CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/course/vi/chapter9/section6.ipynb
Views: 2555
Kernel: Unknown Kernel

Các tính năng nâng cao của Interface

Install the Transformers, Datasets, and Evaluate libraries to run this notebook.

!pip install datasets evaluate transformers[sentencepiece] !pip install gradio
import random import gradio as gr def chat(message, history): history = history or [] if message.startswith("How many"): response = random.randint(1, 10) elif message.startswith("How"): response = random.choice(["Great", "Good", "Okay", "Bad"]) elif message.startswith("Where"): response = random.choice(["Here", "There", "Somewhere"]) else: response = "I don't know" history.append((message, response)) return history, history iface = gr.Interface( chat, ["text", "state"], ["chatbot", "state"], allow_screenshot=False, allow_flagging="never", ) iface.launch()
import requests import tensorflow as tf import gradio as gr inception_net = tf.keras.applications.MobileNetV2() # tải mô hình # Tải nhãn con người đọc được cho ImageNet. response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() return {labels[i]: float(prediction[i]) for i in range(1000)} image = gr.Image(shape=(224, 224)) label = gr.Label(num_top_classes=3) title = "Gradio Image Classifiction + Interpretation Example" gr.Interface( fn=classify_image, inputs=image, outputs=label, interpretation="default", title=title ).launch()