Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
huggingface
GitHub Repository: huggingface/notebooks
Path: blob/main/transformers_doc/ar/peft.ipynb
4522 views
Kernel: Unknown Kernel
# Transformers installation ! pip install transformers datasets evaluate accelerate # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git

تحميل المحوّلات باستخدام 🤗 PEFT

تقنية "التدريب الدقيق ذو الكفاءة البارامتيرية" (PEFT)](https://huggingface.co/blog/peft) تقوم بتجميد معلمات النموذج المُدرب مسبقًا أثناء الضبط الدقيق وتضيف عدد صغير من المعلمات القابلة للتدريب (المحولات) فوقه. يتم تدريب المحوّلات لتعلم معلومات خاصة بالمهام. وقد ثبت أن هذا النهج فعال للغاية من حيث استخدام الذاكرة مع انخفاض استخدام الكمبيوتر أثناء إنتاج نتائج قمماثلة للنموذج مضبوط دقيقًا بالكامل.

عادة ما تكون المحولات المدربة باستخدام PEFT أصغر بمقدار كبير من حيث الحجم من النموذج الكامل، مما يجعل من السهل مشاركتها وتخزينها وتحميلها.

تبلغ أوزان المحول لطراز OPTForCausalLM المخزن على Hub حوالي 6 ميجابايت مقارنة بالحجم الكامل لأوزان النموذج، والتي يمكن أن تكون حوالي 700 ميجابايت.

إذا كنت مهتمًا بمعرفة المزيد عن مكتبة 🤗 PEFT، فراجع الوثائق.

الإعداد

ابدأ بتثبيت 🤗 PEFT:

pip install peft

إذا كنت تريد تجربة الميزات الجديدة تمامًا، فقد تكون مهتمًا بتثبيت المكتبة من المصدر:

pip install git+https://github.com/huggingface/peft.git

نماذج PEFT المدعومة

يدعم 🤗 Transformers بشكلٍ أصلي بعض طرق PEFT، مما يعني أنه يمكنك تحميل أوزان المحول المخزنة محليًا أو على Hub وتشغيلها أو تدريبها ببضع سطور من التعليمات البرمجية. الطرق المدعومة هي:

إذا كنت تريد استخدام طرق PEFT الأخرى، مثل تعلم المحث أو ضبط المحث، أو حول مكتبة 🤗 PEFT بشكل عام، يرجى الرجوع إلى الوثائق.

تحميل محول PEFT

لتحميل نموذج محول PEFT واستخدامه من 🤗 Transformers، تأكد من أن مستودع Hub أو الدليل المحلي يحتوي على ملف adapter_config.json وأوزان المحوّل، كما هو موضح في صورة المثال أعلاه. بعد ذلك، يمكنك تحميل نموذج محوّل PEFT باستخدام فئة AutoModelFor. على سبيل المثال، لتحميل نموذج محول PEFT للنمذجة اللغوية السببية:

  1. حدد معرف النموذج لPEFT

  2. مرره إلى فئة AutoModelForCausalLM

from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(peft_model_id)
[removed]

يمكنك تحميل محول PEFT باستخدام فئة AutoModelFor أو فئة النموذج الأساسي مثل OPTForCausalLM أو LlamaForCausalLM.

يمكنك أيضًا تحميل محول PEFT عن طريق استدعاء طريقة load_adapter:

from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "facebook/opt-350m" peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id)

راجع قسم وثائق API أدناه لمزيد من التفاصيل.

التحميل في 8 بت أو 4 بت

راجع قسم وثائق API أدناه لمزيد من التفاصيل.

التحميل في 8 بت أو 4 بت

يدعم تكامل bitsandbytes أنواع بيانات الدقة 8 بت و4 بت، والتي تكون مفيدة لتحميل النماذج الكبيرة لأنها توفر مساحة في الذاكرة (راجع دليل تكامل bitsandbytes guide لمعرفة المزيد). أضف المعلماتload_in_8bit أو load_in_4bit إلى from_pretrained() وقم بتعيين device_map="auto" لتوزيع النموذج بشكل فعال على الأجهزة لديك:

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(peft_model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True))

