CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
leechanwoo-kor

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: leechanwoo-kor/coursera
Path: blob/main/deep-learning-specialization/course-4-convolutional-neural-network/Residual_Networks.ipynb
Views: 34196
Kernel: Python 3

Residual Networks

Welcome to the first assignment of this week! You'll be building a very deep convolutional network, using Residual Networks (ResNets). In theory, very deep networks can represent very complex functions; but in practice, they are hard to train. Residual Networks, introduced by He et al., allow you to train much deeper networks than were previously feasible.

By the end of this assignment, you'll be able to:

  • Implement the basic building blocks of ResNets in a deep neural network using Keras

  • Put together these building blocks to implement and train a state-of-the-art neural network for image classification

  • Implement a skip connection in your network

For this assignment, you'll use Keras.

Before jumping into the problem, run the cell below to load the required packages.

Important Note on Submission to the AutoGrader

Before submitting your assignment to the AutoGrader, please make sure you are not doing the following:

  1. You have not added any extra print statement(s) in the assignment.

  2. You have not added any extra code cell(s) in the assignment.

  3. You have not changed any of the function parameters.

  4. You are not using any global variables inside your graded exercises. Unless specifically instructed to do so, please refrain from it and use the local variables instead.

  5. You are not changing the assignment code where it is not required, like creating extra variables.

If you do any of the following, you will get something like, Grader not found (or similarly unexpected) error upon submitting your assignment. Before asking for help/debugging the errors in your assignment, check for these first. If this is the case, and you don't remember the changes you have made, you can get a fresh copy of the assignment by following these instructions.

1 - Packages

import tensorflow as tf import numpy as np import scipy.misc from tensorflow.keras.applications.resnet_v2 import ResNet50V2 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet_v2 import preprocess_input, decode_predictions from tensorflow.keras import layers from tensorflow.keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D from tensorflow.keras.models import Model, load_model from resnets_utils import * from tensorflow.keras.initializers import random_uniform, glorot_uniform, constant, identity from tensorflow.python.framework.ops import EagerTensor from matplotlib.pyplot import imshow from test_utils import summary, comparator import public_tests %matplotlib inline

2 - The Problem of Very Deep Neural Networks

Last week, you built your first convolutional neural networks: first manually with numpy, then using Tensorflow and Keras.

In recent years, neural networks have become much deeper, with state-of-the-art networks evolving from having just a few layers (e.g., AlexNet) to over a hundred layers.

  • The main benefit of a very deep network is that it can represent very complex functions. It can also learn features at many different levels of abstraction, from edges (at the shallower layers, closer to the input) to very complex features (at the deeper layers, closer to the output).

  • However, using a deeper network doesn't always help. A huge barrier to training them is vanishing gradients: very deep networks often have a gradient signal that goes to zero quickly, thus making gradient descent prohibitively slow.

  • More specifically, during gradient descent, as you backpropagate from the final layer back to the first layer, you are multiplying by the weight matrix on each step, and thus the gradient can decrease exponentially quickly to zero (or, in rare cases, grow exponentially quickly and "explode," from gaining very large values).

  • During training, you might therefore see the magnitude (or norm) of the gradient for the shallower layers decrease to zero very rapidly as training proceeds, as shown below:

Figure 1 : Vanishing gradient
The speed of learning decreases very rapidly for the shallower layers as the network trains

Not to worry! You are now going to solve this problem by building a Residual Network!

3 - Building a Residual Network

In ResNets, a "shortcut" or a "skip connection" allows the model to skip layers:

Figure 2 : A ResNet block showing a skip-connection

The image on the left shows the "main path" through the network. The image on the right adds a shortcut to the main path. By stacking these ResNet blocks on top of each other, you can form a very deep network.

The lecture mentioned that having ResNet blocks with the shortcut also makes it very easy for one of the blocks to learn an identity function. This means that you can stack on additional ResNet blocks with little risk of harming training set performance.

On that note, there is also some evidence that the ease of learning an identity function accounts for ResNets' remarkable performance even more than skip connections help with vanishing gradients.

Two main types of blocks are used in a ResNet, depending mainly on whether the input/output dimensions are the same or different. You are going to implement both of them: the "identity block" and the "convolutional block."

3.1 - The Identity Block

The identity block is the standard block used in ResNets, and corresponds to the case where the input activation (say a[l]a^{[l]}) has the same dimension as the output activation (say a[l+2]a^{[l+2]}). To flesh out the different steps of what happens in a ResNet's identity block, here is an alternative diagram showing the individual steps:

Figure 3 : Identity block. Skip connection "skips over" 2 layers.

The upper path is the "shortcut path." The lower path is the "main path." In this diagram, notice the CONV2D and ReLU steps in each layer. To speed up training, a BatchNorm step has been added. Don't worry about this being complicated to implement--you'll see that BatchNorm is just one line of code in Keras!

In this exercise, you'll actually implement a slightly more powerful version of this identity block, in which the skip connection "skips over" 3 hidden layers rather than 2 layers. It looks like this:

Figure 4 : Identity block. Skip connection "skips over" 3 layers.

These are the individual steps:

First component of main path:

  • The first CONV2D has F1F_1 filters of shape (1,1) and a stride of (1,1). Its padding is "valid". Use 0 as the seed for the random uniform initialization: kernel_initializer = initializer(seed=0).

  • The first BatchNorm is normalizing the 'channels' axis.

  • Then apply the ReLU activation function. This has no hyperparameters.

Second component of main path:

  • The second CONV2D has F2F_2 filters of shape (f,f)(f,f) and a stride of (1,1). Its padding is "same". Use 0 as the seed for the random uniform initialization: kernel_initializer = initializer(seed=0).

  • The second BatchNorm is normalizing the 'channels' axis.

  • Then apply the ReLU activation function. This has no hyperparameters.

Third component of main path:

  • The third CONV2D has F3F_3 filters of shape (1,1) and a stride of (1,1). Its padding is "valid". Use 0 as the seed for the random uniform initialization: kernel_initializer = initializer(seed=0).

  • The third BatchNorm is normalizing the 'channels' axis.

  • Note that there is no ReLU activation function in this component.

Final step:

  • The X_shortcut and the output from the 3rd layer X are added together.

  • Hint: The syntax will look something like Add()([var1,var2])

  • Then apply the ReLU activation function. This has no hyperparameters.

Exercise 1 - identity_block

Implement the ResNet identity block. The first component of the main path has been implemented for you already! First, you should read these docs carefully to make sure you understand what's happening. Then, implement the rest.

  • To implement the Conv2D step: Conv2D

  • To implement BatchNorm: BatchNormalization BatchNormalization(axis = 3)(X, training = training). If training is set to False, its weights are not updated with the new examples. I.e when the model is used in prediction mode.

  • For the activation, use: Activation('relu')(X)

  • To add the value passed forward by the shortcut: Add

We have added the initializer argument to our functions. This parameter receives an initializer function like the ones included in the package tensorflow.keras.initializers or any other custom initializer. By default it will be set to random_uniform

Remember that these functions accept a seed argument that can be any value you want, but that in this notebook must set to 0 for grading purposes.

Here is where you're actually using the power of the Functional API to create a shortcut path:

# UNQ_C1 # GRADED FUNCTION: identity_block def identity_block(X, f, filters, training=True, initializer=random_uniform): """ Implementation of the identity block as defined in Figure 4 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path training -- True: Behave in training mode False: Behave in inference mode initializer -- to set up the initial weights of a layer. Equals to random uniform initializer Returns: X -- output of the identity block, tensor of shape (m, n_H, n_W, n_C) """ # Retrieve Filters F1, F2, F3 = filters # Save the input value. You'll need this later to add back to the main path. X_shortcut = X # First component of main path X = Conv2D(filters = F1, kernel_size = 1, strides = (1,1), padding = 'valid', kernel_initializer = initializer(seed=0))(X) X = BatchNormalization(axis = 3)(X, training = training) # Default axis X = Activation('relu')(X) ### START CODE HERE ## Second component of main path (≈3 lines) ## Set the padding = 'same' X = Conv2D(filters = F2, kernel_size = f, strides = (1,1), padding = 'same', kernel_initializer = initializer(seed=0))(X) X = BatchNormalization(axis = 3)(X, training = training) # Default axis X = Activation('relu')(X) ## Third component of main path (≈2 lines) ## Set the padding = 'valid' X = Conv2D(filters = F3, kernel_size = 1, strides = (1,1), padding = 'valid', kernel_initializer = initializer(seed=0))(X) X = BatchNormalization(axis = 3)(X, training = training) # Default axis ## Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) X = Add()([X, X_shortcut]) X = Activation('relu')(X) ### END CODE HERE return X
np.random.seed(1) X1 = np.ones((1, 4, 4, 3)) * -1 X2 = np.ones((1, 4, 4, 3)) * 1 X3 = np.ones((1, 4, 4, 3)) * 3 X = np.concatenate((X1, X2, X3), axis = 0).astype(np.float32) A3 = identity_block(X, f=2, filters=[4, 4, 3], initializer=lambda seed=0:constant(value=1), training=False) print('\033[1mWith training=False\033[0m\n') A3np = A3.numpy() print(np.around(A3.numpy()[:,(0,-1),:,:].mean(axis = 3), 5)) resume = A3np[:,(0,-1),:,:].mean(axis = 3) print(resume[1, 1, 0]) print('\n\033[1mWith training=True\033[0m\n') np.random.seed(1) A4 = identity_block(X, f=2, filters=[3, 3, 3], initializer=lambda seed=0:constant(value=1), training=True) print(np.around(A4.numpy()[:,(0,-1),:,:].mean(axis = 3), 5)) public_tests.identity_block_test(identity_block)
With training=False [[[ 0. 0. 0. 0. ] [ 0. 0. 0. 0. ]] [[192.71234 192.71234 192.71234 96.85617] [ 96.85617 96.85617 96.85617 48.92808]] [[578.1371 578.1371 578.1371 290.5685 ] [290.5685 290.5685 290.5685 146.78426]]] 96.85617 With training=True [[[0. 0. 0. 0. ] [0. 0. 0. 0. ]] [[0.40739 0.40739 0.40739 0.40739] [0.40739 0.40739 0.40739 0.40739]] [[4.99991 4.99991 4.99991 3.25948] [3.25948 3.25948 3.25948 2.40739]]] All tests passed!

