CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ai-forever

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: ai-forever/sber-swap
Path: blob/main/apex/csrc/multi_tensor_novograd.cu
Views: 792
1
#include <ATen/ATen.h>
2
#include <ATen/AccumulateType.h>
3
#include <ATen/cuda/CUDAContext.h>
4
#include <ATen/cuda/Exceptions.h>
5
// Another possibility:
6
// #include <torch/all.h>
7
8
#include <assert.h>
9
10
#include "type_shim.h"
11
#include "multi_tensor_apply.cuh"
12
13
#define BLOCK_SIZE 512
14
#define ILP 4
15
16
typedef enum{
17
MOMENT_MODE_0 =0, // Novograd paper mode, momentum caculation with denom then decay inside
18
MOMENT_MODE_1 =1 // Decoupled weight decay mode
19
} momentMode_t;
20
21
void multi_tensor_norm_out_cuda(
22
int chunk_size,
23
at::Tensor noop_flag,
24
std::vector<std::vector<at::Tensor>> tensor_lists,
25
at::Tensor out,
26
const float alpha,
27
const float beta,
28
const int norm_type);
29
30
using MATH_T = float;
31
32
template<typename T>
33
struct NovoGradFunctor
34
{
35
__device__ __forceinline__ void operator()(
36
int chunk_size,
37
volatile int* noop_gmem,
38
TensorListMetadata<3>& tl,
39
const float beta1,
40
const float beta2,
41
const float beta3,
42
const float beta1_correction,
43
const float beta2_correction,
44
const float epsilon,
45
const float lr,
46
momentMode_t m_mode,
47
const float decay,
48
const float* per_tensor_grad_norm)
49
{
50
// I'd like this kernel to propagate infs/nans.
51
// if(*noop_gmem == 1)
52
// return;
53
54
int tensor_loc = tl.block_to_tensor[blockIdx.x];
55
int tensor_num = tl.start_tensor_this_launch + tensor_loc;
56
int chunk_idx = tl.block_to_chunk[blockIdx.x];
57
int n = tl.sizes[tensor_loc];
58
59
float grad_norm = per_tensor_grad_norm[tensor_num];
60
61
T* g = (T*)tl.addresses[0][tensor_loc];
62
g += chunk_idx*chunk_size;
63
64
T* p = (T*)tl.addresses[1][tensor_loc];
65
p += chunk_idx*chunk_size;
66
67
T* m = (T*)tl.addresses[2][tensor_loc];
68
m += chunk_idx*chunk_size;
69
70
n -= chunk_idx*chunk_size;
71
72
// see note in multi_tensor_scale_kernel.cu
73
for(int i_start = 0;
74
i_start < n && i_start < chunk_size;
75
i_start += blockDim.x*ILP)
76
{
77
MATH_T r_g[ILP];
78
MATH_T r_p[ILP];
79
MATH_T r_m[ILP];
80
#pragma unroll
81
for(int ii = 0; ii < ILP; ii++)
82
{
83
int i = i_start + threadIdx.x + ii*blockDim.x;
84
if(i < n && i < chunk_size)
85
{
86
r_g[ii] = g[i];
87
r_p[ii] = p[i];
88
r_m[ii] = m[i];
89
} else {
90
r_g[ii] = MATH_T(0);
91
r_p[ii] = MATH_T(0);
92
r_m[ii] = MATH_T(0);
93
}
94
}
95
#pragma unroll
96
for(int ii = 0; ii < ILP; ii++)
97
{
98
if (m_mode == MOMENT_MODE_0) {
99
MATH_T next_v_unbiased = grad_norm / beta2_correction;
100
MATH_T denom = next_v_unbiased + epsilon;
101
r_g[ii] = (r_g[ii] / denom) + (decay * r_p[ii]);
102
r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii];
103
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
104
r_p[ii] = r_p[ii] - (lr * next_m_unbiased);
105
}
106
else {
107
r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii];
108
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
109
MATH_T next_v_unbiased = grad_norm / beta2_correction;
110
MATH_T denom = next_v_unbiased + epsilon;
111
MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]);
112
r_p[ii] = r_p[ii] - (lr * update);
113
}
114
}
115
#pragma unroll
116
for(int ii = 0; ii < ILP; ii++)
117
{
118
int i = i_start + threadIdx.x + ii*blockDim.x;
119
if(i < n && i < chunk_size)
120
{
121
p[i] = r_p[ii];
122
m[i] = r_m[ii];
123
}
124
}
125
}
126
}
127
};
128
129
void multi_tensor_novograd_cuda(
130
int chunk_size,
131
at::Tensor noop_flag,
132
std::vector<std::vector<at::Tensor>> tensor_lists,
133
at::Tensor grad_norms,
134
const float lr,
135
const float beta1,
136
const float beta2,
137
const float epsilon,
138
const int step,
139
const int bias_correction,
140
const float weight_decay,
141
const int grad_averaging,
142
const int moment_mode,
143
const int norm_type)
144
{
145
using namespace at;
146
147
// Handle bias correction mode
148
float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
149
if (bias_correction == 1) {
150
bias_correction1 = 1 - std::pow(beta1, step);
151
bias_correction2 = std::sqrt(1 - std::pow(beta2, step));
152
}
153
154
// Handle grad averaging mode
155
float beta3 = 1;
156
if (grad_averaging == 1) beta3 = 1 - beta1;
157
158
std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1);
159
160
// Compute and update grad norm
161
// Here use a per tensor norm, and blend new norm(n) and old norm(gn) by
162
// L-2: gn = sqrt(a * gn^2 + b * n^2)
163
// L-inf: gn = a * gn + b * n
164
multi_tensor_norm_out_cuda(chunk_size, noop_flag, grad_list, grad_norms, beta2, (1.0f - beta2), norm_type);
165
166
// Assume single type across p,g,m1,m2 now
167
DISPATCH_DOUBLE_FLOAT_AND_HALF(
168
tensor_lists[0][0].scalar_type(), 0, "novograd",
169
multi_tensor_apply<3>(
170
BLOCK_SIZE,
171
chunk_size,
172
noop_flag,
173
tensor_lists,
174
NovoGradFunctor<scalar_t_0>(),
175
beta1,
176
beta2,
177
beta3, // 1-beta1 or 1 depends on averaging mode
178
bias_correction1,
179
bias_correction2,
180
epsilon,
181
lr,
182
(momentMode_t) moment_mode,
183
weight_decay,
184
grad_norms.DATA_PTR<float>()); )
185
186
AT_CUDA_CHECK(cudaGetLastError());
187
188
}
189
190