Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
huggingface
GitHub Repository: huggingface/notebooks
Path: blob/main/transformers_doc/ja/pytorch/image_classification.ipynb
4542 views
Kernel: Unknown Kernel

Image classification

#@title from IPython.display import HTML HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/tjAIM7BOYhw?rel=0&amp;controls=0&amp;showinfo=0" frameborder="0" allowfullscreen></iframe>')

画像分類では、画像にラベルまたはクラスを割り当てます。テキストや音声の分類とは異なり、入力は 画像を構成するピクセル値。損傷の検出など、画像分類には多くの用途があります 自然災害の後、作物の健康状態を監視したり、病気の兆候がないか医療画像をスクリーニングしたりするのに役立ちます。

このガイドでは、次の方法を説明します。

  1. Food-101 データセットの ViT を微調整して、画像内の食品を分類します。

  2. 微調整したモデルを推論に使用します。

[removed]

このタスクと互換性のあるすべてのアーキテクチャとチェックポイントを確認するには、タスクページ を確認することをお勧めします。

始める前に、必要なライブラリがすべてインストールされていることを確認してください。

pip install transformers datasets evaluate

Hugging Face アカウントにログインして、モデルをアップロードしてコミュニティと共有することをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。

from huggingface_hub import notebook_login notebook_login()

Load Food-101 dataset

Datasets、🤗 データセット ライブラリから Food-101 データセットの小さいサブセットを読み込みます。これにより、次の機会が得られます 完全なデータセットのトレーニングにさらに時間を費やす前に、実験してすべてが機能することを確認してください。

from datasets import load_dataset food = load_dataset("food101", split="train[:5000]")

train_test_split メソッドを使用して、データセットの train 分割をトレイン セットとテスト セットに分割します。

food = food.train_test_split(test_size=0.2)

次に、例を見てみましょう。

food["train"][0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x512 at 0x7F52AFC8AC50>, 'label': 79}

データセット内の各例には 2 つのフィールドがあります。

  • image: 食品の PIL 画像

  • label: 食品のラベルクラス

モデルがラベル ID からラベル名を取得しやすくするために、ラベル名をマップする辞書を作成します。 整数への変換、またはその逆:

labels = food["train"].features["label"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label

これで、ラベル ID をラベル名に変換できるようになりました。

id2label[str(79)]
'prime_rib'

Preprocess

次のステップでは、ViT 画像プロセッサをロードして画像をテンソルに処理します。

from transformers import AutoImageProcessor checkpoint = "google/vit-base-patch16-224-in21k" image_processor = AutoImageProcessor.from_pretrained(checkpoint)

いくつかの画像変換を画像に適用して、モデルの過学習に対する堅牢性を高めます。ここでは torchvision の transforms モジュールを使用しますが、任意の画像ライブラリを使用することもできます。

画像のランダムな部分をトリミングし、サイズを変更し、画像の平均と標準偏差で正規化します。

from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) size = ( image_processor.size["shortest_edge"] if "shortest_edge" in image_processor.size else (image_processor.size["height"], image_processor.size["width"]) ) _transforms = Compose([RandomResizedCrop(size), ToTensor(), normalize])

次に、変換を適用し、画像の pixel_values (モデルへの入力) を返す前処理関数を作成します。

def transforms(examples): examples["pixel_values"] = [_transforms(img.convert("RGB")) for img in examples["image"]] del examples["image"] return examples

データセット全体に前処理関数を適用するには、🤗 Datasets with_transform メソッドを使用します。変換は、データセットの要素を読み込むときにオンザフライで適用されます。

food = food.with_transform(transforms)

次に、DefaultDataCollat​​or を使用してサンプルのバッチを作成します。 🤗 Transformers の他のデータ照合器とは異なり、DefaultDataCollat​​or はパディングなどの追加の前処理を適用しません。

from transformers import DefaultDataCollator data_collator = DefaultDataCollator()

