CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ai-forever

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: ai-forever/sber-swap
Path: blob/main/apex/tests/L0/run_fp16util/test_fp16util.py
Views: 794
1
import unittest
2
3
import torch
4
import torch.nn as nn
5
6
from apex.fp16_utils import FP16Model
7
8
9
class DummyBlock(nn.Module):
10
def __init__(self):
11
super(DummyBlock, self).__init__()
12
13
self.conv = nn.Conv2d(10, 10, 2)
14
self.bn = nn.BatchNorm2d(10, affine=True)
15
16
def forward(self, x):
17
return self.conv(self.bn(x))
18
19
20
class DummyNet(nn.Module):
21
def __init__(self):
22
super(DummyNet, self).__init__()
23
24
self.conv1 = nn.Conv2d(3, 10, 2)
25
self.bn1 = nn.BatchNorm2d(10, affine=False)
26
self.db1 = DummyBlock()
27
self.db2 = DummyBlock()
28
29
def forward(self, x):
30
out = x
31
out = self.conv1(out)
32
out = self.bn1(out)
33
out = self.db1(out)
34
out = self.db2(out)
35
return out
36
37
38
class DummyNetWrapper(nn.Module):
39
def __init__(self):
40
super(DummyNetWrapper, self).__init__()
41
42
self.bn = nn.BatchNorm2d(3, affine=True)
43
self.dn = DummyNet()
44
45
def forward(self, x):
46
return self.dn(self.bn(x))
47
48
49
class TestFP16Model(unittest.TestCase):
50
def setUp(self):
51
self.N = 64
52
self.C_in = 3
53
self.H_in = 16
54
self.W_in = 32
55
self.in_tensor = torch.randn((self.N, self.C_in, self.H_in, self.W_in)).cuda()
56
self.orig_model = DummyNetWrapper().cuda()
57
self.fp16_model = FP16Model(self.orig_model)
58
59
def test_params_and_buffers(self):
60
exempted_modules = [
61
self.fp16_model.network.bn,
62
self.fp16_model.network.dn.db1.bn,
63
self.fp16_model.network.dn.db2.bn,
64
]
65
for m in self.fp16_model.modules():
66
expected_dtype = torch.float if (m in exempted_modules) else torch.half
67
for p in m.parameters(recurse=False):
68
assert p.dtype == expected_dtype
69
for b in m.buffers(recurse=False):
70
assert b.dtype in (expected_dtype, torch.int64)
71
72
def test_output_is_half(self):
73
out_tensor = self.fp16_model(self.in_tensor)
74
assert out_tensor.dtype == torch.half
75
76
77