Expected value

With training=False [[[ 0. 0. 0. 0. ] [ 0. 0. 0. 0. ]] [[192.71234 192.71234 192.71234 96.85617] [ 96.85617 96.85617 96.85617 48.92808]] [[578.1371 578.1371 578.1371 290.5685 ] [290.5685 290.5685 290.5685 146.78426]]] 96.85617 With training=True [[[0. 0. 0. 0. ] [0. 0. 0. 0. ]] [[0.40739 0.40739 0.40739 0.40739] [0.40739 0.40739 0.40739 0.40739]] [[4.99991 4.99991 4.99991 3.25948] [3.25948 3.25948 3.25948 2.40739]]]

3.2 - The Convolutional Block

The ResNet "convolutional block" is the second block type. You can use this type of block when the input and output dimensions don't match up. The difference with the identity block is that there is a CONV2D layer in the shortcut path:

Figure 4 : Convolutional block
  • The CONV2D layer in the shortcut path is used to resize the input xx to a different dimension, so that the dimensions match up in the final addition needed to add the shortcut value back to the main path. (This plays a similar role as the matrix WsW_s discussed in lecture.)

  • For example, to reduce the activation dimensions's height and width by a factor of 2, you can use a 1x1 convolution with a stride of 2.

  • The CONV2D layer on the shortcut path does not use any non-linear activation function. Its main role is to just apply a (learned) linear function that reduces the dimension of the input, so that the dimensions match up for the later addition step.

  • As for the previous exercise, the additional initializer argument is required for grading purposes, and it has been set by default to glorot_uniform

The details of the convolutional block are as follows.

First component of main path:

  • The first CONV2D has F1F_1 filters of shape (1,1) and a stride of (s,s). Its padding is "valid". Use 0 as the glorot_uniform seed kernel_initializer = initializer(seed=0).

  • The first BatchNorm is normalizing the 'channels' axis.

  • Then apply the ReLU activation function. This has no hyperparameters.

Second component of main path:

  • The second CONV2D has F2F_2 filters of shape (f,f) and a stride of (1,1). Its padding is "same". Use 0 as the glorot_uniform seed kernel_initializer = initializer(seed=0).

  • The second BatchNorm is normalizing the 'channels' axis.

  • Then apply the ReLU activation function. This has no hyperparameters.

Third component of main path:

  • The third CONV2D has F3F_3 filters of shape (1,1) and a stride of (1,1). Its padding is "valid". Use 0 as the glorot_uniform seed kernel_initializer = initializer(seed=0).

  • The third BatchNorm is normalizing the 'channels' axis. Note that there is no ReLU activation function in this component.

Shortcut path:

  • The CONV2D has F3F_3 filters of shape (1,1) and a stride of (s,s). Its padding is "valid". Use 0 as the glorot_uniform seed kernel_initializer = initializer(seed=0).

  • The BatchNorm is normalizing the 'channels' axis.

Final step:

  • The shortcut and the main path values are added together.

  • Then apply the ReLU activation function. This has no hyperparameters.

Exercise 2 - convolutional_block

Implement the convolutional block. The first component of the main path is already implemented; then it's your turn to implement the rest! As before, always use 0 as the seed for the random initialization, to ensure consistency with the grader.

  • Conv2D

  • BatchNormalization (axis: Integer, the axis that should be normalized (typically the features axis)) BatchNormalization(axis = 3)(X, training = training). If training is set to False, its weights are not updated with the new examples. I.e when the model is used in prediction mode.

  • For the activation, use: Activation('relu')(X)

  • Add

We have added the initializer argument to our functions. This parameter receives an initializer function like the ones included in the package tensorflow.keras.initializers or any other custom initializer. By default it will be set to glorot_uniform

Remember that these functions accept a seed argument that can be any value you want, but that in this notebook must set to 0 for grading purposes.

# UNQ_C2 # GRADED FUNCTION: convolutional_block def convolutional_block(X, f, filters, s = 2, training=True, initializer=glorot_uniform): """ Implementation of the convolutional block as defined in Figure 4 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path s -- Integer, specifying the stride to be used training -- True: Behave in training mode False: Behave in inference mode initializer -- to set up the initial weights of a layer. Equals to Glorot uniform initializer, also called Xavier uniform initializer. Returns: X -- output of the convolutional block, tensor of shape (m, n_H, n_W, n_C) """ # Retrieve Filters F1, F2, F3 = filters # Save the input value X_shortcut = X ##### MAIN PATH ##### # First component of main path glorot_uniform(seed=0) X = Conv2D(filters = F1, kernel_size = 1, strides = (s, s), padding='valid', kernel_initializer = initializer(seed=0))(X) X = BatchNormalization(axis = 3)(X, training=training) X = Activation('relu')(X) ### START CODE HERE ## Second component of main path (≈3 lines) X = Conv2D(filters = F2, kernel_size = f, strides = (1, 1), padding='same', kernel_initializer = initializer(seed=0))(X) X = BatchNormalization(axis = 3)(X, training=training) X = Activation('relu')(X) ## Third component of main path (≈2 lines) X = Conv2D(filters = F3, kernel_size = 1, strides = (1, 1), padding='valid', kernel_initializer = initializer(seed=0))(X) X = BatchNormalization(axis = 3)(X, training=training) ##### SHORTCUT PATH ##### (≈2 lines) X_shortcut = Conv2D(filters = F3, kernel_size = 1, strides = (s, s), padding='valid', kernel_initializer = initializer(seed=0))(X_shortcut) X_shortcut = BatchNormalization(axis = 3)(X_shortcut, training=training) ### END CODE HERE # Final step: Add shortcut value to main path (Use this order [X, X_shortcut]), and pass it through a RELU activation X = Add()([X, X_shortcut]) X = Activation('relu')(X) return X
from outputs import convolutional_block_output1, convolutional_block_output2 np.random.seed(1) #X = np.random.randn(3, 4, 4, 6).astype(np.float32) X1 = np.ones((1, 4, 4, 3)) * -1 X2 = np.ones((1, 4, 4, 3)) * 1 X3 = np.ones((1, 4, 4, 3)) * 3 X = np.concatenate((X1, X2, X3), axis = 0).astype(np.float32) A = convolutional_block(X, f = 2, filters = [2, 4, 6], training=False) assert type(A) == EagerTensor, "Use only tensorflow and keras functions" assert tuple(tf.shape(A).numpy()) == (3, 2, 2, 6), "Wrong shape." assert np.allclose(A.numpy(), convolutional_block_output1), "Wrong values when training=False." print(A[0]) B = convolutional_block(X, f = 2, filters = [2, 4, 6], training=True) assert np.allclose(B.numpy(), convolutional_block_output2), "Wrong values when training=True." print('\033[92mAll tests passed!')
tf.Tensor( [[[0. 0.66683817 0. 0. 0.88853896 0.5274254 ] [0. 0.65053666 0. 0. 0.89592844 0.49965227]] [[0. 0.6312079 0. 0. 0.8636247 0.47643146] [0. 0.5688321 0. 0. 0.85534114 0.41709304]]], shape=(2, 2, 6), dtype=float32) All tests passed!

Expected value

tf.Tensor( [[[0. 0.66683817 0. 0. 0.88853896 0.5274254 ] [0. 0.65053666 0. 0. 0.89592844 0.49965227]] [[0. 0.6312079 0. 0. 0.8636247 0.47643146] [0. 0.5688321 0. 0. 0.85534114 0.41709304]]], shape=(2, 2, 6), dtype=float32)

4 - Building Your First ResNet Model (50 layers)

You now have the necessary blocks to build a very deep ResNet. The following figure describes in detail the architecture of this neural network. "ID BLOCK" in the diagram stands for "Identity block," and "ID BLOCK x3" means you should stack 3 identity blocks together.

Figure 5 : ResNet-50 model

The details of this ResNet-50 model are:

  • Zero-padding pads the input with a pad of (3,3)

  • Stage 1:

    • The 2D Convolution has 64 filters of shape (7,7) and uses a stride of (2,2).

    • BatchNorm is applied to the 'channels' axis of the input.

    • ReLU activation is applied.

    • MaxPooling uses a (3,3) window and a (2,2) stride.

  • Stage 2:

    • The convolutional block uses three sets of filters of size [64,64,256], "f" is 3, and "s" is 1.

    • The 2 identity blocks use three sets of filters of size [64,64,256], and "f" is 3.

  • Stage 3:

    • The convolutional block uses three sets of filters of size [128,128,512], "f" is 3 and "s" is 2.

    • The 3 identity blocks use three sets of filters of size [128,128,512] and "f" is 3.

  • Stage 4:

    • The convolutional block uses three sets of filters of size [256, 256, 1024], "f" is 3 and "s" is 2.

    • The 5 identity blocks use three sets of filters of size [256, 256, 1024] and "f" is 3.

  • Stage 5:

    • The convolutional block uses three sets of filters of size [512, 512, 2048], "f" is 3 and "s" is 2.

    • The 2 identity blocks use three sets of filters of size [512, 512, 2048] and "f" is 3.

