CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/course/fr/chapter4/section3_pt.ipynb
Views: 2555
Kernel: Python 3

Partage de modèles pré-entraînés (PyTorch)

Installez la bibliothèque 🤗 Transformers pour exécuter ce notebook.

!pip install datasets transformers[sentencepiece] !apt install git-lfs

Vous aurez besoin de configurer git, adaptez votre email et votre nom dans la cellule suivante.

!git config --global user.email "[email protected]" !git config --global user.name "Your Name"

Vous devrez également être connecté au Hub d'Hugging Face. Exécutez ce qui suit et entrez vos informations d'identification.

from huggingface_hub import notebook_login notebook_login()
from transformers import TrainingArguments training_args = TrainingArguments( "camembert-base-finetuned-paws-x", save_strategy="epoch", push_to_hub=True )
from transformers import AutoModelForMaskedLM, AutoTokenizer checkpoint = "camembert-base" model = AutoModelForMaskedLM.from_pretrained(checkpoint) tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model.push_to_hub("dummy-model")
tokenizer.push_to_hub("dummy-model")
tokenizer.push_to_hub("dummy-model", organization="huggingface")
tokenizer.push_to_hub("dummy-model", organization="huggingface", use_auth_token="<TOKEN>")
from huggingface_hub import ( # Gestion de l'utilisateur login, logout, whoami, # Création et gestion du dépôt create_repo, delete_repo, update_repo_visibility, # Quelques méthodes pour récupérer/changer des informations sur le contenu list_models, list_datasets, list_metrics, list_repo_files, upload_file, delete_file, )
from huggingface_hub import create_repo create_repo("dummy-model")
from huggingface_hub import create_repo create_repo("dummy-model", organization="huggingface")
from huggingface_hub import upload_file upload_file( "<path_to_file>/config.json", path_in_repo="config.json", repo_id="<namespace>/dummy-model", )
from huggingface_hub import Repository repo = Repository("<path_to_dummy_folder>", clone_from="<namespace>/dummy-model")
repo.git_pull() repo.git_add() repo.git_commit() repo.git_push() repo.git_tag()
repo.git_pull()
model.save_pretrained("<path_to_dummy_folder>") tokenizer.save_pretrained("<path_to_dummy_folder>")
repo.git_add() repo.git_commit("Add model and tokenizer files") repo.git_push()
from transformers import AutoModelForMaskedLM, AutoTokenizer checkpoint = "camembert-base" model = AutoModelForMaskedLM.from_pretrained(checkpoint) tokenizer = AutoTokenizer.from_pretrained(checkpoint) # Faites ce que vous voulez avec le modèle, entraînez-le, finetunez-le... model.save_pretrained("<path_to_dummy_folder>") tokenizer.save_pretrained("<path_to_dummy_folder>")