CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
rapid7

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

GitHub Repository: rapid7/metasploit-framework
Path: blob/master/external/source/vncdll/winvnc/libjpeg/jcphuff.c
Views: 11784
1
/*
2
* jcphuff.c
3
*
4
* Copyright (C) 1995-1997, Thomas G. Lane.
5
* This file is part of the Independent JPEG Group's software.
6
* For conditions of distribution and use, see the accompanying README file.
7
*
8
* This file contains Huffman entropy encoding routines for progressive JPEG.
9
*
10
* We do not support output suspension in this module, since the library
11
* currently does not allow multiple-scan files to be written with output
12
* suspension.
13
*/
14
15
#define JPEG_INTERNALS
16
#include "jinclude.h"
17
#include "jpeglib.h"
18
#include "jchuff.h" /* Declarations shared with jchuff.c */
19
20
#ifdef C_PROGRESSIVE_SUPPORTED
21
22
/* Expanded entropy encoder object for progressive Huffman encoding. */
23
24
typedef struct {
25
struct jpeg_entropy_encoder pub; /* public fields */
26
27
/* Mode flag: TRUE for optimization, FALSE for actual data output */
28
boolean gather_statistics;
29
30
/* Bit-level coding status.
31
* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
32
*/
33
JOCTET * next_output_byte; /* => next byte to write in buffer */
34
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
35
INT32 put_buffer; /* current bit-accumulation buffer */
36
int put_bits; /* # of bits now in it */
37
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
38
39
/* Coding status for DC components */
40
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
42
/* Coding status for AC components */
43
int ac_tbl_no; /* the table number of the single component */
44
unsigned int EOBRUN; /* run length of EOBs */
45
unsigned int BE; /* # of buffered correction bits before MCU */
46
char * bit_buffer; /* buffer for correction bits (1 per char) */
47
/* packing correction bits tightly would save some space but cost time... */
48
49
unsigned int restarts_to_go; /* MCUs left in this restart interval */
50
int next_restart_num; /* next restart number to write (0-7) */
51
52
/* Pointers to derived tables (these workspaces have image lifespan).
53
* Since any one scan codes only DC or only AC, we only need one set
54
* of tables, not one for DC and one for AC.
55
*/
56
c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
57
58
/* Statistics tables for optimization; again, one set is enough */
59
long * count_ptrs[NUM_HUFF_TBLS];
60
} phuff_entropy_encoder;
61
62
typedef phuff_entropy_encoder * phuff_entropy_ptr;
63
64
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
65
* buffer can hold. Larger sizes may slightly improve compression, but
66
* 1000 is already well into the realm of overkill.
67
* The minimum safe size is 64 bits.
68
*/
69
70
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
71
72
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
73
* We assume that int right shift is unsigned if INT32 right shift is,
74
* which should be safe.
75
*/
76
77
#ifdef RIGHT_SHIFT_IS_UNSIGNED
78
#define ISHIFT_TEMPS int ishift_temp;
79
#define IRIGHT_SHIFT(x,shft) \
80
((ishift_temp = (x)) < 0 ? \
81
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
82
(ishift_temp >> (shft)))
83
#else
84
#define ISHIFT_TEMPS
85
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
86
#endif
87
88
/* Forward declarations */
89
METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
90
JBLOCKROW *MCU_data));
91
METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
92
JBLOCKROW *MCU_data));
93
METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
94
JBLOCKROW *MCU_data));
95
METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
96
JBLOCKROW *MCU_data));
97
METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
98
METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
99
100
101
/*
102
* Initialize for a Huffman-compressed scan using progressive JPEG.