  • The 2D Average Pooling uses a window of shape (2,2).

  • The 'flatten' layer doesn't have any hyperparameters.

  • The Fully Connected (Dense) layer reduces its input to the number of classes using a softmax activation.

Exercise 3 - ResNet50

Implement the ResNet with 50 layers described in the figure above. We have implemented Stages 1 and 2. Please implement the rest. (The syntax for implementing Stages 3-5 should be quite similar to that of Stage 2) Make sure you follow the naming convention in the text above.

You'll need to use this function:

Here are some other functions we used in the code below:

# UNQ_C3 # GRADED FUNCTION: ResNet50 def ResNet50(input_shape = (64, 64, 3), classes = 6): """ Stage-wise implementation of the architecture of the popular ResNet50: CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3 -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> FLATTEN -> DENSE Arguments: input_shape -- shape of the images of the dataset classes -- integer, number of classes Returns: model -- a Model() instance in Keras """ # Define the input as a tensor with shape input_shape X_input = Input(input_shape) # Zero-Padding X = ZeroPadding2D((3, 3))(X_input) # Stage 1 X = Conv2D(64, (7, 7), strides = (2, 2), kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3)(X) X = Activation('relu')(X) X = MaxPooling2D((3, 3), strides=(2, 2))(X) # Stage 2 X = convolutional_block(X, f = 3, filters = [64, 64, 256], s = 1) X = identity_block(X, 3, [64, 64, 256]) X = identity_block(X, 3, [64, 64, 256]) ### START CODE HERE ## Stage 3 (≈4 lines) X = convolutional_block(X, f = 3, filters = [128, 128, 512], s = 2) X = identity_block(X, 3, [128, 128, 512]) X = identity_block(X, 3, [128, 128, 512]) X = identity_block(X, 3, [128, 128, 512]) ## Stage 4 (≈6 lines) X = convolutional_block(X, f = 3, filters = [256, 256, 1024], s = 2) X = identity_block(X, 3, [256, 256, 1024]) X = identity_block(X, 3, [256, 256, 1024]) X = identity_block(X, 3, [256, 256, 1024]) X = identity_block(X, 3, [256, 256, 1024]) X = identity_block(X, 3, [256, 256, 1024]) ## Stage 5 (≈3 lines) X = convolutional_block(X, f = 3, filters = [512, 512, 2048], s = 2) X = identity_block(X, 3, [512, 512, 2048]) X = identity_block(X, 3, [512, 512, 2048]) ## AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)" X = AveragePooling2D(pool_size=(2, 2), padding='same')(X) ### END CODE HERE # output layer X = Flatten()(X) X = Dense(classes, activation='softmax', kernel_initializer = glorot_uniform(seed=0))(X) # Create model model = Model(inputs = X_input, outputs = X) return model

Run the following code to build the model's graph. If your implementation is incorrect, you'll know it by checking your accuracy when running model.fit(...) below.