إضافة محول جديد

يمكنك استخدام الدالة ~peft.PeftModel.add_adapter لإضافة محوّل جديد إلى نموذج يحتوي بالفعل على محوّل آخر طالما أن المحول الجديد مطابقًا للنوع الحالي. على سبيل المثال، إذا كان لديك محول LoRA موجود مرتبط بنموذج:

from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import LoraConfig model_id = "facebook/opt-350m" model = AutoModelForCausalLM.from_pretrained(model_id) lora_config = LoraConfig( target_modules=["q_proj", "k_proj"], init_lora_weights=False ) model.add_adapter(lora_config, adapter_name="adapter_1")

لإضافة محول جديد:

# قم بتعليق محول جديد بنفس التكوين model.add_adapter(lora_config, adapter_name="adapter_2")

الآن يمكنك استخدام ~peft.PeftModel.set_adapter لتعيين المحول الذي سيتم استخدامه:

# استخدم adapter_1 model.set_adapter("adapter_1") output = model.generate(**inputs) print(tokenizer.decode(output_disabled[0], skip_special_tokens=True)) # استخدم adapter_2 model.set_adapter("adapter_2") output_enabled = model.generate(**inputs) print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))

تمكين وتعطيل المحولات

بمجرد إضافة محول إلى نموذج، يمكنك تمكين أو تعطيل وحدة المحول. لتمكين وحدة المحول:

from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import PeftConfig model_id = "facebook/opt-350m" adapter_model_id = "ybelkada/opt-350m-lora" tokenizer = AutoTokenizer.from_pretrained(model_id) text = "Hello" inputs = tokenizer(text, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained(model_id) peft_config = PeftConfig.from_pretrained(adapter_model_id) # لبدء تشغيله بأوزان عشوائية peft_config.init_lora_weights = False model.add_adapter(peft_config) model.enable_adapters() output = model.generate(**inputs)

لإيقاف تشغيل وحدة المحول:

model.disable_adapters() output = model.generate(**inputs)

تدريب محول PEFT

يدعم محول PEFT فئة Trainer بحيث يمكنك تدريب محول لحالتك الاستخدام المحددة. فهو يتطلب فقط إضافة بضع سطور أخرى من التعليمات البرمجية. على سبيل المثال، لتدريب محول LoRA:

[removed]

إذا لم تكن معتادًا على ضبط نموذج دقيق باستخدام Trainer، فراجع البرنامج التعليمي لضبط نموذج مُدرب مسبقًا.

  1. حدد تكوين المحول باستخدام نوع المهمة والمعاملات الزائدة (راجع ~peft.LoraConfig لمزيد من التفاصيل حول وظيفة هذه المعلمات).

from peft import LoraConfig peft_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", task_type="CAUSAL_LM"، )
  1. أضف المحول إلى النموذج.

model.add_adapter(peft_config)
  1. الآن يمكنك تمرير النموذج إلى Trainer!

trainer = Trainer(model=model, ...) trainer.train()

لحفظ محول المدرب وتحميله مرة أخرى:

model.save_pretrained(save_dir) model = AutoModelForCausalLM.from_pretrained(save_dir)

إضافة طبقات قابلة للتدريب إضافية إلى محول PEFT

model.save_pretrained(save_dir) model = AutoModelForCausalLM.from_pretrained(save_dir)

إضافة طبقات قابلة للتدريب إضافية إلى محول PEFT

يمكنك أيضًا إجراء تدريب دقيق لمحوّلات قابلة للتدريب إضافية فوق نموذج يحتوي بالفعل على محوّلات عن طريق تمرير معلم modules_to_save في تكوين PEFT الخاص بك. على سبيل المثال، إذا كنت تريد أيضًا ضبط دقيق لرأس النموذج اللغويlm_head فوق نموذج بمحوّل LoRA:

from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import LoraConfig model_id = "facebook/opt-350m" model = AutoModelForCausalLM.from_pretrained(model_id) lora_config = LoraConfig( target_modules=["q_proj", "k_proj"], modules_to_save=["lm_head"]، ) model.add_adapter(lora_config)

وثائق API

[[autodoc]] integrations.PeftAdapterMixin - load_adapter - add_adapter - set_adapter - disable_adapters - enable_adapters - active_adapters - get_adapter_state_dict