103
*/
104
105
METHODDEF(void)
106
start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
107
{
108
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
109
boolean is_DC_band;
110
int ci, tbl;
111
jpeg_component_info * compptr;
112
113
entropy->cinfo = cinfo;
114
entropy->gather_statistics = gather_statistics;
115
116
is_DC_band = (cinfo->Ss == 0);
117
118
/* We assume jcmaster.c already validated the scan parameters. */
119
120
/* Select execution routines */
121
if (cinfo->Ah == 0) {
122
if (is_DC_band)
123
entropy->pub.encode_mcu = encode_mcu_DC_first;
124
else
125
entropy->pub.encode_mcu = encode_mcu_AC_first;
126
} else {
127
if (is_DC_band)
128
entropy->pub.encode_mcu = encode_mcu_DC_refine;
129
else {
130
entropy->pub.encode_mcu = encode_mcu_AC_refine;
131
/* AC refinement needs a correction bit buffer */
132
if (entropy->bit_buffer == NULL)
133
entropy->bit_buffer = (char *)
134
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
135
MAX_CORR_BITS * SIZEOF(char));
136
}
137
}
138
if (gather_statistics)
139
entropy->pub.finish_pass = finish_pass_gather_phuff;
140
else
141
entropy->pub.finish_pass = finish_pass_phuff;
142
143
/* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
144
* for AC coefficients.
145
*/
146
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
147
compptr = cinfo->cur_comp_info[ci];
148
/* Initialize DC predictions to 0 */
149
entropy->last_dc_val[ci] = 0;
150
/* Get table index */
151
if (is_DC_band) {
152
if (cinfo->Ah != 0) /* DC refinement needs no table */
153
continue;
154
tbl = compptr->dc_tbl_no;
155
} else {
156
entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
157
}
158
if (gather_statistics) {
159
/* Check for invalid table index */
160
/* (make_c_derived_tbl does this in the other path) */
161
if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
162
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
163
/* Allocate and zero the statistics tables */
164
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
165
if (entropy->count_ptrs[tbl] == NULL)
166
entropy->count_ptrs[tbl] = (long *)
167
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
168
257 * SIZEOF(long));
169
MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
170
} else {
171
/* Compute derived values for Huffman table */
172
/* We may do this more than once for a table, but it's not expensive */
173
jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
174
& entropy->derived_tbls[tbl]);
175
}
176
}
177
178
/* Initialize AC stuff */
179
entropy->EOBRUN = 0;
180
entropy->BE = 0;
181
182
/* Initialize bit buffer to empty */
183
entropy->put_buffer = 0;
184
entropy->put_bits = 0;
185
186
/* Initialize restart stuff */
187
entropy->restarts_to_go = cinfo->restart_interval;
188
entropy->next_restart_num = 0;
189
}
190
191
192
/* Outputting bytes to the file.
193
* NB: these must be called only when actually outputting,
194
* that is, entropy->gather_statistics == FALSE.
195
*/
196
197
/* Emit a byte */
198
#define emit_byte(entropy,val) \
199
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \
200
if (--(entropy)->free_in_buffer == 0) \
201
dump_buffer(entropy); }
202
203
204
LOCAL(void)
205
dump_buffer (phuff_entropy_ptr entropy)
206
/* Empty the output buffer; we do not support suspension in this module. */
207
{
208
struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
209
210
if (! (*dest->empty_output_buffer) (entropy->cinfo))
211
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
212
/* After a successful buffer dump, must reset buffer pointers */
213
entropy->next_output_byte = dest->next_output_byte;
214
entropy->free_in_buffer = dest->free_in_buffer;
215
}
216
217
218
/* Outputting bits to the file */
219
220
/* Only the right 24 bits of put_buffer are used; the valid bits are
221
* left-justified in this part. At most 16 bits can be passed to emit_bits
222
* in one call, and we never retain more than 7 bits in put_buffer
223
* between calls, so 24 bits are sufficient.
224
*/
225
226
INLINE
227
LOCAL(void)
228
emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
229
/* Emit some bits, unless we are in gather mode */
230
{
231
/* This routine is heavily used, so it's worth coding tightly. */
232
register INT32 put_buffer = (INT32) code;
233
register int put_bits = entropy->put_bits;
234
235
/* if size is 0, caller used an invalid Huffman table entry */
236
if (size == 0)
237
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
238
239
if (entropy->gather_statistics)
240
return; /* do nothing if we're only getting stats */
241
242
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
243
244
put_bits += size; /* new number of bits in buffer */
245
246
put_buffer <<= 24 - put_bits; /* align incoming bits */
247
248
put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
249
250
while (put_bits >= 8) {
251
int c = (int) ((put_buffer >> 16) & 0xFF);
252
253
emit_byte(entropy, c);
254
if (c == 0xFF) { /* need to stuff a zero byte? */
255
emit_byte(entropy, 0);
256
}
257
put_buffer <<= 8;
258
put_bits -= 8;
259
}
260
261
entropy->put_buffer = put_buffer; /* update variables */
262
entropy->put_bits = put_bits;
263
}
264
265
266
LOCAL(void)
267
flush_bits (phuff_entropy_ptr entropy)
268
{
269
emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
270
entropy->put_buffer = 0; /* and reset bit-buffer to empty */
271
entropy->put_bits = 0;
272
}
273
274
275
/*
276
* Emit (or just count) a Huffman symbol.