model = ResNet50(input_shape = (64, 64, 3), classes = 6) print(model.summary())
Model: "functional_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 64, 64, 3)] 0 __________________________________________________________________________________________________ zero_padding2d (ZeroPadding2D) (None, 70, 70, 3) 0 input_1[0][0] __________________________________________________________________________________________________ conv2d_20 (Conv2D) (None, 32, 32, 64) 9472 zero_padding2d[0][0] __________________________________________________________________________________________________ batch_normalization_20 (BatchNo (None, 32, 32, 64) 256 conv2d_20[0][0] __________________________________________________________________________________________________ activation_18 (Activation) (None, 32, 32, 64) 0 batch_normalization_20[0][0] __________________________________________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 15, 15, 64) 0 activation_18[0][0] __________________________________________________________________________________________________ conv2d_21 (Conv2D) (None, 15, 15, 64) 4160 max_pooling2d[0][0] __________________________________________________________________________________________________ batch_normalization_21 (BatchNo (None, 15, 15, 64) 256 conv2d_21[0][0] __________________________________________________________________________________________________ activation_19 (Activation) (None, 15, 15, 64) 0 batch_normalization_21[0][0] __________________________________________________________________________________________________ conv2d_22 (Conv2D) (None, 15, 15, 64) 36928 activation_19[0][0] __________________________________________________________________________________________________ batch_normalization_22 (BatchNo (None, 15, 15, 64) 256 conv2d_22[0][0] __________________________________________________________________________________________________ activation_20 (Activation) (None, 15, 15, 64) 0 batch_normalization_22[0][0] __________________________________________________________________________________________________ conv2d_23 (Conv2D) (None, 15, 15, 256) 16640 activation_20[0][0] __________________________________________________________________________________________________ conv2d_24 (Conv2D) (None, 15, 15, 256) 16640 max_pooling2d[0][0] __________________________________________________________________________________________________ batch_normalization_23 (BatchNo (None, 15, 15, 256) 1024 conv2d_23[0][0] __________________________________________________________________________________________________ batch_normalization_24 (BatchNo (None, 15, 15, 256) 1024 conv2d_24[0][0] __________________________________________________________________________________________________ add_6 (Add) (None, 15, 15, 256) 0 batch_normalization_23[0][0] batch_normalization_24[0][0] __________________________________________________________________________________________________ activation_21 (Activation) (None, 15, 15, 256) 0 add_6[0][0] __________________________________________________________________________________________________ conv2d_25 (Conv2D) (None, 15, 15, 64) 16448 activation_21[0][0] __________________________________________________________________________________________________ batch_normalization_25 (BatchNo (None, 15, 15, 64) 256 conv2d_25[0][0] __________________________________________________________________________________________________ activation_22 (Activation) (None, 15, 15, 64) 0 batch_normalization_25[0][0] __________________________________________________________________________________________________ conv2d_26 (Conv2D) (None, 15, 15, 64) 36928 activation_22[0][0] __________________________________________________________________________________________________ batch_normalization_26 (BatchNo (None, 15, 15, 64) 256 conv2d_26[0][0] __________________________________________________________________________________________________ activation_23 (Activation) (None, 15, 15, 64) 0 batch_normalization_26[0][0] __________________________________________________________________________________________________ conv2d_27 (Conv2D) (None, 15, 15, 256) 16640 activation_23[0][0] __________________________________________________________________________________________________ batch_normalization_27 (BatchNo (None, 15, 15, 256) 1024 conv2d_27[0][0] __________________________________________________________________________________________________ add_7 (Add) (None, 15, 15, 256) 0 batch_normalization_27[0][0] activation_21[0][0] __________________________________________________________________________________________________ activation_24 (Activation) (None, 15, 15, 256) 0 add_7[0][0] __________________________________________________________________________________________________ conv2d_28 (Conv2D) (None, 15, 15, 64) 16448 activation_24[0][0] __________________________________________________________________________________________________ batch_normalization_28 (BatchNo (None, 15, 15, 64) 256 conv2d_28[0][0] __________________________________________________________________________________________________ activation_25 (Activation) (None, 15, 15, 64) 0 batch_normalization_28[0][0] __________________________________________________________________________________________________ conv2d_29 (Conv2D) (None, 15, 15, 64) 36928 activation_25[0][0] __________________________________________________________________________________________________ batch_normalization_29 (BatchNo (None, 15, 15, 64) 256 conv2d_29[0][0] __________________________________________________________________________________________________ activation_26 (Activation) (None, 15, 15, 64) 0 batch_normalization_29[0][0] __________________________________________________________________________________________________ conv2d_30 (Conv2D) (None, 15, 15, 256) 16640 activation_26[0][0] __________________________________________________________________________________________________ batch_normalization_30 (BatchNo (None, 15, 15, 256) 1024 conv2d_30[0][0] __________________________________________________________________________________________________ add_8 (Add) (None, 15, 15, 256) 0 batch_normalization_30[0][0] activation_24[0][0] __________________________________________________________________________________________________ activation_27 (Activation) (None, 15, 15, 256) 0 add_8[0][0] __________________________________________________________________________________________________ conv2d_31 (Conv2D) (None, 8, 8, 128) 32896 activation_27[0][0] __________________________________________________________________________________________________ batch_normalization_31 (BatchNo (None, 8, 8, 128) 512 conv2d_31[0][0] __________________________________________________________________________________________________ activation_28 (Activation) (None, 8, 8, 128) 0 batch_normalization_31[0][0] __________________________________________________________________________________________________ conv2d_32 (Conv2D) (None, 8, 8, 128) 147584 activation_28[0][0] __________________________________________________________________________________________________ batch_normalization_32 (BatchNo (None, 8, 8, 128) 512 conv2d_32[0][0] __________________________________________________________________________________________________ activation_29 (Activation) (None, 8, 8, 128) 0 batch_normalization_32[0][0] __________________________________________________________________________________________________ conv2d_33 (Conv2D) (None, 8, 8, 512) 66048 activation_29[0][0] __________________________________________________________________________________________________ conv2d_34 (Conv2D) (None, 8, 8, 512) 131584 activation_27[0][0] __________________________________________________________________________________________________ batch_normalization_33 (BatchNo (None, 8, 8, 512) 2048 conv2d_33[0][0] __________________________________________________________________________________________________ batch_normalization_34 (BatchNo (None, 8, 8, 512) 2048 conv2d_34[0][0] __________________________________________________________________________________________________ add_9 (Add) (None, 8, 8, 512) 0 batch_normalization_33[0][0] batch_normalization_34[0][0] __________________________________________________________________________________________________ activation_30 (Activation) (None, 8, 8, 512) 0 add_9[0][0] __________________________________________________________________________________________________ conv2d_35 (Conv2D) (None, 8, 8, 128) 65664 activation_30[0][0] __________________________________________________________________________________________________ batch_normalization_35 (BatchNo (None, 8, 8, 128) 512 conv2d_35[0][0] __________________________________________________________________________________________________ activation_31 (Activation) (None, 8, 8, 128) 0 batch_normalization_35[0][0] __________________________________________________________________________________________________ conv2d_36 (Conv2D) (None, 8, 8, 128) 147584 activation_31[0][0] __________________________________________________________________________________________________ batch_normalization_36 (BatchNo (None, 8, 8, 128) 512 conv2d_36[0][0] __________________________________________________________________________________________________ activation_32 (Activation) (None, 8, 8, 128) 0 batch_normalization_36[0][0] __________________________________________________________________________________________________ conv2d_37 (Conv2D) (None, 8, 8, 512) 66048 activation_32[0][0] __________________________________________________________________________________________________ batch_normalization_37 (BatchNo (None, 8, 8, 512) 2048 conv2d_37[0][0] __________________________________________________________________________________________________ add_10 (Add) (None, 8, 8, 512) 0 batch_normalization_37[0][0] activation_30[0][0] __________________________________________________________________________________________________ activation_33 (Activation) (None, 8, 8, 512) 0 add_10[0][0] __________________________________________________________________________________________________ conv2d_38 (Conv2D) (None, 8, 8, 128) 65664 activation_33[0][0] __________________________________________________________________________________________________ batch_normalization_38 (BatchNo (None, 8, 8, 128) 512 conv2d_38[0][0] __________________________________________________________________________________________________ activation_34 (Activation) (None, 8, 8, 128) 0 batch_normalization_38[0][0] __________________________________________________________________________________________________ conv2d_39 (Conv2D) (None, 8, 8, 128) 147584 activation_34[0][0] __________________________________________________________________________________________________ batch_normalization_39 (BatchNo (None, 8, 8, 128) 512 conv2d_39[0][0] __________________________________________________________________________________________________ activation_35 (Activation) (None, 8, 8, 128) 0 batch_normalization_39[0][0] __________________________________________________________________________________________________ conv2d_40 (Conv2D) (None, 8, 8, 512) 66048 activation_35[0][0] __________________________________________________________________________________________________ batch_normalization_40 (BatchNo (None, 8, 8, 512) 2048 conv2d_40[0][0] __________________________________________________________________________________________________ add_11 (Add) (None, 8, 8, 512) 0 batch_normalization_40[0][0] activation_33[0][0] __________________________________________________________________________________________________ activation_36 (Activation) (None, 8, 8, 512) 0 add_11[0][0] __________________________________________________________________________________________________ conv2d_41 (Conv2D) (None, 8, 8, 128) 65664 activation_36[0][0] __________________________________________________________________________________________________ batch_normalization_41 (BatchNo (None, 8, 8, 128) 512 conv2d_41[0][0] __________________________________________________________________________________________________ activation_37 (Activation) (None, 8, 8, 128) 0 batch_normalization_41[0][0] __________________________________________________________________________________________________ conv2d_42 (Conv2D) (None, 8, 8, 128) 147584 activation_37[0][0] __________________________________________________________________________________________________ batch_normalization_42 (BatchNo (None, 8, 8, 128) 512 conv2d_42[0][0] __________________________________________________________________________________________________ activation_38 (Activation) (None, 8, 8, 128) 0 batch_normalization_42[0][0] __________________________________________________________________________________________________ conv2d_43 (Conv2D) (None, 8, 8, 512) 66048 activation_38[0][0] __________________________________________________________________________________________________ batch_normalization_43 (BatchNo (None, 8, 8, 512) 2048 conv2d_43[0][0] __________________________________________________________________________________________________ add_12 (Add) (None, 8, 8, 512) 0 batch_normalization_43[0][0] activation_36[0][0] __________________________________________________________________________________________________ activation_39 (Activation) (None, 8, 8, 512) 0 add_12[0][0] __________________________________________________________________________________________________ conv2d_44 (Conv2D) (None, 4, 4, 256) 131328 activation_39[0][0] __________________________________________________________________________________________________ batch_normalization_44 (BatchNo (None, 4, 4, 256) 1024 conv2d_44[0][0] __________________________________________________________________________________________________ activation_40 (Activation) (None, 4, 4, 256) 0 batch_normalization_44[0][0] __________________________________________________________________________________________________ conv2d_45 (Conv2D) (None, 4, 4, 256) 590080 activation_40[0][0] __________________________________________________________________________________________________ batch_normalization_45 (BatchNo (None, 4, 4, 256) 1024 conv2d_45[0][0] __________________________________________________________________________________________________ activation_41 (Activation) (None, 4, 4, 256) 0 batch_normalization_45[0][0] __________________________________________________________________________________________________ conv2d_46 (Conv2D) (None, 4, 4, 1024) 263168 activation_41[0][0] __________________________________________________________________________________________________ conv2d_47 (Conv2D) (None, 4, 4, 1024) 525312 activation_39[0][0] __________________________________________________________________________________________________ batch_normalization_46 (BatchNo (None, 4, 4, 1024) 4096 conv2d_46[0][0] __________________________________________________________________________________________________ batch_normalization_47 (BatchNo (None, 4, 4, 1024) 4096 conv2d_47[0][0] __________________________________________________________________________________________________ add_13 (Add) (None, 4, 4, 1024) 0 batch_normalization_46[0][0] batch_normalization_47[0][0] __________________________________________________________________________________________________ activation_42 (Activation) (None, 4, 4, 1024) 0 add_13[0][0] __________________________________________________________________________________________________ conv2d_48 (Conv2D) (None, 4, 4, 256) 262400 activation_42[0][0] __________________________________________________________________________________________________ batch_normalization_48 (BatchNo (None, 4, 4, 256) 1024 conv2d_48[0][0] __________________________________________________________________________________________________ activation_43 (Activation) (None, 4, 4, 256) 0 batch_normalization_48[0][0] __________________________________________________________________________________________________ conv2d_49 (Conv2D) (None, 4, 4, 256) 590080 activation_43[0][0] __________________________________________________________________________________________________ batch_normalization_49 (BatchNo (None, 4, 4, 256) 1024 conv2d_49[0][0] __________________________________________________________________________________________________ activation_44 (Activation) (None, 4, 4, 256) 0 batch_normalization_49[0][0] __________________________________________________________________________________________________ conv2d_50 (Conv2D) (None, 4, 4, 1024) 263168 activation_44[0][0] __________________________________________________________________________________________________ batch_normalization_50 (BatchNo (None, 4, 4, 1024) 4096 conv2d_50[0][0] __________________________________________________________________________________________________ add_14 (Add) (None, 4, 4, 1024) 0 batch_normalization_50[0][0] activation_42[0][0] __________________________________________________________________________________________________ activation_45 (Activation) (None, 4, 4, 1024) 0 add_14[0][0] __________________________________________________________________________________________________ conv2d_51 (Conv2D) (None, 4, 4, 256) 262400 activation_45[0][0] __________________________________________________________________________________________________ batch_normalization_51 (BatchNo (None, 4, 4, 256) 1024 conv2d_51[0][0] __________________________________________________________________________________________________ activation_46 (Activation) (None, 4, 4, 256) 0 batch_normalization_51[0][0] __________________________________________________________________________________________________ conv2d_52 (Conv2D) (None, 4, 4, 256) 590080 activation_46[0][0] __________________________________________________________________________________________________ batch_normalization_52 (BatchNo (None, 4, 4, 256) 1024 conv2d_52[0][0] __________________________________________________________________________________________________ activation_47 (Activation) (None, 4, 4, 256) 0 batch_normalization_52[0][0] __________________________________________________________________________________________________ conv2d_53 (Conv2D) (None, 4, 4, 1024) 263168 activation_47[0][0] __________________________________________________________________________________________________ batch_normalization_53 (BatchNo (None, 4, 4, 1024) 4096 conv2d_53[0][0] __________________________________________________________________________________________________ add_15 (Add) (None, 4, 4, 1024) 0 batch_normalization_53[0][0] activation_45[0][0] __________________________________________________________________________________________________ activation_48 (Activation) (None, 4, 4, 1024) 0 add_15[0][0] __________________________________________________________________________________________________ conv2d_54 (Conv2D) (None, 4, 4, 256) 262400 activation_48[0][0] __________________________________________________________________________________________________ batch_normalization_54 (BatchNo (None, 4, 4, 256) 1024 conv2d_54[0][0] __________________________________________________________________________________________________ activation_49 (Activation) (None, 4, 4, 256) 0 batch_normalization_54[0][0] __________________________________________________________________________________________________ conv2d_55 (Conv2D) (None, 4, 4, 256) 590080 activation_49[0][0] __________________________________________________________________________________________________ batch_normalization_55 (BatchNo (None, 4, 4, 256) 1024 conv2d_55[0][0] __________________________________________________________________________________________________ activation_50 (Activation) (None, 4, 4, 256) 0 batch_normalization_55[0][0] __________________________________________________________________________________________________ conv2d_56 (Conv2D) (None, 4, 4, 1024) 263168 activation_50[0][0] __________________________________________________________________________________________________ batch_normalization_56 (BatchNo (None, 4, 4, 1024) 4096 conv2d_56[0][0] __________________________________________________________________________________________________ add_16 (Add) (None, 4, 4, 1024) 0 batch_normalization_56[0][0] activation_48[0][0] __________________________________________________________________________________________________ activation_51 (Activation) (None, 4, 4, 1024) 0 add_16[0][0] __________________________________________________________________________________________________ conv2d_57 (Conv2D) (None, 4, 4, 256) 262400 activation_51[0][0] __________________________________________________________________________________________________ batch_normalization_57 (BatchNo (None, 4, 4, 256) 1024 conv2d_57[0][0] __________________________________________________________________________________________________ activation_52 (Activation) (None, 4, 4, 256) 0 batch_normalization_57[0][0] __________________________________________________________________________________________________ conv2d_58 (Conv2D) (None, 4, 4, 256) 590080 activation_52[0][0] __________________________________________________________________________________________________ batch_normalization_58 (BatchNo (None, 4, 4, 256) 1024 conv2d_58[0][0] __________________________________________________________________________________________________ activation_53 (Activation) (None, 4, 4, 256) 0 batch_normalization_58[0][0] __________________________________________________________________________________________________ conv2d_59 (Conv2D) (None, 4, 4, 1024) 263168 activation_53[0][0] __________________________________________________________________________________________________ batch_normalization_59 (BatchNo (None, 4, 4, 1024) 4096 conv2d_59[0][0] __________________________________________________________________________________________________ add_17 (Add) (None, 4, 4, 1024) 0 batch_normalization_59[0][0] activation_51[0][0] __________________________________________________________________________________________________ activation_54 (Activation) (None, 4, 4, 1024) 0 add_17[0][0] __________________________________________________________________________________________________ conv2d_60 (Conv2D) (None, 4, 4, 256) 262400 activation_54[0][0] __________________________________________________________________________________________________ batch_normalization_60 (BatchNo (None, 4, 4, 256) 1024 conv2d_60[0][0] __________________________________________________________________________________________________ activation_55 (Activation) (None, 4, 4, 256) 0 batch_normalization_60[0][0] __________________________________________________________________________________________________ conv2d_61 (Conv2D) (None, 4, 4, 256) 590080 activation_55[0][0] __________________________________________________________________________________________________ batch_normalization_61 (BatchNo (None, 4, 4, 256) 1024 conv2d_61[0][0] __________________________________________________________________________________________________ activation_56 (Activation) (None, 4, 4, 256) 0 batch_normalization_61[0][0] __________________________________________________________________________________________________ conv2d_62 (Conv2D) (None, 4, 4, 1024) 263168 activation_56[0][0] __________________________________________________________________________________________________ batch_normalization_62 (BatchNo (None, 4, 4, 1024) 4096 conv2d_62[0][0] __________________________________________________________________________________________________ add_18 (Add) (None, 4, 4, 1024) 0 batch_normalization_62[0][0] activation_54[0][0] __________________________________________________________________________________________________ activation_57 (Activation) (None, 4, 4, 1024) 0 add_18[0][0] __________________________________________________________________________________________________ conv2d_63 (Conv2D) (None, 2, 2, 512) 524800 activation_57[0][0] __________________________________________________________________________________________________ batch_normalization_63 (BatchNo (None, 2, 2, 512) 2048 conv2d_63[0][0] __________________________________________________________________________________________________ activation_58 (Activation) (None, 2, 2, 512) 0 batch_normalization_63[0][0] __________________________________________________________________________________________________ conv2d_64 (Conv2D) (None, 2, 2, 512) 2359808 activation_58[0][0] __________________________________________________________________________________________________ batch_normalization_64 (BatchNo (None, 2, 2, 512) 2048 conv2d_64[0][0] __________________________________________________________________________________________________ activation_59 (Activation) (None, 2, 2, 512) 0 batch_normalization_64[0][0] __________________________________________________________________________________________________ conv2d_65 (Conv2D) (None, 2, 2, 2048) 1050624 activation_59[0][0] __________________________________________________________________________________________________ conv2d_66 (Conv2D) (None, 2, 2, 2048) 2099200 activation_57[0][0] __________________________________________________________________________________________________ batch_normalization_65 (BatchNo (None, 2, 2, 2048) 8192 conv2d_65[0][0] __________________________________________________________________________________________________ batch_normalization_66 (BatchNo (None, 2, 2, 2048) 8192 conv2d_66[0][0] __________________________________________________________________________________________________ add_19 (Add) (None, 2, 2, 2048) 0 batch_normalization_65[0][0] batch_normalization_66[0][0] __________________________________________________________________________________________________ activation_60 (Activation) (None, 2, 2, 2048) 0 add_19[0][0] __________________________________________________________________________________________________ conv2d_67 (Conv2D) (None, 2, 2, 512) 1049088 activation_60[0][0] __________________________________________________________________________________________________ batch_normalization_67 (BatchNo (None, 2, 2, 512) 2048 conv2d_67[0][0] __________________________________________________________________________________________________ activation_61 (Activation) (None, 2, 2, 512) 0 batch_normalization_67[0][0] __________________________________________________________________________________________________ conv2d_68 (Conv2D) (None, 2, 2, 512) 2359808 activation_61[0][0] __________________________________________________________________________________________________ batch_normalization_68 (BatchNo (None, 2, 2, 512) 2048 conv2d_68[0][0] __________________________________________________________________________________________________ activation_62 (Activation) (None, 2, 2, 512) 0 batch_normalization_68[0][0] __________________________________________________________________________________________________ conv2d_69 (Conv2D) (None, 2, 2, 2048) 1050624 activation_62[0][0] __________________________________________________________________________________________________ batch_normalization_69 (BatchNo (None, 2, 2, 2048) 8192 conv2d_69[0][0] __________________________________________________________________________________________________ add_20 (Add) (None, 2, 2, 2048) 0 batch_normalization_69[0][0] activation_60[0][0] __________________________________________________________________________________________________ activation_63 (Activation) (None, 2, 2, 2048) 0 add_20[0][0] __________________________________________________________________________________________________ conv2d_70 (Conv2D) (None, 2, 2, 512) 1049088 activation_63[0][0] __________________________________________________________________________________________________ batch_normalization_70 (BatchNo (None, 2, 2, 512) 2048 conv2d_70[0][0] __________________________________________________________________________________________________ activation_64 (Activation) (None, 2, 2, 512) 0 batch_normalization_70[0][0] __________________________________________________________________________________________________ conv2d_71 (Conv2D) (None, 2, 2, 512) 2359808 activation_64[0][0] __________________________________________________________________________________________________ batch_normalization_71 (BatchNo (None, 2, 2, 512) 2048 conv2d_71[0][0] __________________________________________________________________________________________________ activation_65 (Activation) (None, 2, 2, 512) 0 batch_normalization_71[0][0] __________________________________________________________________________________________________ conv2d_72 (Conv2D) (None, 2, 2, 2048) 1050624 activation_65[0][0] __________________________________________________________________________________________________ batch_normalization_72 (BatchNo (None, 2, 2, 2048) 8192 conv2d_72[0][0] __________________________________________________________________________________________________ add_21 (Add) (None, 2, 2, 2048) 0 batch_normalization_72[0][0] activation_63[0][0] __________________________________________________________________________________________________ activation_66 (Activation) (None, 2, 2, 2048) 0 add_21[0][0] __________________________________________________________________________________________________ average_pooling2d (AveragePooli (None, 1, 1, 2048) 0 activation_66[0][0] __________________________________________________________________________________________________ flatten (Flatten) (None, 2048) 0 average_pooling2d[0][0] __________________________________________________________________________________________________ dense (Dense) (None, 6) 12294 flatten[0][0] ================================================================================================== Total params: 23,600,006 Trainable params: 23,546,886 Non-trainable params: 53,120 __________________________________________________________________________________________________ None
from outputs import ResNet50_summary model = ResNet50(input_shape = (64, 64, 3), classes = 6) comparator(summary(model), ResNet50_summary)
All tests passed!

