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Latent variable modeling is a statistical framework that involves modeling
observed data as the result of underlying variables that are not directly observ-
able. These unobserved variables are known as latent variables and they are
assumed to explain the variation in the observed data. One popular approach
for modeling latent variables is through the use of probabilistic graphical mod-
els, which are graphical representations of how variables relate to each other
probabilistically.

In many cases, it is difficult to directly infer the values of these latent vari-
ables from the observed data. Therefore, we use a technique called variational
inference to approximate the posterior distribution of the latent variables given
the observed data. Variational inference involves defining a family of distribu-
tions over the latent variables and then finding the member of that family that
best approximates the true posterior distribution. This is done by minimizing
a measure of the difference between the true posterior and the approximating
distribution, which is known as the evidence lower bound (ELBO).

The ELBO is a lower bound on the log marginal likelihood of the data, and
it can be expressed as:

L(θ, φ; X) = Eqφ(Z|X)[log pθ(X|Z)]−KL(qφ(Z|X); |; p(Z))

where X is the observed data, Z is the vector of latent variables, pθ(X|Z)
is the likelihood function, qφ(Z|X) is the variational distribution over the la-
tent variables, p(Z) is the prior distribution over the latent variables, θ and φ
are the parameters of the likelihood and variational distributions, respectively,
and KL(qφ(Z|X); |; p(Z)) is the Kullback-Leibler (KL) divergence between the
variational distribution and the prior.

The ELBO can be interpreted as the amount of information about the ob-
served data that is explained by the latent variables minus the amount of infor-
mation about the latent variables that is not explained by the observed data.
The first term, Eqφ(Z|X)[log pθ(X|Z)], is the expected log-likelihood of the ob-
served data given the latent variables, and the second term, KL(qφ(Z|X); |; p(Z)),
is the KL divergence between the variational distribution and the prior.

Jensen’s inequality is a fundamental result in probability theory that states
that for any convex function f , the expected value of f(x) is greater than or
equal to f(E[x]), i.e.,
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E[f(x)] ≥ f(E[x])
In the context of latent variable modeling, Jensen’s inequality is used to

derive a lower bound on the log-likelihood of the observed data. Specifically, we
apply Jensen’s inequality to the logarithm of the likelihood function, which is a
concave function, to obtain:

log pθ(X) = log
∫
pθ(X,Z); dZ ≥

∫
qφ(Z|X) log pθ(X,Z)

qφ(Z|X) ; dZ = L(θ, φ; X)

where the inequality follows from Jensen’s inequality, and the last expression
is the ELBO.

Autoencoders are a type of neural network that can be used for unsupervised
learning of latent representations of the observed data. An autoencoder consists
of two parts: an encoder that maps the observed data to a latent representation,
and a decoder that maps the latent representation back to the observed data.
The objective of an autoencoder is to minimize the reconstruction error, which
is typically measured by the mean squared error between the input and output.

To incorporate latent variables into an autoencoder, we can add a layer
oflatent variables between the encoder and decoder. This layer is typically
modeled as a probabilistic encoder that maps the observed data to a mean and
variance of a Gaussian distribution in the latent space. The decoder is then
modeled as a conditional distribution over the observed data given the latent
variables. The objective function for an autoencoder with a latent variable
layer is typically the negative log-likelihood of the observed data, which can be
written as:

L(θ, φ; X) = −Eqφ(Z|X)[log pθ(X|Z)] + KL(qφ(Z|X); |; p(Z))
where X is the observed data, Z is the vector of latent variables, pθ(X|Z) is

the likelihood function of the decoder, qφ(Z|X) is the variational distribution of
the encoder, p(Z) is the prior distribution over the latent variables, and θ and
φ are the parameters of the decoder and encoder, respectively.

The first term in the objective function is the negative log-likelihood of the
observed data, which measures the reconstruction error of the autoencoder. The
second term is the KL divergence between the variational distribution and the
prior, which encourages the learned latent variables to be close to the prior
distribution. The objective function can be optimized using stochastic gradient
descent or a similar optimization algorithm.

In summary, latent variable modeling and the ELBO are important tools
for modeling complex data distributions with unobserved variables. Jensen’s
inequality is used to derive a lower bound on the log-likelihood of the observed
data, which is used in variational inference to approximate the posterior distri-
bution of the latent variables. Autoencoders use a latent variable layer to learn
compressed representations of the observed data and can be trained using the
ELBO as an objective function.
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