277
*/
278
279
INLINE
280
LOCAL(void)
281
emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
282
{
283
if (entropy->gather_statistics)
284
entropy->count_ptrs[tbl_no][symbol]++;
285
else {
286
c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
287
emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
288
}
289
}
290
291
292
/*
293
* Emit bits from a correction bit buffer.
294
*/
295
296
LOCAL(void)
297
emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
298
unsigned int nbits)
299
{
300
if (entropy->gather_statistics)
301
return; /* no real work */
302
303
while (nbits > 0) {
304
emit_bits(entropy, (unsigned int) (*bufstart), 1);
305
bufstart++;
306
nbits--;
307
}
308
}
309
310
311
/*
312
* Emit any pending EOBRUN symbol.
313
*/
314
315
LOCAL(void)
316
emit_eobrun (phuff_entropy_ptr entropy)
317
{
318
register int temp, nbits;
319
320
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
321
temp = entropy->EOBRUN;
322
nbits = 0;
323
while ((temp >>= 1))
324
nbits++;
325
/* safety check: shouldn't happen given limited correction-bit buffer */
326
if (nbits > 14)
327
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
328
329
emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
330
if (nbits)
331
emit_bits(entropy, entropy->EOBRUN, nbits);
332
333
entropy->EOBRUN = 0;
334
335
/* Emit any buffered correction bits */
336
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
337
entropy->BE = 0;
338
}
339
}
340
341
342
/*
343
* Emit a restart marker & resynchronize predictions.
344
*/
345
346
LOCAL(void)
347
emit_restart (phuff_entropy_ptr entropy, int restart_num)
348
{
349
int ci;
350
351
emit_eobrun(entropy);
352
353
if (! entropy->gather_statistics) {
354
flush_bits(entropy);
355
emit_byte(entropy, 0xFF);
356
emit_byte(entropy, JPEG_RST0 + restart_num);
357
}
358
359
if (entropy->cinfo->Ss == 0) {
360
/* Re-initialize DC predictions to 0 */
361
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
362
entropy->last_dc_val[ci] = 0;
363
} else {
364
/* Re-initialize all AC-related fields to 0 */
365
entropy->EOBRUN = 0;
366
entropy->BE = 0;
367
}
368
}
369
370
371
/*
372
* MCU encoding for DC initial scan (either spectral selection,
373
* or first pass of successive approximation).
374
*/
375
376
METHODDEF(boolean)
377
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
378
{
379
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
380
register int temp, temp2;
381
register int nbits;
382
int blkn, ci;
383
int Al = cinfo->Al;
384
JBLOCKROW block;
385
jpeg_component_info * compptr;
386
ISHIFT_TEMPS
387
388
entropy->next_output_byte = cinfo->dest->next_output_byte;
389
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
390
391
/* Emit restart marker if needed */
392
if (cinfo->restart_interval)
393
if (entropy->restarts_to_go == 0)
394
emit_restart(entropy, entropy->next_restart_num);
395
396
/* Encode the MCU data blocks */
397
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
398
block = MCU_data[blkn];
399
ci = cinfo->MCU_membership[blkn];
400
compptr = cinfo->cur_comp_info[ci];
401
402
/* Compute the DC value after the required point transform by Al.
403
* This is simply an arithmetic right shift.
404
*/
405
temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
406
407
/* DC differences are figured on the point-transformed values. */
408
temp = temp2 - entropy->last_dc_val[ci];
409
entropy->last_dc_val[ci] = temp2;
410
411
/* Encode the DC coefficient difference per section G.1.2.1 */
412
temp2 = temp;
413
if (temp < 0) {
414
temp = -temp; /* temp is abs value of input */
415
/* For a negative input, want temp2 = bitwise complement of abs(input) */
416
/* This code assumes we are on a two's complement machine */
417
temp2--;
418
}
419
420
/* Find the number of bits needed for the magnitude of the coefficient */
421
nbits = 0;
422
while (temp) {
423
nbits++;
424
temp >>= 1;
425
}
426
/* Check for out-of-range coefficient values.
