Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/main/course/fr/chapter7/section2_tf.ipynb
Views: 2555
Kernel: Python 3
Classification de token (TensorFlow)
Installez les bibliothèques 🤗 Datasets, 🤗 Transformers et 🤗 Accelerate pour exécuter ce notebook.
In [ ]:
!pip install datasets transformers[sentencepiece] !apt install git-lfs
Vous aurez besoin de configurer git, adaptez votre email et votre nom dans la cellule suivante.
In [ ]:
Vous devrez également être connecté au Hub d'Hugging Face. Exécutez ce qui suit et entrez vos informations d'identification.
In [ ]:
from huggingface_hub import notebook_login notebook_login()
In [ ]:
from datasets import load_dataset raw_datasets = load_dataset("wikiann","fr")
In [ ]:
raw_datasets
In [ ]:
raw_datasets["train"][0]["tokens"]
In [ ]:
raw_datasets["train"][0]["ner_tags"]
In [ ]:
ner_feature = raw_datasets["train"].features["ner_tags"] ner_feature
In [ ]:
label_names = ner_feature.feature.names label_names
In [ ]:
words = raw_datasets["train"][0]["tokens"] labels = raw_datasets["train"][0]["ner_tags"] line1 = "" line2 = "" for word, label in zip(words, labels): full_label = label_names[label] max_length = max(len(word), len(full_label)) line1 += word + " " * (max_length - len(word) + 1) line2 += full_label + " " * (max_length - len(full_label) + 1) print(line1) print(line2)
In [ ]:
from transformers import AutoTokenizer model_checkpoint = "camembert-base" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
In [ ]:
tokenizer.is_fast
In [ ]:
inputs = tokenizer(raw_datasets["train"][0]["tokens"], is_split_into_words=True) inputs.tokens()
In [ ]:
inputs.word_ids()
In [ ]:
def align_labels_with_tokens(labels, word_ids): new_labels = [] current_word = None for word_id in word_ids: if word_id != current_word: # Début d'un nouveau mot ! current_word = word_id label = -100 if word_id is None else labels[word_id] new_labels.append(label) elif word_id is None: # Token special new_labels.append(-100) else: # Même mot que le token précédent label = labels[word_id] # Si l'étiquette est B-XXX, nous la changeons en I-XXX if label % 2 == 1: label += 1 new_labels.append(label) return new_labels
In [ ]:
labels = raw_datasets["train"][0]["ner_tags"] word_ids = inputs.word_ids() print(labels) print(align_labels_with_tokens(labels, word_ids))
In [ ]:
def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer( examples["tokens"], truncation=True, is_split_into_words=True ) all_labels = examples["ner_tags"] new_labels = [] for i, labels in enumerate(all_labels): word_ids = tokenized_inputs.word_ids(i) new_labels.append(align_labels_with_tokens(labels, word_ids)) tokenized_inputs["labels"] = new_labels return tokenized_inputs
In [ ]:
tokenized_datasets = raw_datasets.map( tokenize_and_align_labels, batched=True, remove_columns=raw_datasets["train"].column_names, )
In [ ]:
from transformers import DataCollatorForTokenClassification data_collator = DataCollatorForTokenClassification( tokenizer=tokenizer, return_tensors="tf" )
In [ ]:
batch = data_collator([tokenized_datasets["train"][i] for i in range(2)]) batch["labels"]
In [ ]:
for i in range(2): print(tokenized_datasets["train"][i]["labels"])
In [ ]:
tf_train_dataset = tokenized_datasets["train"].to_tf_dataset( columns=["attention_mask", "input_ids", "labels"], collate_fn=data_collator, shuffle=True, batch_size=16, ) tf_eval_dataset = tokenized_datasets["validation"].to_tf_dataset( columns=["attention_mask", "input_ids", "labels"], collate_fn=data_collator, shuffle=False, batch_size=16, )
In [ ]:
id2label = {str(i): label for i, label in enumerate(label_names)} label2id = {v: k for k, v in id2label.items()}
In [ ]:
from transformers import TFAutoModelForTokenClassification model = TFAutoModelForTokenClassification.from_pretrained( model_checkpoint, id2label=id2label, label2id=label2id, )
In [ ]:
model.config.num_labels
In [ ]:
from huggingface_hub import notebook_login notebook_login()
In [ ]:
from transformers import create_optimizer import tensorflow as tf # Train in mixed-precision float16 # Commentez cette ligne si vous utilisez un GPU qui ne bénéficiera pas de cette fonction. tf.keras.mixed_precision.set_global_policy("mixed_float16") # Le nombre d'étapes d'entraînement est le nombre d'échantillons dans le jeu de données, divisé par la taille du batch puis multiplié # par le nombre total d'époques. Notez que le jeu de données tf_train_dataset est ici un lot de données tf.data.Dataset, # pas le jeu de données original Hugging Face, donc son len() est déjà num_samples // batch_size. num_epochs = 3 num_train_steps = len(tf_train_dataset) * num_epochs optimizer, schedule = create_optimizer( init_lr=2e-5, num_warmup_steps=0, num_train_steps=num_train_steps, weight_decay_rate=0.01, ) model.compile(optimizer=optimizer)
In [ ]:
from transformers.keras_callbacks import PushToHubCallback callback = PushToHubCallback(output_dir="camembert-finetuned-ner", tokenizer=tokenizer) model.fit( tf_train_dataset, validation_data=tf_eval_dataset, callbacks=[callback], epochs=num_epochs, )
In [ ]:
!pip install seqeval
In [ ]:
from datasets import load_metric metric = load_metric("seqeval")
In [ ]:
labels = raw_datasets["train"][0]["ner_tags"] labels = [label_names[i] for i in labels] labels
In [ ]:
predictions = labels.copy() predictions[2] = "O" metric.compute(predictions=[predictions], references=[labels])
In [ ]:
import numpy as np all_predictions = [] all_labels = [] for batch in tf_eval_dataset: logits = model.predict_on_batch(batch)["logits"] labels = batch["labels"] predictions = np.argmax(logits, axis=-1) for prediction, label in zip(predictions, labels): for predicted_idx, label_idx in zip(prediction, label): if label_idx == -100: continue all_predictions.append(label_names[predicted_idx]) all_labels.append(label_names[label_idx]) metric.compute(predictions=[all_predictions], references=[all_labels])
In [ ]:
from transformers import pipeline # Remplacez par votre propre checkpoint model_checkpoint = "huggingface-course/camembert-finetuned-ner" token_classifier = pipeline( "token-classification", model=model_checkpoint, aggregation_strategy="simple" ) oken_classifier("Je m'appelle Sylvain et je travaille à Hugging Face à Brooklyn.")