CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/course/fr/chapter9/section6.ipynb
Views: 2555
Kernel: Python 3

Fonctions avancées d'Interface

Installez les bibliothèques 🤗 Transformers et 🤗 Gradio pour exécuter ce notebook.

!pip install datasets transformers[sentencepiece] !pip install gradio
import random import gradio as gr def chat(message, history): history = history or [] if message.startswith("Combien"): response = random.randint(1, 10) elif message.startswith("Comment"): response = random.choice(["Super", "Bon", "Ok", "Mal"]) elif message.startswith("Où"): response = random.choice(["Ici", "Là", "Quelque part"]) else: response = "Je ne sais pas." history.append((message, response)) return history, history iface = gr.Interface( chat, ["text", "state"], ["chatbot", "state"], allow_screenshot=False, allow_flagging="never", ) iface.launch()
import requests import tensorflow as tf import gradio as gr inception_net = tf.keras.applications.MobileNetV2() # charger le modèle # Télécharger des étiquettes lisibles par l'homme pour ImageNet response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() return {labels[i]: float(prediction[i]) for i in range(1000)} image = gr.Image(shape=(224, 224)) label = gr.Label(num_top_classes=3) title = "Classification des images avec Gradio + Exemple d'interprétation" gr.Interface( fn=classify_image, inputs=image, outputs=label, interpretation="default", title=title ).launch()