427
* Since we're encoding a difference, the range limit is twice as much.
428
*/
429
if (nbits > MAX_COEF_BITS+1)
430
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
431
432
/* Count/emit the Huffman-coded symbol for the number of bits */
433
emit_symbol(entropy, compptr->dc_tbl_no, nbits);
434
435
/* Emit that number of bits of the value, if positive, */
436
/* or the complement of its magnitude, if negative. */
437
if (nbits) /* emit_bits rejects calls with size 0 */
438
emit_bits(entropy, (unsigned int) temp2, nbits);
439
}
440
441
cinfo->dest->next_output_byte = entropy->next_output_byte;
442
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
443
444
/* Update restart-interval state too */
445
if (cinfo->restart_interval) {
446
if (entropy->restarts_to_go == 0) {
447
entropy->restarts_to_go = cinfo->restart_interval;
448
entropy->next_restart_num++;
449
entropy->next_restart_num &= 7;
450
}
451
entropy->restarts_to_go--;
452
}
453
454
return TRUE;
455
}
456
457
458
/*
459
* MCU encoding for AC initial scan (either spectral selection,
460
* or first pass of successive approximation).
461
*/
462
463
METHODDEF(boolean)
464
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
465
{
466
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
467
register int temp, temp2;
468
register int nbits;
469
register int r, k;
470
int Se = cinfo->Se;
471
int Al = cinfo->Al;
472
JBLOCKROW block;
473
474
entropy->next_output_byte = cinfo->dest->next_output_byte;
475
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
476
477
/* Emit restart marker if needed */
478
if (cinfo->restart_interval)
479
if (entropy->restarts_to_go == 0)
480
emit_restart(entropy, entropy->next_restart_num);
481
482
/* Encode the MCU data block */
483
block = MCU_data[0];
484
485
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
486
487
r = 0; /* r = run length of zeros */
488
489
for (k = cinfo->Ss; k <= Se; k++) {
490
if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
491
r++;
492
continue;
493
}
494
/* We must apply the point transform by Al. For AC coefficients this
495
* is an integer division with rounding towards 0. To do this portably
496
* in C, we shift after obtaining the absolute value; so the code is
497
* interwoven with finding the abs value (temp) and output bits (temp2).
498
*/
499
if (temp < 0) {
500
temp = -temp; /* temp is abs value of input */
501
temp >>= Al; /* apply the point transform */
502
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
503
temp2 = ~temp;
504
} else {
505
temp >>= Al; /* apply the point transform */
506
temp2 = temp;
507
}
508
/* Watch out for case that nonzero coef is zero after point transform */
509
if (temp == 0) {
510
r++;
511
continue;
512
}
513
514
/* Emit any pending EOBRUN */
515
if (entropy->EOBRUN > 0)
516
emit_eobrun(entropy);
517
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
518
while (r > 15) {
519
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
520
r -= 16;
521
}
522
523
/* Find the number of bits needed for the magnitude of the coefficient */
524
nbits = 1; /* there must be at least one 1 bit */
525
while ((temp >>= 1))
526
nbits++;
527
/* Check for out-of-range coefficient values */
528
if (nbits > MAX_COEF_BITS)
529
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
530
531
/* Count/emit Huffman symbol for run length / number of bits */
532
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
533
534
/* Emit that number of bits of the value, if positive, */
535
/* or the complement of its magnitude, if negative. */
536
emit_bits(entropy, (unsigned int) temp2, nbits);
537
538
r = 0; /* reset zero run length */
539
}
540
541
if (r > 0) { /* If there are trailing zeroes, */
542
entropy->EOBRUN++; /* count an EOB */
543
if (entropy->EOBRUN == 0x7FFF)
544
emit_eobrun(entropy); /* force it out to avoid overflow */
545
}
546
547
cinfo->dest->next_output_byte = entropy->next_output_byte;
548
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
549
550
/* Update restart-interval state too */
551
if (cinfo->restart_interval) {
552
if (entropy->restarts_to_go == 0) {
553
entropy->restarts_to_go = cinfo->restart_interval;
554
entropy->next_restart_num++;
555
entropy->next_restart_num &= 7;
556
}
557
entropy->restarts_to_go--;
558
}
559
560
return TRUE;
561
}
562
563
564
/*
565
* MCU encoding for DC successive approximation refinement scan.
566
* Note: we assume such scans can be multi-component, although the spec
567
* is not very clear on the point.
568
*/
569
570
METHODDEF(boolean)
571
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
572
{
573
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
574
register int temp;
575
int blkn;
576
int Al = cinfo->Al;
577
JBLOCKROW block;
578
579
entropy->next_output_byte = cinfo->dest->next_output_byte;
580
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
581
582
/* Emit restart marker if needed */
583
if (cinfo->restart_interval)
584
if (entropy->restarts_to_go == 0)
585
emit_restart(entropy, entropy->next_restart_num);
586
587
/* Encode the MCU data blocks */
588
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
589
block = MCU_data[blkn];
590
591
/* We simply emit the Al'th bit of the DC coefficient value. */
592
temp = (*block)[0];
593
emit_bits(entropy, (unsigned int) (temp >> Al), 1);
594
}
595
596
cinfo->dest->next_output_byte = entropy->next_output_byte;
597
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
598
599
/* Update restart-interval state too */
600
if (cinfo->restart_interval) {
601
if (entropy->restarts_to_go == 0) {
602
entropy->restarts_to_go = cinfo->restart_interval;
603
entropy->next_restart_num++;
604
entropy->next_restart_num &= 7;
605
}
606
entropy->restarts_to_go--;
607
}
608
609
return TRUE;
610
}
611
612
613
/*
614
* MCU encoding for AC successive approximation refinement scan.
615
*/
616
617
METHODDEF(boolean)
618
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
619
{
620
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
621
register int temp;
622
register int r, k;
623
int EOB;
624
char *BR_buffer;
625
unsigned int BR;
626
int Se = cinfo->Se;
627
int Al = cinfo->Al;
628
JBLOCKROW block;
629
int absvalues[DCTSIZE2];
630
631
entropy->next_output_byte = cinfo->dest->next_output_byte;
632
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
633
634
/* Emit restart marker if needed */
635
if (cinfo->restart_interval)
636
if (entropy->restarts_to_go == 0)
637
emit_restart(entropy, entropy->next_restart_num);
638
639
/* Encode the MCU data block */
640
block = MCU_data[0];
641
642
/* It is convenient to make a pre-pass to determine the transformed
643
* coefficients' absolute values and the EOB position.
644
*/
645
EOB = 0;
646
for (k = cinfo->Ss; k <= Se; k++) {
647
temp = (*block)[jpeg_natural_order[k]];
648
/* We must apply the point transform by Al. For AC coefficients this
649
* is an integer division with rounding towards 0. To do this portably
650
* in C, we shift after obtaining the absolute value.
651
*/
652
if (temp < 0)
653
temp = -temp; /* temp is abs value of input */
654
temp >>= Al; /* apply the point transform */
655
absvalues[k] = temp; /* save abs value for main pass */
656
if (temp == 1)
657
EOB = k; /* EOB = index of last newly-nonzero coef */
658
}
659
660
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
661
662
r = 0; /* r = run length of zeros */
663
BR = 0; /* BR = count of buffered bits added now */
664
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
665
666
for (k = cinfo->Ss; k <= Se; k++) {
667
if ((temp = absvalues[k]) == 0) {
668
r++;
669
continue;
670
}
671
672
/* Emit any required ZRLs, but not if they can be folded into EOB */
673
while (r > 15 && k <= EOB) {
674
/* emit any pending EOBRUN and the BE correction bits */
675
emit_eobrun(entropy);
676
/* Emit ZRL */
677
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
678
r -= 16;
679
/* Emit buffered correction bits that must be associated with ZRL */
680
emit_buffered_bits(entropy, BR_buffer, BR);
681
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
682
BR = 0;
683
}
684
685
/* If the coef was previously nonzero, it only needs a correction bit.
686
* NOTE: a straight translation of the spec's figure G.7 would suggest
687
* that we also need to test r > 15. But if r > 15, we can only get here
688
* if k > EOB, which implies that this coefficient is not 1.