Evaluate

トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。すぐにロードできます 🤗 Evaluate ライブラリを使用した評価方法。このタスクでは、ロードします accuracy 指標 (詳細については、🤗 評価 クイック ツアー を参照してくださいメトリクスをロードして計算する方法):

import evaluate accuracy = evaluate.load("accuracy")

次に、予測とラベルを compute に渡して精度を計算する関数を作成します。

import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels)

これで compute_metrics関数の準備が整いました。トレーニングを設定するときにこの関数に戻ります。

Train

[removed]

Trainer を使用したモデルの微調整に慣れていない場合は、こちら の基本的なチュートリアルをご覧ください。

これでモデルのトレーニングを開始する準備が整いました。 AutoModelForImageClassification を使用して ViT をロードします。ラベルの数と予想されるラベルの数、およびラベル マッピングを指定します。

from transformers import AutoModelForImageClassification, TrainingArguments, Trainer model = AutoModelForImageClassification.from_pretrained( checkpoint, num_labels=len(labels), id2label=id2label, label2id=label2id, )

この時点で残っているステップは 3 つだけです。

  1. TrainingArguments でトレーニング ハイパーパラメータを定義します。 image 列が削除されるため、未使用の列を削除しないことが重要です。 image 列がないと、pixel_values を作成できません。この動作を防ぐには、remove_unused_columns=Falseを設定してください。他に必要なパラメータは、モデルの保存場所を指定する output_dir だけです。 push_to_hub=Trueを設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。各エポックの終了時に、Trainer は精度を評価し、トレーニング チェックポイントを保存します。

  2. トレーニング引数を、モデル、データセット、トークナイザー、データ照合器、および compute_metrics 関数とともに Trainer に渡します。

  3. train() を呼び出してモデルを微調整します。

training_args = TrainingArguments( output_dir="my_awesome_food_model", remove_unused_columns=False, eval_strategy="epoch", save_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=16, gradient_accumulation_steps=4, per_device_eval_batch_size=16, num_train_epochs=3, warmup_ratio=0.1, logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", push_to_hub=True, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=food["train"], eval_dataset=food["test"], processing_class=image_processor, compute_metrics=compute_metrics, ) trainer.train()

トレーニングが完了したら、 push_to_hub() メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。

trainer.push_to_hub()
[removed]

画像分類用のモデルを微調整する方法の詳細な例については、対応する PyTorch ノートブック

Inference

モデルを微調整したので、それを推論に使用できるようになりました。

推論を実行したい画像を読み込みます。

ds = load_dataset("food101", split="validation[:10]") image = ds["image"][0]
image of beignets

推論用に微調整されたモデルを試す最も簡単な方法は、それを pipeline() で使用することです。モデルを使用して画像分類用のpipelineをインスタンス化し、それに画像を渡します。

from transformers import pipeline classifier = pipeline("image-classification", model="my_awesome_food_model") classifier(image)
[{'score': 0.31856709718704224, 'label': 'beignets'}, {'score': 0.015232225880026817, 'label': 'bruschetta'}, {'score': 0.01519392803311348, 'label': 'chicken_wings'}, {'score': 0.013022331520915031, 'label': 'pork_chop'}, {'score': 0.012728818692266941, 'label': 'prime_rib'}]

必要に応じて、pipelineの結果を手動で複製することもできます。

画像プロセッサをロードして画像を前処理し、inputを PyTorch テンソルとして返します。

from transformers import AutoImageProcessor import torch image_processor = AutoImageProcessor.from_pretrained("my_awesome_food_model") inputs = image_processor(image, return_tensors="pt")

入力をモデルに渡し、ロジットを返します。

from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("my_awesome_food_model") with torch.no_grad(): logits = model(**inputs).logits

最も高い確率で予測されたラベルを取得し、モデルの id2label マッピングを使用してラベルに変換します。

predicted_label = logits.argmax(-1).item() model.config.id2label[predicted_label]
'beignets'