CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
rapid7

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

GitHub Repository: rapid7/metasploit-framework
Path: blob/master/external/source/exploits/CVE-2017-13861/sha256.c
Views: 11780
1
/*********************************************************************
2
* Filename: sha256.c
3
* Author: Brad Conte (brad AT bradconte.com)
4
* Copyright:
5
* Disclaimer: This code is presented "as is" without any guarantees.
6
* Details: Implementation of the SHA-256 hashing algorithm.
7
SHA-256 is one of the three algorithms in the SHA2
8
specification. The others, SHA-384 and SHA-512, are not
9
offered in this implementation.
10
Algorithm specification can be found here:
11
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
12
This implementation uses little endian byte order.
13
*********************************************************************/
14
15
/*************************** HEADER FILES ***************************/
16
#include <stdlib.h>
17
#include <memory.h>
18
#include "sha256.h"
19
20
/****************************** MACROS ******************************/
21
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
22
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
23
24
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
25
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
26
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
27
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
28
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
29
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
30
31
/**************************** VARIABLES *****************************/
32
static const WORD k[64] = {
33
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
34
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
35
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
36
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
37
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
38
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
39
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
40
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
41
};
42
43
/*********************** FUNCTION DEFINITIONS ***********************/
44
void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
45
{
46
WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
47
48
for (i = 0, j = 0; i < 16; ++i, j += 4)
49
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
50
for ( ; i < 64; ++i)
51
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
52
53
a = ctx->state[0];
54
b = ctx->state[1];
55
c = ctx->state[2];
56
d = ctx->state[3];
57
e = ctx->state[4];
58
f = ctx->state[5];
59
g = ctx->state[6];
60
h = ctx->state[7];
61
62
for (i = 0; i < 64; ++i) {
63
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
64
t2 = EP0(a) + MAJ(a,b,c);
65
h = g;
66
g = f;
67
f = e;
68
e = d + t1;
69
d = c;
70
c = b;
71
b = a;
72
a = t1 + t2;
73
}
74
75
ctx->state[0] += a;
76
ctx->state[1] += b;
77
ctx->state[2] += c;
78
ctx->state[3] += d;
79
ctx->state[4] += e;
80
ctx->state[5] += f;
81
ctx->state[6] += g;
82
ctx->state[7] += h;
83
}
84
85
void sha256_init(SHA256_CTX *ctx)
86
{
87
ctx->datalen = 0;
88
ctx->bitlen = 0;
89
ctx->state[0] = 0x6a09e667;
90
ctx->state[1] = 0xbb67ae85;
91
ctx->state[2] = 0x3c6ef372;
92
ctx->state[3] = 0xa54ff53a;
93
ctx->state[4] = 0x510e527f;
94
ctx->state[5] = 0x9b05688c;
95
ctx->state[6] = 0x1f83d9ab;
96
ctx->state[7] = 0x5be0cd19;
97
}
98
99
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
100
{
101
WORD i;
102
103
for (i = 0; i < len; ++i) {
104
ctx->data[ctx->datalen] = data[i];
105
ctx->datalen++;
106
if (ctx->datalen == 64) {
107
sha256_transform(ctx, ctx->data);
108
ctx->bitlen += 512;
109
ctx->datalen = 0;
110
}
111
}
112
}
113
114
void sha256_final(SHA256_CTX *ctx, BYTE hash[])
115
{
116
WORD i;
117
118
i = ctx->datalen;
119
120
// Pad whatever data is left in the buffer.
121
if (ctx->datalen < 56) {
122
ctx->data[i++] = 0x80;
123
while (i < 56)
124
ctx->data[i++] = 0x00;
125
}
126
else {
127
ctx->data[i++] = 0x80;
128
while (i < 64)
129
ctx->data[i++] = 0x00;
130
sha256_transform(ctx, ctx->data);
131
memset(ctx->data, 0, 56);
132
}
133
134
// Append to the padding the total message's length in bits and transform.
135
ctx->bitlen += ctx->datalen * 8;
136
ctx->data[63] = ctx->bitlen;
137
ctx->data[62] = ctx->bitlen >> 8;
138
ctx->data[61] = ctx->bitlen >> 16;
139
ctx->data[60] = ctx->bitlen >> 24;
140
ctx->data[59] = ctx->bitlen >> 32;
141
ctx->data[58] = ctx->bitlen >> 40;
142
ctx->data[57] = ctx->bitlen >> 48;
143
ctx->data[56] = ctx->bitlen >> 56;
144
sha256_transform(ctx, ctx->data);
145
146
// Since this implementation uses little endian byte ordering and SHA uses big endian,
147
// reverse all the bytes when copying the final state to the output hash.
148
for (i = 0; i < 4; ++i) {
149
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
150
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
151
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
152
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
153
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
154
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
155
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
156
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
157
}
158
}
159