689
*/
690
if (temp > 1) {
691
/* The correction bit is the next bit of the absolute value. */
692
BR_buffer[BR++] = (char) (temp & 1);
693
continue;
694
}
695
696
/* Emit any pending EOBRUN and the BE correction bits */
697
emit_eobrun(entropy);
698
699
/* Count/emit Huffman symbol for run length / number of bits */
700
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
701
702
/* Emit output bit for newly-nonzero coef */
703
temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
704
emit_bits(entropy, (unsigned int) temp, 1);
705
706
/* Emit buffered correction bits that must be associated with this code */
707
emit_buffered_bits(entropy, BR_buffer, BR);
708
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
709
BR = 0;
710
r = 0; /* reset zero run length */
711
}
712
713
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
714
entropy->EOBRUN++; /* count an EOB */
715
entropy->BE += BR; /* concat my correction bits to older ones */
716
/* We force out the EOB if we risk either:
717
* 1. overflow of the EOB counter;
718
* 2. overflow of the correction bit buffer during the next MCU.
719
*/
720
if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
721
emit_eobrun(entropy);
722
}
723
724
cinfo->dest->next_output_byte = entropy->next_output_byte;
725
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
726
727
/* Update restart-interval state too */
728
if (cinfo->restart_interval) {
729
if (entropy->restarts_to_go == 0) {
730
entropy->restarts_to_go = cinfo->restart_interval;
731
entropy->next_restart_num++;
732
entropy->next_restart_num &= 7;
733
}
734
entropy->restarts_to_go--;
735
}
736
737
return TRUE;
738
}
739
740
741
/*
742
* Finish up at the end of a Huffman-compressed progressive scan.
743
*/
744
745
METHODDEF(void)
746
finish_pass_phuff (j_compress_ptr cinfo)
747
{
748
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
749
750
entropy->next_output_byte = cinfo->dest->next_output_byte;
751
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
752
753
/* Flush out any buffered data */
754
emit_eobrun(entropy);
755
flush_bits(entropy);
756
757
cinfo->dest->next_output_byte = entropy->next_output_byte;
758
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
759
}
760
761
762
/*
763
* Finish up a statistics-gathering pass and create the new Huffman tables.
764
*/
765
766
METHODDEF(void)
767
finish_pass_gather_phuff (j_compress_ptr cinfo)
768
{
769
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
770
boolean is_DC_band;
771
int ci, tbl;
772
jpeg_component_info * compptr;
773
JHUFF_TBL **htblptr;
774
boolean did[NUM_HUFF_TBLS];
775
776
/* Flush out buffered data (all we care about is counting the EOB symbol) */
777
emit_eobrun(entropy);
778
779
is_DC_band = (cinfo->Ss == 0);
780
781
/* It's important not to apply jpeg_gen_optimal_table more than once
782
* per table, because it clobbers the input frequency counts!
783
*/
784
MEMZERO(did, SIZEOF(did));
785
786
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
787
compptr = cinfo->cur_comp_info[ci];
788
if (is_DC_band) {
789
if (cinfo->Ah != 0) /* DC refinement needs no table */
790
continue;
791
tbl = compptr->dc_tbl_no;
792
} else {
793
tbl = compptr->ac_tbl_no;
794
}
795
if (! did[tbl]) {
796
if (is_DC_band)
797
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
798
else
799
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
800
if (*htblptr == NULL)
801
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
802
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
803
did[tbl] = TRUE;
804
}
805
}
806
}
807
808
809
/*
810
* Module initialization routine for progressive Huffman entropy encoding.
811
*/
812
813
GLOBAL(void)
814
jinit_phuff_encoder (j_compress_ptr cinfo)
815
{
816
phuff_entropy_ptr entropy;
817
int i;
818
819
entropy = (phuff_entropy_ptr)
820
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
821
SIZEOF(phuff_entropy_encoder));
822
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
823
entropy->pub.start_pass = start_pass_phuff;
824
825
/* Mark tables unallocated */
826
for (i = 0; i < NUM_HUFF_TBLS; i++) {
827
entropy->derived_tbls[i] = NULL;
828
entropy->count_ptrs[i] = NULL;
829
}
830
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
831
}
832
833
#endif /* C_PROGRESSIVE_SUPPORTED */
834
835