Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/main/apex/csrc/multi_tensor_axpby_kernel.cu
Views: 792
#include <ATen/ATen.h>1#include <ATen/AccumulateType.h>2#include <ATen/cuda/CUDAContext.h>3#include <ATen/cuda/Exceptions.h>4// Another possibility:5// #include <torch/all.h>67#include <assert.h>89#include "type_shim.h"10#include "multi_tensor_apply.cuh"1112#define BLOCK_SIZE 51213#define ILP 41415template<typename T>16__device__ __forceinline__ bool is_aligned(T* p){17return ((uint64_t)p) % (ILP*sizeof(T)) == 0;18}1920template<typename T>21__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){22typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;23((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];24}2526template<typename x_t, typename y_t, typename out_t>27struct AxpbyFunctor28{29__device__ __forceinline__ void operator()(30int chunk_size,31volatile int* noop_gmem,32TensorListMetadata<3>& tl,33float a,34float b,35int arg_to_check)36{37// I'd like this kernel to propagate infs/nans.38// if(*noop_gmem == 1)39// return;4041int tensor_loc = tl.block_to_tensor[blockIdx.x];42int chunk_idx = tl.block_to_chunk[blockIdx.x];43int n = tl.sizes[tensor_loc];4445x_t* x = (x_t*)tl.addresses[0][tensor_loc];46x += chunk_idx*chunk_size;4748y_t* y = (y_t*)tl.addresses[1][tensor_loc];49y += chunk_idx*chunk_size;5051out_t* out = (out_t*)tl.addresses[2][tensor_loc];52out += chunk_idx*chunk_size;5354n -= chunk_idx*chunk_size;5556bool finite = true;57x_t r_x[ILP];58y_t r_y[ILP];59out_t r_out[ILP];6061// to make things simple, we put aligned case in a different code path62if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x) && is_aligned(y) && is_aligned(out))63{64for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)65{66// load67load_store(r_x, x, 0 , i_start);68load_store(r_y, y, 0 , i_start);69#pragma unroll70for(int ii = 0; ii < ILP; ii++)71{72r_out[ii] = a*static_cast<float>(r_x[ii]) + b*static_cast<float>(r_y[ii]);73if(arg_to_check == -1)74finite = finite && (isfinite(r_x[ii]) && isfinite(r_y[ii]));75if(arg_to_check == 0)76finite = finite && isfinite(r_x[ii]);77if(arg_to_check == 1)78finite = finite && isfinite(r_y[ii]);79}80// store81load_store(out, r_out, i_start , 0);82}83}84else85{86// Non-divergent exit condition for __syncthreads, not necessary here87for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)88{89#pragma unroll90for(int ii = 0; ii < ILP; ii++)91{92r_x[ii] = 0;93r_y[ii] = 0;94int i = i_start + threadIdx.x + ii*blockDim.x;95if(i < n && i < chunk_size)96{97r_x[ii] = x[i];98r_y[ii] = y[i];99}100}101#pragma unroll102for(int ii = 0; ii < ILP; ii++)103{104r_out[ii] = a*static_cast<float>(r_x[ii]) + b*static_cast<float>(r_y[ii]);105if(arg_to_check == -1)106finite = finite && (isfinite(r_x[ii]) && isfinite(r_y[ii]));107if(arg_to_check == 0)108finite = finite && isfinite(r_x[ii]);109if(arg_to_check == 1)110finite = finite && isfinite(r_y[ii]);111}112// see note in multi_tensor_scale_kernel.cu113#pragma unroll114for(int ii = 0; ii < ILP; ii++)115{116int i = i_start + threadIdx.x + ii*blockDim.x;117if(i < n && i < chunk_size)118out[i] = r_out[ii];119}120}121}122if(!finite)123*noop_gmem = 1; // Blindly fire off a write. These will race but that's ok.124}125};126127void multi_tensor_axpby_cuda(128int chunk_size,129at::Tensor noop_flag,130std::vector<std::vector<at::Tensor>> tensor_lists,131float a,132float b,133int arg_to_check)134{135using namespace at;136// The output (downscaled) type is always float.137// If build times suffer, think about where to put this dispatch,138// and what logic should be moved out of multi_tensor_apply.139140DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_axpby_cuda",141DISPATCH_FLOAT_AND_HALF(tensor_lists[1][0].scalar_type(), 1, "multi_tensor_axpby_cuda",142DISPATCH_FLOAT_AND_HALF(tensor_lists[2][0].scalar_type(), 2, "multi_tensor_axpby_cuda",143multi_tensor_apply<3>(144BLOCK_SIZE,145chunk_size,146noop_flag,147tensor_lists,148AxpbyFunctor<scalar_t_0, scalar_t_1, scalar_t_2>(),149a,150b,151arg_to_check); )))152153AT_CUDA_CHECK(cudaGetLastError());154155// AT_CUDA_CHECK(cudaDeviceSynchronize());156}157158159