Kernel: SageMath 9.8
In [26]:
In [27]:
Out[27]:
In [28]:
Out[28]:
[[-5 < x, x < 0], [x == 0], [0 < x, x < 5]]
In [29]:
Out[29]:
In [30]:
In [32]:
Out[32]:
-log(2)
In [33]:
Out[33]:
+Infinity
Example 2: (n(n-1)*x^(n-2))
In [34]:
In [35]:
Out[35]:
In [36]:
Out[36]:
[[-1 < x, x < 1]]
In [37]:
Out[37]:
In [39]:
In [40]:
Out[40]:
1/4
In [46]:
Out[46]:
---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
Cell In [46], line 1
----> 1 limit(f(Integer(1)),x=Integer(1))
Cell In [39], line 2, in f(x)
1 def f(x):
----> 2 return -((Integer(2))/((x**Integer(3))-(Integer(3)*x**Integer(2))+Integer(3)*x-Integer(1)))
File /ext/sage/9.8/src/sage/rings/integer.pyx:2019
, in sage.rings.integer.Integer.__truediv__()
2017 if type(left) is type(right):
2018 if mpz_sgn((<Integer>right).value) == 0:
-> 2019 raise ZeroDivisionError("rational division by zero")
2020 x = <Rational> Rational.__new__(Rational)
2021 mpq_div_zz(x.value, (<Integer>left).value, (<Integer>right).value)
ZeroDivisionError: rational division by zero
In [0]:
Approximate Taylor Polynomial
approximate e^x with 1,2, and 3 degree
In [49]:
Out[49]:
Interactive function <function _ at 0x7f500ef4bf60> with 1 widget
m: EvalText(value='2', description='Degree…
In [50]:
Out[50]:
Interactive function <function _ at 0x7f500eec45e0> with 1 widget
j: EvalText(value='3', description='Degree…
In [51]:
Out[51]:
Interactive function <function _ at 0x7f500ef485e0> with 1 widget
k: EvalText(value='4', description='Degree…
In [59]:
Out[59]:
In [0]: