CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
rapid7

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

GitHub Repository: rapid7/metasploit-framework
Path: blob/master/external/source/vncdll/winvnc/libjpeg/jcdctmgr.c
Views: 11784
1
/*
2
* jcdctmgr.c
3
*
4
* Copyright (C) 1994-1996, Thomas G. Lane.
5
* This file is part of the Independent JPEG Group's software.
6
* For conditions of distribution and use, see the accompanying README file.
7
*
8
* This file contains the forward-DCT management logic.
9
* This code selects a particular DCT implementation to be used,
10
* and it performs related housekeeping chores including coefficient
11
* quantization.
12
*/
13
14
#define JPEG_INTERNALS
15
#include "jinclude.h"
16
#include "jpeglib.h"
17
#include "jdct.h" /* Private declarations for DCT subsystem */
18
19
20
/* Private subobject for this module */
21
22
typedef struct {
23
struct jpeg_forward_dct pub; /* public fields */
24
25
/* Pointer to the DCT routine actually in use */
26
forward_DCT_method_ptr do_dct;
27
28
/* The actual post-DCT divisors --- not identical to the quant table
29
* entries, because of scaling (especially for an unnormalized DCT).
30
* Each table is given in normal array order.
31
*/
32
DCTELEM * divisors[NUM_QUANT_TBLS];
33
34
#ifdef DCT_FLOAT_SUPPORTED
35
/* Same as above for the floating-point case. */
36
float_DCT_method_ptr do_float_dct;
37
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
38
#endif
39
} my_fdct_controller;
40
41
typedef my_fdct_controller * my_fdct_ptr;
42
43
44
/*
45
* Initialize for a processing pass.
46
* Verify that all referenced Q-tables are present, and set up
47
* the divisor table for each one.
48
* In the current implementation, DCT of all components is done during
49
* the first pass, even if only some components will be output in the
50
* first scan. Hence all components should be examined here.
51
*/
52
53
METHODDEF(void)
54
start_pass_fdctmgr (j_compress_ptr cinfo)
55
{
56
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
57
int ci, qtblno, i;
58
jpeg_component_info *compptr;
59
JQUANT_TBL * qtbl;
60
DCTELEM * dtbl;
61
62
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
63
ci++, compptr++) {
64
qtblno = compptr->quant_tbl_no;
65
/* Make sure specified quantization table is present */
66
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
67
cinfo->quant_tbl_ptrs[qtblno] == NULL)
68
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
69
qtbl = cinfo->quant_tbl_ptrs[qtblno];
70
/* Compute divisors for this quant table */
71
/* We may do this more than once for same table, but it's not a big deal */
72
switch (cinfo->dct_method) {
73
#ifdef DCT_ISLOW_SUPPORTED
74
case JDCT_ISLOW:
75
/* For LL&M IDCT method, divisors are equal to raw quantization
76
* coefficients multiplied by 8 (to counteract scaling).
77
*/
78
if (fdct->divisors[qtblno] == NULL) {
79
fdct->divisors[qtblno] = (DCTELEM *)
80
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
81
DCTSIZE2 * SIZEOF(DCTELEM));
82
}
83
dtbl = fdct->divisors[qtblno];
84
for (i = 0; i < DCTSIZE2; i++) {
85
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
86
}
87
break;
88
#endif
89
#ifdef DCT_IFAST_SUPPORTED
90
case JDCT_IFAST:
91
{
92
/* For AA&N IDCT method, divisors are equal to quantization
93
* coefficients scaled by scalefactor[row]*scalefactor[col], where
94
* scalefactor[0] = 1
95
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
96
* We apply a further scale factor of 8.
97
*/
98
#define CONST_BITS 14
99
static const INT16 aanscales[DCTSIZE2] = {
100
/* precomputed values scaled up by 14 bits */
101
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
102
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
103
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
104
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
105
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
106
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
107
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
108
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
109
};
110
SHIFT_TEMPS
111
112
if (fdct->divisors[qtblno] == NULL) {
113
fdct->divisors[qtblno] = (DCTELEM *)
114
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
115
DCTSIZE2 * SIZEOF(DCTELEM));
116
}
117
dtbl = fdct->divisors[qtblno];
118
for (i = 0; i < DCTSIZE2; i++) {
119
dtbl[i] = (DCTELEM)
120
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
121
(INT32) aanscales[i]),
122
CONST_BITS-3);
123
}
124
}
125
break;
126
#endif
127
#ifdef DCT_FLOAT_SUPPORTED
128
case JDCT_FLOAT:
129
{
130
/* For float AA&N IDCT method, divisors are equal to quantization
131
* coefficients scaled by scalefactor[row]*scalefactor[col], where
132
* scalefactor[0] = 1
133
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
134
* We apply a further scale factor of 8.
