CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
rapid7

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

GitHub Repository: rapid7/metasploit-framework
Path: blob/master/external/source/vncdll/winvnc/libjpeg/jcparam.c
Views: 11784
1
/*
2
* jcparam.c
3
*
4
* Copyright (C) 1991-1998, Thomas G. Lane.
5
* This file is part of the Independent JPEG Group's software.
6
* For conditions of distribution and use, see the accompanying README file.
7
*
8
* This file contains optional default-setting code for the JPEG compressor.
9
* Applications do not have to use this file, but those that don't use it
10
* must know a lot more about the innards of the JPEG code.
11
*/
12
13
#define JPEG_INTERNALS
14
#include "jinclude.h"
15
#include "jpeglib.h"
16
17
18
/*
19
* Quantization table setup routines
20
*/
21
22
GLOBAL(void)
23
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
24
const unsigned int *basic_table,
25
int scale_factor, boolean force_baseline)
26
/* Define a quantization table equal to the basic_table times
27
* a scale factor (given as a percentage).
28
* If force_baseline is TRUE, the computed quantization table entries
29
* are limited to 1..255 for JPEG baseline compatibility.
30
*/
31
{
32
JQUANT_TBL ** qtblptr;
33
int i;
34
long temp;
35
36
/* Safety check to ensure start_compress not called yet. */
37
if (cinfo->global_state != CSTATE_START)
38
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
39
40
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
41
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
42
43
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
44
45
if (*qtblptr == NULL)
46
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
47
48
for (i = 0; i < DCTSIZE2; i++) {
49
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
50
/* limit the values to the valid range */
51
if (temp <= 0L) temp = 1L;
52
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
53
if (force_baseline && temp > 255L)
54
temp = 255L; /* limit to baseline range if requested */
55
(*qtblptr)->quantval[i] = (UINT16) temp;
56
}
57
58
/* Initialize sent_table FALSE so table will be written to JPEG file. */
59
(*qtblptr)->sent_table = FALSE;
60
}
61
62
63
GLOBAL(void)
64
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
65
boolean force_baseline)
66
/* Set or change the 'quality' (quantization) setting, using default tables
67
* and a straight percentage-scaling quality scale. In most cases it's better
68
* to use jpeg_set_quality (below); this entry point is provided for
69
* applications that insist on a linear percentage scaling.
70
*/
71
{
72
/* These are the sample quantization tables given in JPEG spec section K.1.
73
* The spec says that the values given produce "good" quality, and
74
* when divided by 2, "very good" quality.
75
*/
76
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
77
16, 11, 10, 16, 24, 40, 51, 61,
78
12, 12, 14, 19, 26, 58, 60, 55,
79
14, 13, 16, 24, 40, 57, 69, 56,
80
14, 17, 22, 29, 51, 87, 80, 62,
81
18, 22, 37, 56, 68, 109, 103, 77,
82
24, 35, 55, 64, 81, 104, 113, 92,
83
49, 64, 78, 87, 103, 121, 120, 101,
84
72, 92, 95, 98, 112, 100, 103, 99
85
};
86
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
87
17, 18, 24, 47, 99, 99, 99, 99,
88
18, 21, 26, 66, 99, 99, 99, 99,
89
24, 26, 56, 99, 99, 99, 99, 99,
90
47, 66, 99, 99, 99, 99, 99, 99,
91
99, 99, 99, 99, 99, 99, 99, 99,
92
99, 99, 99, 99, 99, 99, 99, 99,
93
99, 99, 99, 99, 99, 99, 99, 99,
94
99, 99, 99, 99, 99, 99, 99, 99
95
};
96
97
/* Set up two quantization tables using the specified scaling */
98
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
99
scale_factor, force_baseline);
100
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
101
scale_factor, force_baseline);
102
}
103
104
105
GLOBAL(int)
106
jpeg_quality_scaling (int quality)
107
/* Convert a user-specified quality rating to a percentage scaling factor
108
* for an underlying quantization table, using our recommended scaling curve.
109
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
110
*/
111
{
112
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
113
if (quality <= 0) quality = 1;
114
if (quality > 100) quality = 100;
115
116
/* The basic table is used as-is (scaling 100) for a quality of 50.
117
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
118
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
119
* to make all the table entries 1 (hence, minimum quantization loss).
120
* Qualities 1..50 are converted to scaling percentage 5000/Q.
121
*/
122
if (quality < 50)
123
quality = 5000 / quality;
124
else
125
quality = 200 - quality*2;
126
127
return quality;
128
}
129
130
131
GLOBAL(void)
132
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
133
/* Set or change the 'quality' (quantization) setting, using default tables.
