CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/diffusers/composable_stable_diffusion.ipynb
Views: 3149
Kernel: Unknown Kernel

Composable Stable diffusion

Composable Stable Diffusion proposes conjunction and negation (negative prompts) operators for compositional generation with conditional diffusion models. This script was contributed by MarkRich and the notebook by Parag Ekbote.

pip install torch numpy torchvision diffusers
import torch as th import numpy as np import torchvision.utils as tvu from diffusers import DiffusionPipeline import argparse import sys # Simulate passing arguments explicitly (bypassing Jupyter's arguments) sys.argv = [ "ipykernel_launcher.py", "--prompt", "mystical trees | A magical pond | dark", "--steps", "50", "--scale", "7.5", "--weights", "7.5 | 7.5 | -7.5", "--seed", "2", "--model_path", "CompVis/stable-diffusion-v1-4", "--num_images", "1" ] parser = argparse.ArgumentParser() parser.add_argument("--prompt", type=str, default="mystical trees | A magical pond | dark", help="use '|' as the delimiter to compose separate sentences.") parser.add_argument("--steps", type=int, default=50) parser.add_argument("--scale", type=float, default=7.5) parser.add_argument("--weights", type=str, default="7.5 | 7.5 | -7.5") parser.add_argument("--seed", type=int, default=2) parser.add_argument("--model_path", type=str, default="CompVis/stable-diffusion-v1-4") parser.add_argument("--num_images", type=int, default=1) args = parser.parse_args() # CUDA Setup has_cuda = th.cuda.is_available() device = th.device('cpu' if not has_cuda else 'cuda') # Assign parameters prompt = args.prompt scale = args.scale steps = args.steps # Load pipeline pipe = DiffusionPipeline.from_pretrained( args.model_path, custom_pipeline="composable_stable_diffusion", ).to(device) # Disable safety checker (if intentional for internal use) pipe.safety_checker = None # Generate images images = [] generator = th.Generator("cuda").manual_seed(args.seed) for i in range(args.num_images): image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps, weights=args.weights, generator=generator).images[0] images.append(th.from_numpy(np.array(image)).permute(2, 0, 1) / 255.) # Create and save image grid grid = tvu.make_grid(th.stack(images, dim=0), nrow=4, padding=0) tvu.save_image(grid, f'{prompt}_{args.weights}.png') print("Image saved successfully!")
composing ['mystical trees', 'A magical pond', 'dark']...
Image saved successfully!