135
* What's actually stored is 1/divisor so that the inner loop can
136
* use a multiplication rather than a division.
137
*/
138
FAST_FLOAT * fdtbl;
139
int row, col;
140
static const double aanscalefactor[DCTSIZE] = {
141
1.0, 1.387039845, 1.306562965, 1.175875602,
142
1.0, 0.785694958, 0.541196100, 0.275899379
143
};
144
145
if (fdct->float_divisors[qtblno] == NULL) {
146
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
147
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
148
DCTSIZE2 * SIZEOF(FAST_FLOAT));
149
}
150
fdtbl = fdct->float_divisors[qtblno];
151
i = 0;
152
for (row = 0; row < DCTSIZE; row++) {
153
for (col = 0; col < DCTSIZE; col++) {
154
fdtbl[i] = (FAST_FLOAT)
155
(1.0 / (((double) qtbl->quantval[i] *
156
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
157
i++;
158
}
159
}
160
}
161
break;
162
#endif
163
default:
164
ERREXIT(cinfo, JERR_NOT_COMPILED);
165
break;
166
}
167
}
168
}
169
170
171
/*
172
* Perform forward DCT on one or more blocks of a component.
173
*
174
* The input samples are taken from the sample_data[] array starting at
175
* position start_row/start_col, and moving to the right for any additional
176
* blocks. The quantized coefficients are returned in coef_blocks[].
177
*/
178
179
METHODDEF(void)
180
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
181
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
182
JDIMENSION start_row, JDIMENSION start_col,
183
JDIMENSION num_blocks)
184
/* This version is used for integer DCT implementations. */
185
{
186
/* This routine is heavily used, so it's worth coding it tightly. */
187
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
188
forward_DCT_method_ptr do_dct = fdct->do_dct;
189
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
190
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
191
JDIMENSION bi;
192
193
sample_data += start_row; /* fold in the vertical offset once */
194
195
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
196
/* Load data into workspace, applying unsigned->signed conversion */
197
{ register DCTELEM *workspaceptr;
198
register JSAMPROW elemptr;
199
register int elemr;
200
201
workspaceptr = workspace;
202
for (elemr = 0; elemr < DCTSIZE; elemr++) {
203
elemptr = sample_data[elemr] + start_col;
204
#if DCTSIZE == 8 /* unroll the inner loop */
205
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
206
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
207
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
208
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
209
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
210
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
211
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
212
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
213
#else
214
{ register int elemc;
215
for (elemc = DCTSIZE; elemc > 0; elemc--) {
216
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
217
}
218
}
219
#endif
220
}
221
}
222
223
/* Perform the DCT */
224
(*do_dct) (workspace);
225
226
/* Quantize/descale the coefficients, and store into coef_blocks[] */
227
{ register DCTELEM temp, qval;
228
register int i;
229
register JCOEFPTR output_ptr = coef_blocks[bi];
230
231
for (i = 0; i < DCTSIZE2; i++) {
232
qval = divisors[i];
233
temp = workspace[i];
234
/* Divide the coefficient value by qval, ensuring proper rounding.
235
* Since C does not specify the direction of rounding for negative
236
* quotients, we have to force the dividend positive for portability.
237
*
238
* In most files, at least half of the output values will be zero
239
* (at default quantization settings, more like three-quarters...)
240
* so we should ensure that this case is fast. On many machines,
241
* a comparison is enough cheaper than a divide to make a special test
242
* a win. Since both inputs will be nonnegative, we need only test
243
* for a < b to discover whether a/b is 0.
244
* If your machine's division is fast enough, define FAST_DIVIDE.
