Kernel: Python 3 (system-wide)
In [1]:
Out[1]:
Population of species X: [ 1000. 2000. 4000. 8000. 16000. 32000. 64000. 128000. 256000.]
In [2]:
Out[2]:
Text(0.5, 1.0, 'Species X')
In [3]:
Out[3]:
Population of species Y: [1000. 1100. 1210. 1331. 1464.1 1610.51
1771.561 1948.7171 2143.58881]
In [4]:
Out[4]:
Text(0.5, 1.0, 'Species Y')
In [5]:
Out[5]:
<matplotlib.legend.Legend at 0x7fd6a84e8b80>
In [6]:
Out[6]:
<matplotlib.legend.Legend at 0x7fd6a8546b80>
In [7]:
Out[7]:
[1.00000000e+03 2.17777342e+03 4.44576258e+03 8.91456547e+03
1.60958432e+04 3.14897238e+04 6.08883077e+04 1.17580768e+05
2.14397399e+05 3.81989811e+05 6.03315856e+05 7.87285829e+05
9.96982461e+05 1.04405640e+06 1.08337178e+06 9.95533440e+05
9.79746583e+05 9.72332987e+05 9.21969859e+05 1.04273060e+06
9.43221236e+05 9.37714865e+05 9.85877957e+05 1.07409317e+06]
<matplotlib.legend.Legend at 0x7fd6a844f6a0>
In [8]:
Out[8]:
[<matplotlib.lines.Line2D at 0x7fd6a81ef1f0>]
In [9]:
Out[9]:
[1.00000000e+03 2.17777342e+03 4.44576258e+03 8.91456547e+03
1.60958432e+04 3.14897238e+04 6.08883077e+04 1.17580768e+05
2.14397399e+05 3.81989811e+05 6.03315856e+05 7.87285829e+05
9.96982461e+05 1.04405640e+06 1.08337178e+06 9.95533440e+05
9.79746583e+05 9.72332987e+05 9.21969859e+05 1.04273060e+06
9.43221236e+05 9.37714865e+05 9.85877957e+05 1.07409317e+06]
<matplotlib.legend.Legend at 0x7fd6a81ab700>
In [10]:
Out[10]:
[ 1000. 1468.8176607 2017.57949899 2807.82253178
4159.57884669 5880.69829402 7977.64738035 10987.23896838
15591.68925539 22778.96386341 27118.703459 32395.04050862
36971.5970265 37400.13541081 40923.61000019 43399.85608048
50286.14014915 51923.92262397 48936.98814589 53081.08029097
52972.24903328 49175.42023105 50032.49399002 50577.54776097]
<matplotlib.legend.Legend at 0x7fd6a806fa90>
In [11]:
Out[11]:
[ 1000. 1815.38733857 3448.85956215 5798.61439409
10814.57619309 21383.8241311 41567.08370915 80314.28400864
149785.58154461 265585.75112717 365411.1780143 491689.65445915
481846.55931036 512615.59044084 484702.74364789 557117.06357226
577315.88799858 536066.67437239 587459.10894856 522740.85774677
541827.5414437 544308.07661042 511645.32546393 547557.6806335 ]
data from experiment A fits the model when r (the growth rate) = 0.9
In [12]:
Out[12]:
[10000. 14459.72616873 19131.64692025 24238.72992793
26897.68997643 31945.75133898 36640.34691545 41360.91604431
44038.35660568 47444.96450721 48857.57934742 47687.15960361
52444.80325624 55773.3720636 60200.29157554 58068.40452503
55623.84038794 53861.60465174 50108.26898469 54439.73015449
51652.25171659 49774.81127443 51135.06372078 56478.91948071]
data from experiment B fits the model when r (the growth rate) = 0.4
In [13]:
Out[13]:
[ 1000. 1713.24432864 2744.49898211 4449.95419272
7662.63408538 12526.09381011 19450.42606159 30143.888785
46748.25020832 71004.59399994 81066.7935574 90233.10312421
94121.25320283 87729.32306957 92361.26302922 93968.98534754
105341.48590974 102981.44000993 94634.96172829 103248.79824022
101238.10227826 93521.06457228 96575.99191112 97826.04612173]
data from experiment C fits the model when r (the growth rate) = 0.7
In [0]:
In [0]:
In [0]:
In [0]:
In [0]: