from typing import List, Tuple, Callable, Any
import torch
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from .faceshifter_run import faceshifter_batch
from .image_processing import crop_face, normalize_and_torch, normalize_and_torch_batch
from .video_processing import read_video, crop_frames_and_get_transforms, resize_frames
def transform_target_to_torch(resized_frs: np.ndarray, half=True) -> torch.tensor:
"""
Transform target, so it could be used by model
"""
target_batch_rs = torch.from_numpy(resized_frs.copy()).cuda()
target_batch_rs = target_batch_rs[:, :, :, [2,1,0]]/255.
if half:
target_batch_rs = target_batch_rs.half()
target_batch_rs = (target_batch_rs - 0.5)/0.5
target_batch_rs = target_batch_rs.permute(0, 3, 1, 2)
return target_batch_rs
def model_inference(full_frames: List[np.ndarray],
source: List,
target: List,
netArc: Callable,
G: Callable,
app: Callable,
set_target: bool,
similarity_th=0.15,
crop_size=224,
BS=60,
half=True) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""
Using original frames get faceswaped frames and transofrmations
"""
target_norm = normalize_and_torch_batch(np.array(target))
target_embeds = netArc(F.interpolate(target_norm, scale_factor=0.5, mode='bilinear', align_corners=True))
crop_frames_list, tfm_array_list = crop_frames_and_get_transforms(full_frames, target_embeds, app, netArc, crop_size, set_target, similarity_th=similarity_th)
source_embeds = []
for source_curr in source:
source_curr = normalize_and_torch(source_curr)
source_embeds.append(netArc(F.interpolate(source_curr, scale_factor=0.5, mode='bilinear', align_corners=True)))
final_frames_list = []
for idx, (crop_frames, tfm_array, source_embed) in enumerate(zip(crop_frames_list, tfm_array_list, source_embeds)):
resized_frs, present = resize_frames(crop_frames)
resized_frs = np.array(resized_frs)
target_batch_rs = transform_target_to_torch(resized_frs, half=half)
if half:
source_embed = source_embed.half()
size = target_batch_rs.shape[0]
model_output = []
for i in tqdm(range(0, size, BS)):
Y_st = faceshifter_batch(source_embed, target_batch_rs[i:i+BS], G)
model_output.append(Y_st)
torch.cuda.empty_cache()
model_output = np.concatenate(model_output)
final_frames = []
idx_fs = 0
for pres in tqdm(present):
if pres == 1:
final_frames.append(model_output[idx_fs])
idx_fs += 1
else:
final_frames.append([])
final_frames_list.append(final_frames)
return final_frames_list, crop_frames_list, full_frames, tfm_array_list