import unittest
import torch
from torch import nn
from torch.nn import Parameter
from apex import amp
from apex.parallel.LARC import LARC
from utils import common_init
class MyModel(torch.nn.Module):
def __init__(self, unique):
super(MyModel, self).__init__()
self.weight0 = Parameter(
unique + torch.arange(2, device="cuda", dtype=torch.float32)
)
def forward(self, input):
return (input * self.weight0).sum()
class TestLARC(unittest.TestCase):
def setUp(self):
self.x = torch.ones((2), device="cuda", dtype=torch.float32)
common_init(self)
def tearDown(self):
pass
def test_larc_mixed_precision(self):
for opt_level in ["O0", "O1", "O2", "O3"]:
model = MyModel(1)
optimizer = LARC(
torch.optim.SGD(
[{"params": model.parameters(), "lr": 0.25}], momentum=0.125
)
)
model, optimizer = amp.initialize(
model, optimizer, opt_level=opt_level, verbosity=0
)
optimizer.zero_grad()
loss = model(self.x)
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
if __name__ == "__main__":
unittest.main()