Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
huggingface
GitHub Repository: huggingface/notebooks
Path: blob/main/transformers_doc/ja/tensorflow/image_classification.ipynb
4544 views
Kernel: Unknown Kernel

Image classification

#@title from IPython.display import HTML HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/tjAIM7BOYhw?rel=0&amp;controls=0&amp;showinfo=0" frameborder="0" allowfullscreen></iframe>')

画像分類では、画像にラベルまたはクラスを割り当てます。テキストや音声の分類とは異なり、入力は 画像を構成するピクセル値。損傷の検出など、画像分類には多くの用途があります 自然災害の後、作物の健康状態を監視したり、病気の兆候がないか医療画像をスクリーニングしたりするのに役立ちます。

このガイドでは、次の方法を説明します。

  1. Food-101 データセットの ViT を微調整して、画像内の食品を分類します。

  2. 微調整したモデルを推論に使用します。

[removed]

このタスクと互換性のあるすべてのアーキテクチャとチェックポイントを確認するには、タスクページ を確認することをお勧めします。

始める前に、必要なライブラリがすべてインストールされていることを確認してください。

pip install transformers datasets evaluate

Hugging Face アカウントにログインして、モデルをアップロードしてコミュニティと共有することをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。

from huggingface_hub import notebook_login notebook_login()

Load Food-101 dataset

Datasets、🤗 データセット ライブラリから Food-101 データセットの小さいサブセットを読み込みます。これにより、次の機会が得られます 完全なデータセットのトレーニングにさらに時間を費やす前に、実験してすべてが機能することを確認してください。

from datasets import load_dataset food = load_dataset("food101", split="train[:5000]")

train_test_split メソッドを使用して、データセットの train 分割をトレイン セットとテスト セットに分割します。

food = food.train_test_split(test_size=0.2)

次に、例を見てみましょう。

food["train"][0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x512 at 0x7F52AFC8AC50>, 'label': 79}

データセット内の各例には 2 つのフィールドがあります。

  • image: 食品の PIL 画像

  • label: 食品のラベルクラス

モデルがラベル ID からラベル名を取得しやすくするために、ラベル名をマップする辞書を作成します。 整数への変換、またはその逆:

labels = food["train"].features["label"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label

これで、ラベル ID をラベル名に変換できるようになりました。

id2label[str(79)]
'prime_rib'

Preprocess

次のステップでは、ViT 画像プロセッサをロードして画像をテンソルに処理します。

from transformers import AutoImageProcessor checkpoint = "google/vit-base-patch16-224-in21k" image_processor = AutoImageProcessor.from_pretrained(checkpoint)

過剰適合を回避し、モデルをより堅牢にするために、データセットのトレーニング部分にデータ拡張を追加します。 ここでは、Keras 前処理レイヤーを使用してトレーニング データの変換 (データ拡張を含む) を定義します。 検証データの変換 (中央のトリミング、サイズ変更、正規化のみ)。 tf.image または 他のライブラリでも構いません。

from tensorflow import keras from tensorflow.keras import layers size = (image_processor.size["height"], image_processor.size["width"]) train_data_augmentation = keras.Sequential( [ layers.RandomCrop(size[0], size[1]), layers.Rescaling(scale=1.0 / 127.5, offset=-1), layers.RandomFlip("horizontal"), layers.RandomRotation(factor=0.02), layers.RandomZoom(height_factor=0.2, width_factor=0.2), ], name="train_data_augmentation", ) val_data_augmentation = keras.Sequential( [ layers.CenterCrop(size[0], size[1]), layers.Rescaling(scale=1.0 / 127.5, offset=-1), ], name="val_data_augmentation", )

次に、一度に 1 つの画像ではなく、画像のバッチに適切な変換を適用する関数を作成します。

import numpy as np import tensorflow as tf from PIL import Image def convert_to_tf_tensor(image: Image): np_image = np.array(image) tf_image = tf.convert_to_tensor(np_image) # `expand_dims()` is used to add a batch dimension since # the TF augmentation layers operates on batched inputs. return tf.expand_dims(tf_image, 0) def preprocess_train(example_batch): """Apply train_transforms across a batch.""" images = [ train_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ] example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] return example_batch def preprocess_val(example_batch): """Apply val_transforms across a batch.""" images = [ val_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ] example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] return example_batch

🤗 データセット set_transform を使用して、その場で変換を適用します。

food["train"].set_transform(preprocess_train) food["test"].set_transform(preprocess_val)

最後の前処理ステップとして、DefaultDataCollat​​orを使用してサンプルのバッチを作成します。 🤗 Transformers の他のデータ照合機能とは異なり、 DefaultDataCollat​​or は、パディングなどの追加の前処理を適用しません。

from transformers import DefaultDataCollator data_collator = DefaultDataCollator(return_tensors="tf")

Evaluate

トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。すぐにロードできます 🤗 Evaluate ライブラリを使用した評価方法。このタスクでは、ロードします accuracy 指標 (詳細については、🤗 評価 クイック ツアー を参照してくださいメトリクスをロードして計算する方法):

import evaluate accuracy = evaluate.load("accuracy")

