short-range tran-
sition rules, however, the tunes all sound the same when they
are played in either direction.

Canons for two voices were sometimes deliberately writ-
ten, particularly in the 15th century, so that one melody is
the other backward, and composers often reversed short se-
quences for contrapuntal effects in longer works. Figure 10
shows a famous canon that Mozart wrote as a joke. In this
instance the second melody is almost the same as the one you
see taken backward and upside down. Thus if the sheet is
placed flat on a table, with one singer on one side and the
other singer on the other, the singers can read from the same
sheet as they harmonize!

No one pretends, of course, that stochastic 1/f music, even
with added transition and rejection rules, can compete with
the music of good composers. We know that certain frequency
ratios, such as the three-to-two ratio of a perfect fifth, are more
pleasing than others, either when the two tones are played
simultaneously or in sequence. But just what composers do
when they weave their beautiful patterns of meaningless sounds
remains a mystery that even they do not understand.

It is here that Plato and Aristotle seem to disagree. Plato
viewed all the fine arts with suspicion. They are, he said (or
at least his Socrates said), imitations of imitations. Each time
something is copied something is lost. A picture of a bed is
not as good as a real bed, and a real bed is not as good as the
universal, perfect idea of bedness. Plato was less concerned
with the sheer delight of art than with its effects on charac-
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You do not play things as they are.
The man replied, “Things as they are

Are changed upon the blue guitar.

Aristotle, on the other hand, recognized that the fine arts
They said, “You have a blue guitar,

are of value to a state primarily because they give pleasure,
and that this pleasure springs from the fact that artists do

much more than make poor copies.
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ter, and for that reason his Republic and Laws recommend

FIGURE 10 Mozart's palindromic and invertible canon
strong state censorship of all the fine arts.
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Wallace Stevens intended his blue guitar to stand for all
the arts, but music, more than any other art and regardless of
what imitative aspects it may have, involves the making of
something utterly new. You may occasionally encounter nat-
ural scenes that remind you of a painting, or episodes in life
that make you think of a novel or a play. You will never come
on anything in nature that sounds like a symphony. As to
whether mathematicians will someday write computer pro-
grams that will create good music—even a simple, memorable
tune—time alone will tell.

ADDENDUM

Irving Godt, who teaches music history at the Indiana Uhi-
versity of Pennsylvania, straightened me out on the so-called
Mozart canon with the following letter. It appeared in Scien-
tific American (July, 1978):

A few musical errors slipped past Martin Gardner’s critical
eye when he took up “Mozart’s palindromic and invertible canon”
in his report on fractal curves and “one-over-f’ fluctuations.

Mozart scholars now agree that the canon is almost cer-
tainly not by Mozart, even though publishers have issued it un-
der his name. For more than 40 years the compilers of the au-
thoritative Kochel catalogue of Mozart's compositions have
relegated it to the appendix of doubtful attributions, where along
with three other pieces of a similar character, it bears the cat-
alogue number K. Anh. C 10.16. We have no evidence that the
piece goes back any further than the last century.

The piece is not for two singers but for two violins. Singers
cannot produce the simultaneous notes of the chords in the
second measure (and elsewhere), and the ranges of the parts
are quite impractical. To perform the piece the two players be-
gin from opposite ends of the sheet of music and arrive at a
result that falls far below the standard of Mozart's authentic
canons and other jeux d'esprit. The two parts combine for long
stretches of parallel octaves, they rarely achieve even the most
rudimentary rhythmic or directional independence, and their
harmony consists of little more than the most elementary writ-
ing in parallel thirds. This little counterfeit is not nearly as
interesting as Mr. Gardner’s columns.

John G. Fletcher wrote to suggest that because 1/f music
lies between white and brown music it should be called tan
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music. The term “pink” has also been suggested, and actually
used by some writers. Fate magazine (October, 1978) ran a
full-page advertisement for an LP record album produced by
“Master Wilburn Burchette,” of Spring Valley, California, ti-
tled Mind Storm. The ad calls it “fantastic new deep-hypnotic
music that uses a phenomenon known in acoustical science
as ‘pink sound’ to open the mind to thrilling psychic revela-
tions! This astonishing new music acts something like a crys-
tal ball reflecting back the images projected by the mind. . . .
Your spirit will soar as this incredible record album carries
you to new heights of psychic awareness!”

Frank Greenberg called my attention to some “mourntain
music” composed by Sergei Prokofiev for Sergei Eisenstein’s
film Alexander Nevsky in 1938. “Eisenstein provided Proko-
fiev with still shots of individual scenes of the movie as it was
being filmed. Prokofiev then took these scenes and used the
silhouette of the landscape and human figures as a pattern for
the position of the notes on the staff. He then orchestrated
around these notes.”
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