CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/course/ja/chapter2/section2_pt.ipynb
Views: 2555
Kernel: Unknown Kernel

pipelineの裏側 (PyTorch)

Install the Transformers, Datasets, and Evaluate libraries to run this notebook.

!pip install datasets evaluate transformers[sentencepiece]
from transformers import pipeline classifier = pipeline("sentiment-analysis") classifier( [ "I've been waiting for a HuggingFace course my whole life.", "I hate this so much!", ] )
[{'label': 'POSITIVE', 'score': 0.9598047137260437}, {'label': 'NEGATIVE', 'score': 0.9994558095932007}]
from transformers import AutoTokenizer checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(checkpoint)
raw_inputs = [ "I've been waiting for a HuggingFace course my whole life.", "I hate this so much!", ] inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt") print(inputs)
{ 'input_ids': tensor([ [ 101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 2878, 2166, 1012, 102], [ 101, 1045, 5223, 2023, 2061, 2172, 999, 102, 0, 0, 0, 0, 0, 0, 0, 0] ]), 'attention_mask': tensor([ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]) }
from transformers import AutoModel checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" model = AutoModel.from_pretrained(checkpoint)
outputs = model(**inputs) print(outputs.last_hidden_state.shape)
torch.Size([2, 16, 768])
from transformers import AutoModelForSequenceClassification checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" model = AutoModelForSequenceClassification.from_pretrained(checkpoint) outputs = model(**inputs)
print(outputs.logits.shape)
torch.Size([2, 2])
print(outputs.logits)
tensor([[-1.5607, 1.6123], [ 4.1692, -3.3464]], grad_fn=<AddmmBackward>)
import torch predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) print(predictions)
tensor([[4.0195e-02, 9.5980e-01], [9.9946e-01, 5.4418e-04]], grad_fn=<SoftmaxBackward>)
model.config.id2label
{0: 'NEGATIVE', 1: 'POSITIVE'}