245
*/
246
#ifdef FAST_DIVIDE
247
#define DIVIDE_BY(a,b) a /= b
248
#else
249
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
250
#endif
251
if (temp < 0) {
252
temp = -temp;
253
temp += qval>>1; /* for rounding */
254
DIVIDE_BY(temp, qval);
255
temp = -temp;
256
} else {
257
temp += qval>>1; /* for rounding */
258
DIVIDE_BY(temp, qval);
259
}
260
output_ptr[i] = (JCOEF) temp;
261
}
262
}
263
}
264
}
265
266
267
#ifdef DCT_FLOAT_SUPPORTED
268
269
METHODDEF(void)
270
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
271
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
272
JDIMENSION start_row, JDIMENSION start_col,
273
JDIMENSION num_blocks)
274
/* This version is used for floating-point DCT implementations. */
275
{
276
/* This routine is heavily used, so it's worth coding it tightly. */
277
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
278
float_DCT_method_ptr do_dct = fdct->do_float_dct;
279
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
280
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
281
JDIMENSION bi;
282
283
sample_data += start_row; /* fold in the vertical offset once */
284
285
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
286
/* Load data into workspace, applying unsigned->signed conversion */
287
{ register FAST_FLOAT *workspaceptr;
288
register JSAMPROW elemptr;
289
register int elemr;
290
291
workspaceptr = workspace;
292
for (elemr = 0; elemr < DCTSIZE; elemr++) {
293
elemptr = sample_data[elemr] + start_col;
294
#if DCTSIZE == 8 /* unroll the inner loop */
295
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
296
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
297
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
298
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
299
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
300
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
301
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
302
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
303
#else
304
{ register int elemc;
305
for (elemc = DCTSIZE; elemc > 0; elemc--) {
306
*workspaceptr++ = (FAST_FLOAT)
307
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
308
}
309
}
310
#endif
311
}
312
}
313
314
/* Perform the DCT */
315
(*do_dct) (workspace);
316
317
/* Quantize/descale the coefficients, and store into coef_blocks[] */
318
{ register FAST_FLOAT temp;
319
register int i;
320
register JCOEFPTR output_ptr = coef_blocks[bi];
321
322
for (i = 0; i < DCTSIZE2; i++) {
323
/* Apply the quantization and scaling factor */
324
temp = workspace[i] * divisors[i];
325
/* Round to nearest integer.
326
* Since C does not specify the direction of rounding for negative
327
* quotients, we have to force the dividend positive for portability.
328
* The maximum coefficient size is +-16K (for 12-bit data), so this
329
* code should work for either 16-bit or 32-bit ints.
330
*/
331
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
332
}
333
}
334
}
335
}
336
337
#endif /* DCT_FLOAT_SUPPORTED */
338
339
340
/*
341
* Initialize FDCT manager.
342
*/
343
344
GLOBAL(void)
345
jinit_forward_dct (j_compress_ptr cinfo)
346
{
347
my_fdct_ptr fdct;
348
int i;
349
350
fdct = (my_fdct_ptr)
351
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
352
SIZEOF(my_fdct_controller));
353
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
354
fdct->pub.start_pass = start_pass_fdctmgr;
355
356
switch (cinfo->dct_method) {
357
#ifdef DCT_ISLOW_SUPPORTED
358
case JDCT_ISLOW:
359
fdct->pub.forward_DCT = forward_DCT;
360
fdct->do_dct = jpeg_fdct_islow;
361
break;
362
#endif
363
#ifdef DCT_IFAST_SUPPORTED
364
case JDCT_IFAST:
365
fdct->pub.forward_DCT = forward_DCT;
366
fdct->do_dct = jpeg_fdct_ifast;
367
break;
368
#endif
369
#ifdef DCT_FLOAT_SUPPORTED
370
case JDCT_FLOAT:
371
fdct->pub.forward_DCT = forward_DCT_float;
372
fdct->do_float_dct = jpeg_fdct_float;
373
break;
374
#endif
375
default:
376
ERREXIT(cinfo, JERR_NOT_COMPILED);
377
break;
378
}
379
380
/* Mark divisor tables unallocated */
381
for (i = 0; i < NUM_QUANT_TBLS; i++) {
382
fdct->divisors[i] = NULL;
383
#ifdef DCT_FLOAT_SUPPORTED
384
fdct->float_divisors[i] = NULL;
385
#endif
386
}
387
}
388
389