次に、予測とラベルを compute に渡して精度を計算する関数を作成します。

import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels)

これで compute_metrics関数の準備が整いました。トレーニングを設定するときにこの関数に戻ります。

Train

[removed]

Keras を使用したモデルの微調整に慣れていない場合は、まず 基本チュートリアル を確認してください。

TensorFlow でモデルを微調整するには、次の手順に従います。

  1. トレーニングのハイパーパラメータを定義し、オプティマイザーと学習率スケジュールを設定します。

  2. 事前トレーニングされたモデルをインスタンス化します。

  3. 🤗 データセットを tf.data.Dataset に変換します。

  4. モデルをコンパイルします。

  5. コールバックを追加し、fit() メソッドを使用してトレーニングを実行します。

  6. モデルを 🤗 Hub にアップロードしてコミュニティと共有します。

まず、ハイパーパラメーター、オプティマイザー、学習率スケジュールを定義します。

from transformers import create_optimizer batch_size = 16 num_epochs = 5 num_train_steps = len(food["train"]) * num_epochs learning_rate = 3e-5 weight_decay_rate = 0.01 optimizer, lr_schedule = create_optimizer( init_lr=learning_rate, num_train_steps=num_train_steps, weight_decay_rate=weight_decay_rate, num_warmup_steps=0, )

次に、ラベル マッピングとともに TFAutoModelForImageClassification を使用して ViT を読み込みます。

from transformers import TFAutoModelForImageClassification model = TFAutoModelForImageClassification.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, )

Convert your datasets to the tf.data.Dataset format using the to_tf_dataset and your data_collator:

# converting our train dataset to tf.data.Dataset tf_train_dataset = food["train"].to_tf_dataset( columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator ) # converting our test dataset to tf.data.Dataset tf_eval_dataset = food["test"].to_tf_dataset( columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator )

compile() を使用してトレーニング用にモデルを設定します。

from tensorflow.keras.losses import SparseCategoricalCrossentropy loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer=optimizer, loss=loss)

予測から精度を計算し、モデルを 🤗 ハブにプッシュするには、Keras callbacks を使用します。 compute_metrics 関数を KerasMetricCallback に渡します。 PushToHubCallback を使用してモデルをアップロードします。

from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset) push_to_hub_callback = PushToHubCallback( output_dir="food_classifier", tokenizer=image_processor, save_strategy="no", ) callbacks = [metric_callback, push_to_hub_callback]

ついに、モデルをトレーニングする準備が整いました。トレーニングおよび検証データセット、エポック数、 モデルを微調整するためのコールバック:

model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=num_epochs, callbacks=callbacks)
Epoch 1/5 250/250 [==============================] - 313s 1s/step - loss: 2.5623 - val_loss: 1.4161 - accuracy: 0.9290 Epoch 2/5 250/250 [==============================] - 265s 1s/step - loss: 0.9181 - val_loss: 0.6808 - accuracy: 0.9690 Epoch 3/5 250/250 [==============================] - 252s 1s/step - loss: 0.3910 - val_loss: 0.4303 - accuracy: 0.9820 Epoch 4/5 250/250 [==============================] - 251s 1s/step - loss: 0.2028 - val_loss: 0.3191 - accuracy: 0.9900 Epoch 5/5 250/250 [==============================] - 238s 949ms/step - loss: 0.1232 - val_loss: 0.3259 - accuracy: 0.9890

おめでとう!モデルを微調整し、🤗 Hub で共有しました。これで推論に使用できるようになりました。

[removed]

画像分類用のモデルを微調整する方法の詳細な例については、対応する PyTorch ノートブック

Inference

モデルを微調整したので、それを推論に使用できるようになりました。

推論を実行したい画像を読み込みます。

ds = load_dataset("food101", split="validation[:10]") image = ds["image"][0]
image of beignets

推論用に微調整されたモデルを試す最も簡単な方法は、それを pipeline() で使用することです。モデルを使用して画像分類用のpipelineをインスタンス化し、それに画像を渡します。

from transformers import pipeline classifier = pipeline("image-classification", model="my_awesome_food_model") classifier(image)
[{'score': 0.31856709718704224, 'label': 'beignets'}, {'score': 0.015232225880026817, 'label': 'bruschetta'}, {'score': 0.01519392803311348, 'label': 'chicken_wings'}, {'score': 0.013022331520915031, 'label': 'pork_chop'}, {'score': 0.012728818692266941, 'label': 'prime_rib'}]

必要に応じて、pipelineの結果を手動で複製することもできます。

画像プロセッサをロードして画像を前処理し、inputを TensorFlow テンソルとして返します。

from transformers import AutoImageProcessor image_processor = AutoImageProcessor.from_pretrained("MariaK/food_classifier") inputs = image_processor(image, return_tensors="tf")

入力をモデルに渡し、ロジットを返します。

from transformers import TFAutoModelForImageClassification model = TFAutoModelForImageClassification.from_pretrained("MariaK/food_classifier") logits = model(**inputs).logits

最も高い確率で予測されたラベルを取得し、モデルの id2label マッピングを使用してラベルに変換します。

predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) model.config.id2label[predicted_class_id]
'beignets'