134
* This is the standard quality-adjusting entry point for typical user
135
* interfaces; only those who want detailed control over quantization tables
136
* would use the preceding three routines directly.
137
*/
138
{
139
/* Convert user 0-100 rating to percentage scaling */
140
quality = jpeg_quality_scaling(quality);
141
142
/* Set up standard quality tables */
143
jpeg_set_linear_quality(cinfo, quality, force_baseline);
144
}
145
146
147
/*
148
* Huffman table setup routines
149
*/
150
151
LOCAL(void)
152
add_huff_table (j_compress_ptr cinfo,
153
JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
154
/* Define a Huffman table */
155
{
156
int nsymbols, len;
157
158
if (*htblptr == NULL)
159
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
160
161
/* Copy the number-of-symbols-of-each-code-length counts */
162
MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
163
164
/* Validate the counts. We do this here mainly so we can copy the right
165
* number of symbols from the val[] array, without risking marching off
166
* the end of memory. jchuff.c will do a more thorough test later.
167
*/
168
nsymbols = 0;
169
for (len = 1; len <= 16; len++)
170
nsymbols += bits[len];
171
if (nsymbols < 1 || nsymbols > 256)
172
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
173
174
MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
175
176
/* Initialize sent_table FALSE so table will be written to JPEG file. */
177
(*htblptr)->sent_table = FALSE;
178
}
179
180
181
LOCAL(void)
182
std_huff_tables (j_compress_ptr cinfo)
183
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
184
/* IMPORTANT: these are only valid for 8-bit data precision! */
185
{
186
static const UINT8 bits_dc_luminance[17] =
187
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
188
static const UINT8 val_dc_luminance[] =
189
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
190
191
static const UINT8 bits_dc_chrominance[17] =
192
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
193
static const UINT8 val_dc_chrominance[] =
194
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
195
196
static const UINT8 bits_ac_luminance[17] =
197
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
198
static const UINT8 val_ac_luminance[] =
199
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
200
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
201
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
202
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
203
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
204
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
205
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
206
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
207
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
208
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
209
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
210
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
211
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
212
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
213
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
214
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
215
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
216
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
217
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
218
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
219
0xf9, 0xfa };
220
221
static const UINT8 bits_ac_chrominance[17] =
222
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
223
static const UINT8 val_ac_chrominance[] =
224
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
225
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
226
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
227
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
228
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
229
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
230
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
231
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
232
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
233
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
234
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
235
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
236
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
237
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
238
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
239
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
240
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
241
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
242
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
243
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
244
0xf9, 0xfa };
245
246
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
247
bits_dc_luminance, val_dc_luminance);
248
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
249
bits_ac_luminance, val_ac_luminance);
250
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
251
bits_dc_chrominance, val_dc_chrominance);
252
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
253
bits_ac_chrominance, val_ac_chrominance);
254
}
255
256
257
/*
258
* Default parameter setup for compression.
259
*
260
* Applications that don't choose to use this routine must do their
261
* own setup of all these parameters. Alternately, you can call this
262
* to establish defaults and then alter parameters selectively. This
263
* is the recommended approach since, if we add any new parameters,
264
* your code will still work (they'll be set to reasonable defaults).
265
*/
266
267
GLOBAL(void)
268
jpeg_set_defaults (j_compress_ptr cinfo)
269
{
270
int i;
271
272
/* Safety check to ensure start_compress not called yet. */
273
if (cinfo->global_state != CSTATE_START)
274
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
275
276
/* Allocate comp_info array large enough for maximum component count.
277
* Array is made permanent in case application wants to compress
278
* multiple images at same param settings.
279
*/
280
if (cinfo->comp_info == NULL)
281
cinfo->comp_info = (jpeg_component_info *)
282
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
283
MAX_COMPONENTS * SIZEOF(jpeg_component_info));
284
285
/* Initialize everything not dependent on the color space */
286
287
cinfo->data_precision = BITS_IN_JSAMPLE;
288
/* Set up two quantization tables using default quality of 75 */
289
jpeg_set_quality(cinfo, 75, TRUE);
290
/* Set up two Huffman tables */
291
std_huff_tables(cinfo);
292
293
/* Initialize default arithmetic coding conditioning */
294
for (i = 0; i < NUM_ARITH_TBLS; i++) {
295
cinfo->arith_dc_L[i] = 0;
296
cinfo->arith_dc_U[i] = 1;
297
cinfo->arith_ac_K[i] = 5;
298
}
299
300
/* Default is no multiple-scan output */
301
cinfo->scan_info = NULL;
302
cinfo->num_scans = 0;
303
304
/* Expect normal source image, not raw downsampled data */
305
cinfo->raw_data_in = FALSE;
306
307
/* Use Huffman coding, not arithmetic coding, by default */
308
cinfo->arith_code = FALSE;
309
310
/* By default, don't do extra passes to optimize entropy coding */
311
cinfo->optimize_coding = FALSE;
312
/* The standard Huffman tables are only valid for 8-bit data precision.