As shown in the Keras Tutorial Notebook, prior to training a model, you need to configure the learning process by compiling the model.

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

The model is now ready to be trained. The only thing you need now is a dataset!

Let's load your old friend, the SIGNS dataset.

Figure 6 : SIGNS dataset
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Normalize image vectors X_train = X_train_orig / 255. X_test = X_test_orig / 255. # Convert training and test labels to one hot matrices Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).T print ("number of training examples = " + str(X_train.shape[0])) print ("number of test examples = " + str(X_test.shape[0])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape))
number of training examples = 1080 number of test examples = 120 X_train shape: (1080, 64, 64, 3) Y_train shape: (1080, 6) X_test shape: (120, 64, 64, 3) Y_test shape: (120, 6)

Run the following cell to train your model on 10 epochs with a batch size of 32. On a GPU, it should take less than 2 minutes.

model.fit(X_train, Y_train, epochs = 10, batch_size = 32)
Epoch 1/10 34/34 [==============================] - 1s 28ms/step - loss: 1.7616 - accuracy: 0.5093 Epoch 2/10 34/34 [==============================] - 1s 23ms/step - loss: 0.6233 - accuracy: 0.7907 Epoch 3/10 34/34 [==============================] - 1s 23ms/step - loss: 0.3896 - accuracy: 0.8639 Epoch 4/10 34/34 [==============================] - 1s 23ms/step - loss: 0.3751 - accuracy: 0.9148 Epoch 5/10 34/34 [==============================] - 1s 23ms/step - loss: 1.1722 - accuracy: 0.7278 Epoch 6/10 34/34 [==============================] - 1s 23ms/step - loss: 0.8451 - accuracy: 0.7120 Epoch 7/10 34/34 [==============================] - 1s 23ms/step - loss: 0.2686 - accuracy: 0.9120 Epoch 8/10 34/34 [==============================] - 1s 23ms/step - loss: 0.1827 - accuracy: 0.9389 Epoch 9/10 34/34 [==============================] - 1s 23ms/step - loss: 0.2010 - accuracy: 0.9361 Epoch 10/10 34/34 [==============================] - 1s 23ms/step - loss: 0.1667 - accuracy: 0.9417
<tensorflow.python.keras.callbacks.History at 0x7f32121c9c88>

Expected Output:

Epoch 1/10 34/34 [==============================] - 1s 34ms/step - loss: 1.9241 - accuracy: 0.4620 Epoch 2/10 34/34 [==============================] - 2s 57ms/step - loss: 0.6403 - accuracy: 0.7898 Epoch 3/10 34/34 [==============================] - 1s 24ms/step - loss: 0.3744 - accuracy: 0.8731 Epoch 4/10 34/34 [==============================] - 2s 44ms/step - loss: 0.2220 - accuracy: 0.9231 Epoch 5/10 34/34 [==============================] - 2s 57ms/step - loss: 0.1333 - accuracy: 0.9583 Epoch 6/10 34/34 [==============================] - 2s 52ms/step - loss: 0.2243 - accuracy: 0.9444 Epoch 7/10 34/34 [==============================] - 2s 48ms/step - loss: 0.2913 - accuracy: 0.9102 Epoch 8/10 34/34 [==============================] - 1s 30ms/step - loss: 0.2269 - accuracy: 0.9306 Epoch 9/10 34/34 [==============================] - 2s 46ms/step - loss: 0.1113 - accuracy: 0.9630 Epoch 10/10 34/34 [==============================] - 2s 57ms/step - loss: 0.0709 - accuracy: 0.9778

The exact values could not match, but don't worry about that. The important thing that you must see is that the loss value decreases, and the accuracy increases for the firsts 5 epochs.

