Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
35 views
ubuntu2004
%typeset_mode True #ZK II #1 CC = ComplexField() v = x^2+1 e.expand() assume(v, "complex") v.rectform() expand(x^2+1, "complex")
$\displaystyle e$
Error in lines 5-5 Traceback (most recent call last): File "/cocalc/lib/python3.10/site-packages/smc_sagews/sage_server.py", line 1244, in execute exec( File "", line 1, in <module> File "/ext/sage/9.8/src/sage/symbolic/assumptions.py", line 676, in assume x.assume() File "sage/symbolic/expression.pyx", line 2380, in sage.symbolic.expression.Expression.assume raise TypeError("self (=%s) must be a relational expression" % self) TypeError: self (=x^2 + 1) must be a relational expression
#2 reset() var('y') def f(x,y): if x<y: return 6 else: return 5 f(9,2) f(0,1)
$\displaystyle y$
$\displaystyle 5$
$\displaystyle 6$
#3 reset() var('y') vyr = y^3 + 2*y + 1 + y/(y+1)^3;vyr vyr.subs(vyr.operands()[2] == vyr.operands()[2].simplify_full())
$\displaystyle y$
$\displaystyle y^{3} + 2 \, y + \frac{y}{{\left(y + 1\right)}^{3}} + 1$
$\displaystyle y^{3} + 2 \, y + \frac{y}{y^{3} + 3 \, y^{2} + 3 \, y + 1} + 1$
#4 reset() eqn = cos(x)==0;eqn res = solve(eqn, x);res check = eqn.subs(res);check #chybí další řešení
$\displaystyle \cos\left(x\right) = 0$
[$\displaystyle x = \frac{1}{2} \, \pi$]
$\displaystyle 0 = 0$
#5 reset() var('x,y') implicit_plot((x - 1)^2+y^2==9, (x,-2,4), (y,-3,4))
($\displaystyle x$, $\displaystyle y$)
#6 n(pi^e, digits=13) x=n(pi^e, digits=13);"x=";x
$\displaystyle 22.45915771836$
x=
$\displaystyle 22.45915771836$
#7 U={i^2 for i in range(1,6)};print("U =");U; V = {n^n for n in range(1,10)};print("V ="); V print("U průnik V = ");U.intersection(V)
U = {1, 4, 9, 16, 25} V = {256, 1, 46656, 16777216, 4, 387420489, 3125, 823543, 27} U průnik V = {1, 4}
#8 A=matrix( 5, 5, lambda i, j: gcd(i+1,j+1));A "|A| ="; det(A);
$\displaystyle \left(\begin{array}{rrrrr} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 & 1 \\ 1 & 1 & 3 & 1 & 1 \\ 1 & 2 & 1 & 4 & 1 \\ 1 & 1 & 1 & 1 & 5 \end{array}\right)$
|A| =
$\displaystyle 16$
#9 reset() f3 = x^3*cos(x);f3 g(x) = integrate(f3,x);g(x) g(0)
$\displaystyle x^{3} \cos\left(x\right)$
$\displaystyle 3 \, {\left(x^{2} - 2\right)} \cos\left(x\right) + {\left(x^{3} - 6 \, x\right)} \sin\left(x\right)$
$\displaystyle -6$
#10 reset() def R(n,x): if(n==0): result = 1 elif (n==1): result = x else: result = 2*n*R(n-1,x)+2*R(n-2,x) return result
var('y') R(4,y) g = R(4,y); h(x) = diff(g, x,x);h(x) h(1)
$\displaystyle y$
$\displaystyle 216 \, y + 100$
$\displaystyle 0$
$\displaystyle 0$