313
* If the precision is higher, force optimization on so that usable
314
* tables will be computed. This test can be removed if default tables
315
* are supplied that are valid for the desired precision.
316
*/
317
if (cinfo->data_precision > 8)
318
cinfo->optimize_coding = TRUE;
319
320
/* By default, use the simpler non-cosited sampling alignment */
321
cinfo->CCIR601_sampling = FALSE;
322
323
/* No input smoothing */
324
cinfo->smoothing_factor = 0;
325
326
/* DCT algorithm preference */
327
cinfo->dct_method = JDCT_DEFAULT;
328
329
/* No restart markers */
330
cinfo->restart_interval = 0;
331
cinfo->restart_in_rows = 0;
332
333
/* Fill in default JFIF marker parameters. Note that whether the marker
334
* will actually be written is determined by jpeg_set_colorspace.
335
*
336
* By default, the library emits JFIF version code 1.01.
337
* An application that wants to emit JFIF 1.02 extension markers should set
338
* JFIF_minor_version to 2. We could probably get away with just defaulting
339
* to 1.02, but there may still be some decoders in use that will complain
340
* about that; saying 1.01 should minimize compatibility problems.
341
*/
342
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
343
cinfo->JFIF_minor_version = 1;
344
cinfo->density_unit = 0; /* Pixel size is unknown by default */
345
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
346
cinfo->Y_density = 1;
347
348
/* Choose JPEG colorspace based on input space, set defaults accordingly */
349
350
jpeg_default_colorspace(cinfo);
351
}
352
353
354
/*
355
* Select an appropriate JPEG colorspace for in_color_space.
356
*/
357
358
GLOBAL(void)
359
jpeg_default_colorspace (j_compress_ptr cinfo)
360
{
361
switch (cinfo->in_color_space) {
362
case JCS_GRAYSCALE:
363
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
364
break;
365
case JCS_RGB:
366
jpeg_set_colorspace(cinfo, JCS_YCbCr);
367
break;
368
case JCS_YCbCr:
369
jpeg_set_colorspace(cinfo, JCS_YCbCr);
370
break;
371
case JCS_CMYK:
372
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
373
break;
374
case JCS_YCCK:
375
jpeg_set_colorspace(cinfo, JCS_YCCK);
376
break;
377
case JCS_UNKNOWN:
378
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
379
break;
380
default:
381
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
382
}
383
}
384
385
386
/*
387
* Set the JPEG colorspace, and choose colorspace-dependent default values.
388
*/
389
390
GLOBAL(void)
391
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
392
{
393
jpeg_component_info * compptr;
394
int ci;
395
396
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
397
(compptr = &cinfo->comp_info[index], \
398
compptr->component_id = (id), \
399
compptr->h_samp_factor = (hsamp), \
400
compptr->v_samp_factor = (vsamp), \
401
compptr->quant_tbl_no = (quant), \
402
compptr->dc_tbl_no = (dctbl), \
403
compptr->ac_tbl_no = (actbl) )
404
405
/* Safety check to ensure start_compress not called yet. */
406
if (cinfo->global_state != CSTATE_START)
407
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
408
409
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
410
* tables 1 for chrominance components.