Let's see how this model (trained on only two epochs) performs on the test set.

preds = model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1]))
4/4 [==============================] - 0s 7ms/step - loss: 0.2859 - accuracy: 0.9167 Loss = 0.2859419584274292 Test Accuracy = 0.9166666865348816

Expected Output:

Test Accuracy >0.80

For the purposes of this assignment, you've been asked to train the model for ten epochs. You can see that it performs well. The online grader will only run your code for a small number of epochs as well. Please go ahead and submit your assignment.

After you have finished this official (graded) part of this assignment, you can also optionally train the ResNet for more iterations, if you want. It tends to get much better performance when trained for ~20 epochs, but this does take more than an hour when training on a CPU.

Using a GPU, this ResNet50 model's weights were trained on the SIGNS dataset. You can load and run the trained model on the test set in the cells below. It may take ≈1min to load the model. Have fun!

pre_trained_model = tf.keras.models.load_model('resnet50.h5')
preds = pre_trained_model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1]))
4/4 [==============================] - 0s 7ms/step - loss: 0.1596 - accuracy: 0.9500 Loss = 0.15958672761917114 Test Accuracy = 0.949999988079071

Congratulations on finishing this assignment! You've now implemented a state-of-the-art image classification system! Woo hoo!

ResNet50 is a powerful model for image classification when it's trained for an adequate number of iterations. Hopefully, from this point, you can use what you've learned and apply it to your own classification problem to perform state-of-the-art accuracy.

What you should remember:

  • Very deep "plain" networks don't work in practice because vanishing gradients make them hard to train.

  • Skip connections help address the Vanishing Gradient problem. They also make it easy for a ResNet block to learn an identity function.

  • There are two main types of blocks: The identity block and the convolutional block.

  • Very deep Residual Networks are built by stacking these blocks together.

Free Up Resources for Other Learners

If you don't plan on continuing to the next Optional section, help us to provide our learners a smooth learning experience, by freeing up the resources used by your assignment by running the cell below so that the other learners can take advantage of those resources just as much as you did. Thank you!

Note:

  • Run the cell below when you are done with the assignment and are ready to submit it for grading.

  • When you'll run it, a pop up will open, click Ok.

  • Running the cell will restart the kernel.

%%javascript IPython.notebook.save_checkpoint(); if (confirm("Clear memory?") == true) { IPython.notebook.kernel.restart(); }
<IPython.core.display.Javascript object>

5 - Test on Your Own Image (Optional/Ungraded)

If you wish, you can also take a picture of your own hand and see the output of the model. To do this: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Write your image's name in the following code 4. Run the code and check if the algorithm is right!

img_path = 'images/my_image.jpg' img = image.load_img(img_path, target_size=(64, 64)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = x/255.0 print('Input image shape:', x.shape) imshow(img) prediction = pre_trained_model.predict(x) print("Class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ", prediction) print("Class:", np.argmax(prediction))
Input image shape: (1, 64, 64, 3) Class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = [[9.2633512e-05 4.2629417e-02 9.2548847e-01 4.1606426e-04 3.1337839e-02 3.5633519e-05]] Class: 2
Image in a Jupyter notebook

Even though the model has high accuracy, it might be performing poorly on your own set of images. Notice that, the shape of the pictures, the lighting where the photos were taken, and all of the preprocessing steps can have an impact on the performance of the model. Considering everything you have learned in this specialization so far, what do you think might be the cause here?

Hint: It might be related to some distributions. Can you come up with a potential solution ?

You can also print a summary of your model by running the following code.

