CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/course/de/chapter3/section3.ipynb
Views: 2555
Kernel: Unknown Kernel

Fine-tuning von Modellen mit der Trainer API oder Keras

Install the Transformers, Datasets, and Evaluate libraries to run this notebook.

!pip install datasets evaluate transformers[sentencepiece]
from datasets import load_dataset from transformers import AutoTokenizer, DataCollatorWithPadding raw_datasets = load_dataset("glue", "mrpc") checkpoint = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(checkpoint) def tokenize_function(example): return tokenizer(example["sentence1"], example["sentence2"], truncation=True) tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
from transformers import TrainingArguments training_args = TrainingArguments("test-trainer")
from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
from transformers import Trainer trainer = Trainer( model, training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, tokenizer=tokenizer, )
trainer.train()
predictions = trainer.predict(tokenized_datasets["validation"]) print(predictions.predictions.shape, predictions.label_ids.shape)
(408, 2) (408,)
import numpy as np preds = np.argmax(predictions.predictions, axis=-1)
import evaluate metric = evaluate.load("glue", "mrpc") metric.compute(predictions=preds, references=predictions.label_ids)
{'accuracy': 0.8578431372549019, 'f1': 0.8996539792387542}
def compute_metrics(eval_preds): metric = evaluate.load("glue", "mrpc") logits, labels = eval_preds predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels)
training_args = TrainingArguments("test-trainer", evaluation_strategy="epoch") model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) trainer = Trainer( model, training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, tokenizer=tokenizer, compute_metrics=compute_metrics, )