411
*/
412
413
cinfo->jpeg_color_space = colorspace;
414
415
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
416
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
417
418
switch (colorspace) {
419
case JCS_GRAYSCALE:
420
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
421
cinfo->num_components = 1;
422
/* JFIF specifies component ID 1 */
423
SET_COMP(0, 1, 1,1, 0, 0,0);
424
break;
425
case JCS_RGB:
426
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
427
cinfo->num_components = 3;
428
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
429
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
430
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
431
break;
432
case JCS_YCbCr:
433
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
434
cinfo->num_components = 3;
435
/* JFIF specifies component IDs 1,2,3 */
436
/* We default to 2x2 subsamples of chrominance */
437
SET_COMP(0, 1, 2,2, 0, 0,0);
438
SET_COMP(1, 2, 1,1, 1, 1,1);
439
SET_COMP(2, 3, 1,1, 1, 1,1);
440
break;
441
case JCS_CMYK:
442
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
443
cinfo->num_components = 4;
444
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
445
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
446
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
447
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
448
break;
449
case JCS_YCCK:
450
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
451
cinfo->num_components = 4;
452
SET_COMP(0, 1, 2,2, 0, 0,0);
453
SET_COMP(1, 2, 1,1, 1, 1,1);
454
SET_COMP(2, 3, 1,1, 1, 1,1);
455
SET_COMP(3, 4, 2,2, 0, 0,0);
456
break;
457
case JCS_UNKNOWN:
458
cinfo->num_components = cinfo->input_components;
459
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
460
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
461
MAX_COMPONENTS);
462
for (ci = 0; ci < cinfo->num_components; ci++) {
463
SET_COMP(ci, ci, 1,1, 0, 0,0);
464
}
465
break;
466
default:
467
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
468
}
469
}
470
471
472
#ifdef C_PROGRESSIVE_SUPPORTED
473
474
LOCAL(jpeg_scan_info *)
475
fill_a_scan (jpeg_scan_info * scanptr, int ci,
476
int Ss, int Se, int Ah, int Al)
477
/* Support routine: generate one scan for specified component */
478
{
479
scanptr->comps_in_scan = 1;
480
scanptr->component_index[0] = ci;
481
scanptr->Ss = Ss;
482
scanptr->Se = Se;
483
scanptr->Ah = Ah;
484
scanptr->Al = Al;
485
scanptr++;
486
return scanptr;
487
}
488
489
LOCAL(jpeg_scan_info *)
490
fill_scans (jpeg_scan_info * scanptr, int ncomps,
491
int Ss, int Se, int Ah, int Al)
492
/* Support routine: generate one scan for each component */
493
{
494
int ci;
495
496
for (ci = 0; ci < ncomps; ci++) {
497
scanptr->comps_in_scan = 1;
498
scanptr->component_index[0] = ci;
499
scanptr->Ss = Ss;
500
scanptr->Se = Se;
501
scanptr->Ah = Ah;
502
scanptr->Al = Al;
503
scanptr++;
504
}
505
return scanptr;
506
}
507
508
LOCAL(jpeg_scan_info *)
509
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
510
/* Support routine: generate interleaved DC scan if possible, else N scans */
511
{
512
int ci;
513
514
if (ncomps <= MAX_COMPS_IN_SCAN) {
515
/* Single interleaved DC scan */
516
scanptr->comps_in_scan = ncomps;
517
for (ci = 0; ci < ncomps; ci++)
518
scanptr->component_index[ci] = ci;
519
scanptr->Ss = scanptr->Se = 0;
520
scanptr->Ah = Ah;
521
scanptr->Al = Al;
522
scanptr++;
523
} else {
524
/* Noninterleaved DC scan for each component */
525
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
526
}
527
return scanptr;
528
}
529
530
531
/*
532
* Create a recommended progressive-JPEG script.
533
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
534
*/
535
536
GLOBAL(void)
537
jpeg_simple_progression (j_compress_ptr cinfo)
538
{
539
int ncomps = cinfo->num_components;
540
int nscans;
541
jpeg_scan_info * scanptr;
542
543
/* Safety check to ensure start_compress not called yet. */
544
if (cinfo->global_state != CSTATE_START)
545
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
546
547
/* Figure space needed for script. Calculation must match code below! */
548
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
549
/* Custom script for YCbCr color images. */
550
nscans = 10;
551
} else {
552
/* All-purpose script for other color spaces. */
553
if (ncomps > MAX_COMPS_IN_SCAN)
554
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
555
else
556
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
557
}
558
559
/* Allocate space for script.
560
* We need to put it in the permanent pool in case the application performs
561
* multiple compressions without changing the settings. To avoid a memory
562
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
563
* object, we try to re-use previously allocated space, and we allocate
564
* enough space to handle YCbCr even if initially asked for grayscale.
565
*/
566
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
567
cinfo->script_space_size = MAX(nscans, 10);
568
cinfo->script_space = (jpeg_scan_info *)
569
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
570
cinfo->script_space_size * SIZEOF(jpeg_scan_info));
571
}
572
scanptr = cinfo->script_space;
573
cinfo->scan_info = scanptr;
574
cinfo->num_scans = nscans;
575
576
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
577
/* Custom script for YCbCr color images. */
578
/* Initial DC scan */
579
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
580
/* Initial AC scan: get some luma data out in a hurry */
581
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
582
/* Chroma data is too small to be worth expending many scans on */
583
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
584
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
585
/* Complete spectral selection for luma AC */
586
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
587
/* Refine next bit of luma AC */
588
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
589
/* Finish DC successive approximation */
590
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
591
/* Finish AC successive approximation */
592
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
593
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
594
/* Luma bottom bit comes last since it's usually largest scan */
595
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
596
} else {
597
/* All-purpose script for other color spaces. */
598
/* Successive approximation first pass */
599
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
600
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
601
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
602
/* Successive approximation second pass */
603
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
604
/* Successive approximation final pass */
605
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
606
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
607
}
608
}
609
610
#endif /* C_PROGRESSIVE_SUPPORTED */
611
612