pre_trained_model.summary()
Model: "ResNet50" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 64, 64, 3)] 0 __________________________________________________________________________________________________ zero_padding2d (ZeroPadding2D) (None, 70, 70, 3) 0 input_1[0][0] __________________________________________________________________________________________________ conv2d_7 (Conv2D) (None, 32, 32, 64) 9472 zero_padding2d[0][0] __________________________________________________________________________________________________ bn_conv1 (BatchNormalization) (None, 32, 32, 64) 256 conv2d_7[0][0] __________________________________________________________________________________________________ activation_6 (Activation) (None, 32, 32, 64) 0 bn_conv1[0][0] __________________________________________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 15, 15, 64) 0 activation_6[0][0] __________________________________________________________________________________________________ conv2d_8 (Conv2D) (None, 15, 15, 64) 4160 max_pooling2d[0][0] __________________________________________________________________________________________________ batch_normalization_7 (BatchNor (None, 15, 15, 64) 256 conv2d_8[0][0] __________________________________________________________________________________________________ activation_7 (Activation) (None, 15, 15, 64) 0 batch_normalization_7[0][0] __________________________________________________________________________________________________ conv2d_9 (Conv2D) (None, 15, 15, 64) 36928 activation_7[0][0] __________________________________________________________________________________________________ batch_normalization_8 (BatchNor (None, 15, 15, 64) 256 conv2d_9[0][0] __________________________________________________________________________________________________ activation_8 (Activation) (None, 15, 15, 64) 0 batch_normalization_8[0][0] __________________________________________________________________________________________________ conv2d_10 (Conv2D) (None, 15, 15, 256) 16640 activation_8[0][0] __________________________________________________________________________________________________ conv2d_11 (Conv2D) (None, 15, 15, 256) 16640 max_pooling2d[0][0] __________________________________________________________________________________________________ batch_normalization_9 (BatchNor (None, 15, 15, 256) 1024 conv2d_10[0][0] __________________________________________________________________________________________________ batch_normalization_10 (BatchNo (None, 15, 15, 256) 1024 conv2d_11[0][0] __________________________________________________________________________________________________ add_2 (Add) (None, 15, 15, 256) 0 batch_normalization_9[0][0] batch_normalization_10[0][0] __________________________________________________________________________________________________ activation_9 (Activation) (None, 15, 15, 256) 0 add_2[0][0] __________________________________________________________________________________________________ conv2d_12 (Conv2D) (None, 15, 15, 64) 16448 activation_9[0][0] __________________________________________________________________________________________________ batch_normalization_11 (BatchNo (None, 15, 15, 64) 256 conv2d_12[0][0] __________________________________________________________________________________________________ activation_10 (Activation) (None, 15, 15, 64) 0 batch_normalization_11[0][0] __________________________________________________________________________________________________ conv2d_13 (Conv2D) (None, 15, 15, 64) 36928 activation_10[0][0] __________________________________________________________________________________________________ batch_normalization_12 (BatchNo (None, 15, 15, 64) 256 conv2d_13[0][0] __________________________________________________________________________________________________ activation_11 (Activation) (None, 15, 15, 64) 0 batch_normalization_12[0][0] __________________________________________________________________________________________________ conv2d_14 (Conv2D) (None, 15, 15, 256) 16640 activation_11[0][0] __________________________________________________________________________________________________ batch_normalization_13 (BatchNo (None, 15, 15, 256) 1024 conv2d_14[0][0] __________________________________________________________________________________________________ add_3 (Add) (None, 15, 15, 256) 0 batch_normalization_13[0][0] activation_9[0][0] __________________________________________________________________________________________________ activation_12 (Activation) (None, 15, 15, 256) 0 add_3[0][0] __________________________________________________________________________________________________ conv2d_15 (Conv2D) (None, 15, 15, 64) 16448 activation_12[0][0] __________________________________________________________________________________________________ batch_normalization_14 (BatchNo (None, 15, 15, 64) 256 conv2d_15[0][0] __________________________________________________________________________________________________ activation_13 (Activation) (None, 15, 15, 64) 0 batch_normalization_14[0][0] __________________________________________________________________________________________________ conv2d_16 (Conv2D) (None, 15, 15, 64) 36928 activation_13[0][0] __________________________________________________________________________________________________ batch_normalization_15 (BatchNo (None, 15, 15, 64) 256 conv2d_16[0][0] __________________________________________________________________________________________________ activation_14 (Activation) (None, 15, 15, 64) 0 batch_normalization_15[0][0] __________________________________________________________________________________________________ conv2d_17 (Conv2D) (None, 15, 15, 256) 16640 activation_14[0][0] __________________________________________________________________________________________________ batch_normalization_16 (BatchNo (None, 15, 15, 256) 1024 conv2d_17[0][0] __________________________________________________________________________________________________ add_4 (Add) (None, 15, 15, 256) 0 batch_normalization_16[0][0] activation_12[0][0] __________________________________________________________________________________________________ activation_15 (Activation) (None, 15, 15, 256) 0 add_4[0][0] __________________________________________________________________________________________________ conv2d_18 (Conv2D) (None, 8, 8, 128) 32896 activation_15[0][0] __________________________________________________________________________________________________ batch_normalization_17 (BatchNo (None, 8, 8, 128) 512 conv2d_18[0][0] __________________________________________________________________________________________________ activation_16 (Activation) (None, 8, 8, 128) 0 batch_normalization_17[0][0] __________________________________________________________________________________________________ conv2d_19 (Conv2D) (None, 8, 8, 128) 147584 activation_16[0][0] __________________________________________________________________________________________________ batch_normalization_18 (BatchNo (None, 8, 8, 128) 512 conv2d_19[0][0] __________________________________________________________________________________________________ activation_17 (Activation) (None, 8, 8, 128) 0 batch_normalization_18[0][0] __________________________________________________________________________________________________ conv2d_20 (Conv2D) (None, 8, 8, 512) 66048 activation_17[0][0] __________________________________________________________________________________________________ conv2d_21 (Conv2D) (None, 8, 8, 512) 131584 activation_15[0][0] __________________________________________________________________________________________________ batch_normalization_19 (BatchNo (None, 8, 8, 512) 2048 conv2d_20[0][0] __________________________________________________________________________________________________ batch_normalization_20 (BatchNo (None, 8, 8, 512) 2048 conv2d_21[0][0] __________________________________________________________________________________________________ add_5 (Add) (None, 8, 8, 512) 0 batch_normalization_19[0][0] batch_normalization_20[0][0] __________________________________________________________________________________________________ activation_18 (Activation) (None, 8, 8, 512) 0 add_5[0][0] __________________________________________________________________________________________________ conv2d_22 (Conv2D) (None, 8, 8, 128) 65664 activation_18[0][0] __________________________________________________________________________________________________ batch_normalization_21 (BatchNo (None, 8, 8, 128) 512 conv2d_22[0][0] __________________________________________________________________________________________________ activation_19 (Activation) (None, 8, 8, 128) 0 batch_normalization_21[0][0] __________________________________________________________________________________________________ conv2d_23 (Conv2D) (None, 8, 8, 128) 147584 activation_19[0][0] __________________________________________________________________________________________________ batch_normalization_22 (BatchNo (None, 8, 8, 128) 512 conv2d_23[0][0] __________________________________________________________________________________________________ activation_20 (Activation) (None, 8, 8, 128) 0 batch_normalization_22[0][0] __________________________________________________________________________________________________ conv2d_24 (Conv2D) (None, 8, 8, 512) 66048 activation_20[0][0] __________________________________________________________________________________________________ batch_normalization_23 (BatchNo (None, 8, 8, 512) 2048 conv2d_24[0][0] __________________________________________________________________________________________________ add_6 (Add) (None, 8, 8, 512) 0 batch_normalization_23[0][0] activation_18[0][0] __________________________________________________________________________________________________ activation_21 (Activation) (None, 8, 8, 512) 0 add_6[0][0] __________________________________________________________________________________________________ conv2d_25 (Conv2D) (None, 8, 8, 128) 65664 activation_21[0][0] __________________________________________________________________________________________________ batch_normalization_24 (BatchNo (None, 8, 8, 128) 512 conv2d_25[0][0] __________________________________________________________________________________________________ activation_22 (Activation) (None, 8, 8, 128) 0 batch_normalization_24[0][0] __________________________________________________________________________________________________ conv2d_26 (Conv2D) (None, 8, 8, 128) 147584 activation_22[0][0] __________________________________________________________________________________________________ batch_normalization_25 (BatchNo (None, 8, 8, 128) 512 conv2d_26[0][0] __________________________________________________________________________________________________ activation_23 (Activation) (None, 8, 8, 128) 0 batch_normalization_25[0][0] __________________________________________________________________________________________________ conv2d_27 (Conv2D) (None, 8, 8, 512) 66048 activation_23[0][0] __________________________________________________________________________________________________ batch_normalization_26 (BatchNo (None, 8, 8, 512) 2048 conv2d_27[0][0] __________________________________________________________________________________________________ add_7 (Add) (None, 8, 8, 512) 0 batch_normalization_26[0][0] activation_21[0][0] __________________________________________________________________________________________________ activation_24 (Activation) (None, 8, 8, 512) 0 add_7[0][0] __________________________________________________________________________________________________ conv2d_28 (Conv2D) (None, 8, 8, 128) 65664 activation_24[0][0] __________________________________________________________________________________________________ batch_normalization_27 (BatchNo (None, 8, 8, 128) 512 conv2d_28[0][0] __________________________________________________________________________________________________ activation_25 (Activation) (None, 8, 8, 128) 0 batch_normalization_27[0][0] __________________________________________________________________________________________________ conv2d_29 (Conv2D) (None, 8, 8, 128) 147584 activation_25[0][0] __________________________________________________________________________________________________ batch_normalization_28 (BatchNo (None, 8, 8, 128) 512 conv2d_29[0][0] __________________________________________________________________________________________________ activation_26 (Activation) (None, 8, 8, 128) 0 batch_normalization_28[0][0] __________________________________________________________________________________________________ conv2d_30 (Conv2D) (None, 8, 8, 512) 66048 activation_26[0][0] __________________________________________________________________________________________________ batch_normalization_29 (BatchNo (None, 8, 8, 512) 2048 conv2d_30[0][0] __________________________________________________________________________________________________ add_8 (Add) (None, 8, 8, 512) 0 batch_normalization_29[0][0] activation_24[0][0] __________________________________________________________________________________________________ activation_27 (Activation) (None, 8, 8, 512) 0 add_8[0][0] __________________________________________________________________________________________________ conv2d_31 (Conv2D) (None, 4, 4, 256) 131328 activation_27[0][0] __________________________________________________________________________________________________ batch_normalization_30 (BatchNo (None, 4, 4, 256) 1024 conv2d_31[0][0] __________________________________________________________________________________________________ activation_28 (Activation) (None, 4, 4, 256) 0 batch_normalization_30[0][0] __________________________________________________________________________________________________ conv2d_32 (Conv2D) (None, 4, 4, 256) 590080 activation_28[0][0] __________________________________________________________________________________________________ batch_normalization_31 (BatchNo (None, 4, 4, 256) 1024 conv2d_32[0][0] __________________________________________________________________________________________________ activation_29 (Activation) (None, 4, 4, 256) 0 batch_normalization_31[0][0] __________________________________________________________________________________________________ conv2d_33 (Conv2D) (None, 4, 4, 1024) 263168 activation_29[0][0] __________________________________________________________________________________________________ conv2d_34 (Conv2D) (None, 4, 4, 1024) 525312 activation_27[0][0] __________________________________________________________________________________________________ batch_normalization_32 (BatchNo (None, 4, 4, 1024) 4096 conv2d_33[0][0] __________________________________________________________________________________________________ batch_normalization_33 (BatchNo (None, 4, 4, 1024) 4096 conv2d_34[0][0] __________________________________________________________________________________________________ add_9 (Add) (None, 4, 4, 1024) 0 batch_normalization_32[0][0] batch_normalization_33[0][0] __________________________________________________________________________________________________ activation_30 (Activation) (None, 4, 4, 1024) 0 add_9[0][0] __________________________________________________________________________________________________ conv2d_35 (Conv2D) (None, 4, 4, 256) 262400 activation_30[0][0] __________________________________________________________________________________________________ batch_normalization_34 (BatchNo (None, 4, 4, 256) 1024 conv2d_35[0][0] __________________________________________________________________________________________________ activation_31 (Activation) (None, 4, 4, 256) 0 batch_normalization_34[0][0] __________________________________________________________________________________________________ conv2d_36 (Conv2D) (None, 4, 4, 256) 590080 activation_31[0][0] __________________________________________________________________________________________________ batch_normalization_35 (BatchNo (None, 4, 4, 256) 1024 conv2d_36[0][0] __________________________________________________________________________________________________ activation_32 (Activation) (None, 4, 4, 256) 0 batch_normalization_35[0][0] __________________________________________________________________________________________________ conv2d_37 (Conv2D) (None, 4, 4, 1024) 263168 activation_32[0][0] __________________________________________________________________________________________________ batch_normalization_36 (BatchNo (None, 4, 4, 1024) 4096 conv2d_37[0][0] __________________________________________________________________________________________________ add_10 (Add) (None, 4, 4, 1024) 0 batch_normalization_36[0][0] activation_30[0][0] __________________________________________________________________________________________________ activation_33 (Activation) (None, 4, 4, 1024) 0 add_10[0][0] __________________________________________________________________________________________________ conv2d_38 (Conv2D) (None, 4, 4, 256) 262400 activation_33[0][0] __________________________________________________________________________________________________ batch_normalization_37 (BatchNo (None, 4, 4, 256) 1024 conv2d_38[0][0] __________________________________________________________________________________________________ activation_34 (Activation) (None, 4, 4, 256) 0 batch_normalization_37[0][0] __________________________________________________________________________________________________ conv2d_39 (Conv2D) (None, 4, 4, 256) 590080 activation_34[0][0] __________________________________________________________________________________________________ batch_normalization_38 (BatchNo (None, 4, 4, 256) 1024 conv2d_39[0][0] __________________________________________________________________________________________________ activation_35 (Activation) (None, 4, 4, 256) 0 batch_normalization_38[0][0] __________________________________________________________________________________________________ conv2d_40 (Conv2D) (None, 4, 4, 1024) 263168 activation_35[0][0] __________________________________________________________________________________________________ batch_normalization_39 (BatchNo (None, 4, 4, 1024) 4096 conv2d_40[0][0] __________________________________________________________________________________________________ add_11 (Add) (None, 4, 4, 1024) 0 batch_normalization_39[0][0] activation_33[0][0] __________________________________________________________________________________________________ activation_36 (Activation) (None, 4, 4, 1024) 0 add_11[0][0] __________________________________________________________________________________________________ conv2d_41 (Conv2D) (None, 4, 4, 256) 262400 activation_36[0][0] __________________________________________________________________________________________________ batch_normalization_40 (BatchNo (None, 4, 4, 256) 1024 conv2d_41[0][0] __________________________________________________________________________________________________ activation_37 (Activation) (None, 4, 4, 256) 0 batch_normalization_40[0][0] __________________________________________________________________________________________________ conv2d_42 (Conv2D) (None, 4, 4, 256) 590080 activation_37[0][0] __________________________________________________________________________________________________ batch_normalization_41 (BatchNo (None, 4, 4, 256) 1024 conv2d_42[0][0] __________________________________________________________________________________________________ activation_38 (Activation) (None, 4, 4, 256) 0 batch_normalization_41[0][0] __________________________________________________________________________________________________ conv2d_43 (Conv2D) (None, 4, 4, 1024) 263168 activation_38[0][0] __________________________________________________________________________________________________ batch_normalization_42 (BatchNo (None, 4, 4, 1024) 4096 conv2d_43[0][0] __________________________________________________________________________________________________ add_12 (Add) (None, 4, 4, 1024) 0 batch_normalization_42[0][0] activation_36[0][0] __________________________________________________________________________________________________ activation_39 (Activation) (None, 4, 4, 1024) 0 add_12[0][0] __________________________________________________________________________________________________ conv2d_44 (Conv2D) (None, 4, 4, 256) 262400 activation_39[0][0] __________________________________________________________________________________________________ batch_normalization_43 (BatchNo (None, 4, 4, 256) 1024 conv2d_44[0][0] __________________________________________________________________________________________________ activation_40 (Activation) (None, 4, 4, 256) 0 batch_normalization_43[0][0] __________________________________________________________________________________________________ conv2d_45 (Conv2D) (None, 4, 4, 256) 590080 activation_40[0][0] __________________________________________________________________________________________________ batch_normalization_44 (BatchNo (None, 4, 4, 256) 1024 conv2d_45[0][0] __________________________________________________________________________________________________ activation_41 (Activation) (None, 4, 4, 256) 0 batch_normalization_44[0][0] __________________________________________________________________________________________________ conv2d_46 (Conv2D) (None, 4, 4, 1024) 263168 activation_41[0][0] __________________________________________________________________________________________________ batch_normalization_45 (BatchNo (None, 4, 4, 1024) 4096 conv2d_46[0][0] __________________________________________________________________________________________________ add_13 (Add) (None, 4, 4, 1024) 0 batch_normalization_45[0][0] activation_39[0][0] __________________________________________________________________________________________________ activation_42 (Activation) (None, 4, 4, 1024) 0 add_13[0][0] __________________________________________________________________________________________________ conv2d_47 (Conv2D) (None, 4, 4, 256) 262400 activation_42[0][0] __________________________________________________________________________________________________ batch_normalization_46 (BatchNo (None, 4, 4, 256) 1024 conv2d_47[0][0] __________________________________________________________________________________________________ activation_43 (Activation) (None, 4, 4, 256) 0 batch_normalization_46[0][0] __________________________________________________________________________________________________ conv2d_48 (Conv2D) (None, 4, 4, 256) 590080 activation_43[0][0] __________________________________________________________________________________________________ batch_normalization_47 (BatchNo (None, 4, 4, 256) 1024 conv2d_48[0][0] __________________________________________________________________________________________________ activation_44 (Activation) (None, 4, 4, 256) 0 batch_normalization_47[0][0] __________________________________________________________________________________________________ conv2d_49 (Conv2D) (None, 4, 4, 1024) 263168 activation_44[0][0] __________________________________________________________________________________________________ batch_normalization_48 (BatchNo (None, 4, 4, 1024) 4096 conv2d_49[0][0] __________________________________________________________________________________________________ add_14 (Add) (None, 4, 4, 1024) 0 batch_normalization_48[0][0] activation_42[0][0] __________________________________________________________________________________________________ activation_45 (Activation) (None, 4, 4, 1024) 0 add_14[0][0] __________________________________________________________________________________________________ conv2d_50 (Conv2D) (None, 2, 2, 512) 524800 activation_45[0][0] __________________________________________________________________________________________________ batch_normalization_49 (BatchNo (None, 2, 2, 512) 2048 conv2d_50[0][0] __________________________________________________________________________________________________ activation_46 (Activation) (None, 2, 2, 512) 0 batch_normalization_49[0][0] __________________________________________________________________________________________________ conv2d_51 (Conv2D) (None, 2, 2, 512) 2359808 activation_46[0][0] __________________________________________________________________________________________________ batch_normalization_50 (BatchNo (None, 2, 2, 512) 2048 conv2d_51[0][0] __________________________________________________________________________________________________ activation_47 (Activation) (None, 2, 2, 512) 0 batch_normalization_50[0][0] __________________________________________________________________________________________________ conv2d_52 (Conv2D) (None, 2, 2, 2048) 1050624 activation_47[0][0] __________________________________________________________________________________________________ conv2d_53 (Conv2D) (None, 2, 2, 2048) 2099200 activation_45[0][0] __________________________________________________________________________________________________ batch_normalization_51 (BatchNo (None, 2, 2, 2048) 8192 conv2d_52[0][0] __________________________________________________________________________________________________ batch_normalization_52 (BatchNo (None, 2, 2, 2048) 8192 conv2d_53[0][0] __________________________________________________________________________________________________ add_15 (Add) (None, 2, 2, 2048) 0 batch_normalization_51[0][0] batch_normalization_52[0][0] __________________________________________________________________________________________________ activation_48 (Activation) (None, 2, 2, 2048) 0 add_15[0][0] __________________________________________________________________________________________________ conv2d_54 (Conv2D) (None, 2, 2, 512) 1049088 activation_48[0][0] __________________________________________________________________________________________________ batch_normalization_53 (BatchNo (None, 2, 2, 512) 2048 conv2d_54[0][0] __________________________________________________________________________________________________ activation_49 (Activation) (None, 2, 2, 512) 0 batch_normalization_53[0][0] __________________________________________________________________________________________________ conv2d_55 (Conv2D) (None, 2, 2, 512) 2359808 activation_49[0][0] __________________________________________________________________________________________________ batch_normalization_54 (BatchNo (None, 2, 2, 512) 2048 conv2d_55[0][0] __________________________________________________________________________________________________ activation_50 (Activation) (None, 2, 2, 512) 0 batch_normalization_54[0][0] __________________________________________________________________________________________________ conv2d_56 (Conv2D) (None, 2, 2, 2048) 1050624 activation_50[0][0] __________________________________________________________________________________________________ batch_normalization_55 (BatchNo (None, 2, 2, 2048) 8192 conv2d_56[0][0] __________________________________________________________________________________________________ add_16 (Add) (None, 2, 2, 2048) 0 batch_normalization_55[0][0] activation_48[0][0] __________________________________________________________________________________________________ activation_51 (Activation) (None, 2, 2, 2048) 0 add_16[0][0] __________________________________________________________________________________________________ conv2d_57 (Conv2D) (None, 2, 2, 512) 1049088 activation_51[0][0] __________________________________________________________________________________________________ batch_normalization_56 (BatchNo (None, 2, 2, 512) 2048 conv2d_57[0][0] __________________________________________________________________________________________________ activation_52 (Activation) (None, 2, 2, 512) 0 batch_normalization_56[0][0] __________________________________________________________________________________________________ conv2d_58 (Conv2D) (None, 2, 2, 512) 2359808 activation_52[0][0] __________________________________________________________________________________________________ batch_normalization_57 (BatchNo (None, 2, 2, 512) 2048 conv2d_58[0][0] __________________________________________________________________________________________________ activation_53 (Activation) (None, 2, 2, 512) 0 batch_normalization_57[0][0] __________________________________________________________________________________________________ conv2d_59 (Conv2D) (None, 2, 2, 2048) 1050624 activation_53[0][0] __________________________________________________________________________________________________ batch_normalization_58 (BatchNo (None, 2, 2, 2048) 8192 conv2d_59[0][0] __________________________________________________________________________________________________ add_17 (Add) (None, 2, 2, 2048) 0 batch_normalization_58[0][0] activation_51[0][0] __________________________________________________________________________________________________ activation_54 (Activation) (None, 2, 2, 2048) 0 add_17[0][0] __________________________________________________________________________________________________ average_pooling2d (AveragePooli (None, 1, 1, 2048) 0 activation_54[0][0] __________________________________________________________________________________________________ flatten (Flatten) (None, 2048) 0 average_pooling2d[0][0] __________________________________________________________________________________________________ fc6 (Dense) (None, 6) 12294 flatten[0][0] ================================================================================================== Total params: 23,600,006 Trainable params: 23,546,886 Non-trainable params: 53,120 __________________________________________________________________________________________________

Free Up Resources for Other Learners

In order to provide our learners a smooth learning experience, please free up the resources used by your assignment by running the cell below so that the other learners can take advantage of those resources just as much as you did. Thank you!

Note:

  • Run the cell below when you are done with the assignment and are ready to submit it for grading.

  • When you'll run it, a pop up will open, click Ok.

  • Running the cell will restart the kernel.

%%javascript IPython.notebook.save_checkpoint(); if (confirm("Clear memory?") == true) { IPython.notebook.kernel.restart(); }
<IPython.core.display.Javascript object>

6 - Bibliography

This notebook presents the ResNet algorithm from He et al. (2015). The implementation here also took significant inspiration and follows the structure given in the GitHub repository of Francois Chollet: