Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
63 views
ubuntu2004
%typeset_mode True ##### úkol číslo 1 CC = ComplexField() v = x^2+1 #e.expand() assume(v, "complex") print(assume(v, "complex")) v.rectform() expand(x^2+1, "complex")
Error in lines 4-4 Traceback (most recent call last): File "/cocalc/lib/python3.10/site-packages/smc_sagews/sage_server.py", line 1244, in execute exec( File "", line 1, in <module> File "/ext/sage/9.8/src/sage/symbolic/assumptions.py", line 676, in assume x.assume() File "sage/symbolic/expression.pyx", line 2380, in sage.symbolic.expression.Expression.assume raise TypeError("self (=%s) must be a relational expression" % self) TypeError: self (=x^2 + 1) must be a relational expression
##### úkol číslo 2 reset() var('y') def f(x,y): if x<y: return 6 else: return 5 f(9,2) f(0,1)
$\displaystyle y$
$\displaystyle 5$
$\displaystyle 6$
##### úkol číslo 3 reset() var('y') vyr = y^3 + 2*y + 1 + y/(y+1)^3;vyr vyr.subs(vyr.operands()[2] == vyr.operands()[2].simplify_full())
$\displaystyle y$
$\displaystyle y^{3} + 2 \, y + \frac{y}{{\left(y + 1\right)}^{3}} + 1$
$\displaystyle y^{3} + 2 \, y + \frac{y}{y^{3} + 3 \, y^{2} + 3 \, y + 1} + 1$
##### úkol číslo 4 reset() eqn = cos(x)==0;eqn res = solve(eqn, x);res check = eqn.subs(res);check #chybí další řešení
$\displaystyle \cos\left(x\right) = 0$
[$\displaystyle x = \frac{1}{2} \, \pi$]
$\displaystyle 0 = 0$
#### úkol číslo 5 reset() var('x,y') implicit_plot((x - 1)^2+y^2==9, (x,-2,4), (y,-3,4))
($\displaystyle x$, $\displaystyle y$)