CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
rapid7

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

GitHub Repository: rapid7/metasploit-framework
Path: blob/master/external/source/vncdll/winvnc/libjpeg/jcsample.c
Views: 11784
1
/*
2
* jcsample.c
3
*
4
* Copyright (C) 1991-1996, Thomas G. Lane.
5
* This file is part of the Independent JPEG Group's software.
6
* For conditions of distribution and use, see the accompanying README file.
7
*
8
* This file contains downsampling routines.
9
*
10
* Downsampling input data is counted in "row groups". A row group
11
* is defined to be max_v_samp_factor pixel rows of each component,
12
* from which the downsampler produces v_samp_factor sample rows.
13
* A single row group is processed in each call to the downsampler module.
14
*
15
* The downsampler is responsible for edge-expansion of its output data
16
* to fill an integral number of DCT blocks horizontally. The source buffer
17
* may be modified if it is helpful for this purpose (the source buffer is
18
* allocated wide enough to correspond to the desired output width).
19
* The caller (the prep controller) is responsible for vertical padding.
20
*
21
* The downsampler may request "context rows" by setting need_context_rows
22
* during startup. In this case, the input arrays will contain at least
23
* one row group's worth of pixels above and below the passed-in data;
24
* the caller will create dummy rows at image top and bottom by replicating
25
* the first or last real pixel row.
26
*
27
* An excellent reference for image resampling is
28
* Digital Image Warping, George Wolberg, 1990.
29
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
30
*
31
* The downsampling algorithm used here is a simple average of the source
32
* pixels covered by the output pixel. The hi-falutin sampling literature
33
* refers to this as a "box filter". In general the characteristics of a box
34
* filter are not very good, but for the specific cases we normally use (1:1
35
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
36
* nearly so bad. If you intend to use other sampling ratios, you'd be well
37
* advised to improve this code.
38
*
39
* A simple input-smoothing capability is provided. This is mainly intended
40
* for cleaning up color-dithered GIF input files (if you find it inadequate,
41
* we suggest using an external filtering program such as pnmconvol). When
42
* enabled, each input pixel P is replaced by a weighted sum of itself and its
43
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
44
* where SF = (smoothing_factor / 1024).
45
* Currently, smoothing is only supported for 2h2v sampling factors.
46
*/
47
48
#define JPEG_INTERNALS
49
#include "jinclude.h"
50
#include "jpeglib.h"
51
52
53
/* Pointer to routine to downsample a single component */
54
typedef JMETHOD(void, downsample1_ptr,
55
(j_compress_ptr cinfo, jpeg_component_info * compptr,
56
JSAMPARRAY input_data, JSAMPARRAY output_data));
57
58
/* Private subobject */
59
60
typedef struct {
61
struct jpeg_downsampler pub; /* public fields */
62
63
/* Downsampling method pointers, one per component */
64
downsample1_ptr methods[MAX_COMPONENTS];
65
} my_downsampler;
66
67
typedef my_downsampler * my_downsample_ptr;
68
69
70
/*
71
* Initialize for a downsampling pass.
72
*/
73
74
METHODDEF(void)
75
start_pass_downsample (j_compress_ptr cinfo)
76
{
77
/* no work for now */
78
}
79
80
81
/*
82
* Expand a component horizontally from width input_cols to width output_cols,
83
* by duplicating the rightmost samples.
84
*/
85
86
LOCAL(void)
87
expand_right_edge (JSAMPARRAY image_data, int num_rows,
88
JDIMENSION input_cols, JDIMENSION output_cols)
89
{
90
register JSAMPROW ptr;
91
register JSAMPLE pixval;
92
register int count;
93
int row;
94
int numcols = (int) (output_cols - input_cols);
95
96
if (numcols > 0) {
97
for (row = 0; row < num_rows; row++) {
98
ptr = image_data[row] + input_cols;
99
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
100
for (count = numcols; count > 0; count--)
101
*ptr++ = pixval;
102
}
103
}
104
}
105
106
107
/*
108
* Do downsampling for a whole row group (all components).
109
*
110
* In this version we simply downsample each component independently.
111
*/
112
113
METHODDEF(void)
114
sep_downsample (j_compress_ptr cinfo,
115
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
116
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
117
{
118
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
119
int ci;
120
jpeg_component_info * compptr;
121
JSAMPARRAY in_ptr, out_ptr;
122
123
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
124
ci++, compptr++) {
125
in_ptr = input_buf[ci] + in_row_index;
126
out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
127
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
128
}
129
}
130
131
132
/*
133
* Downsample pixel values of a single component.
134
* One row group is processed per call.
135
* This version handles arbitrary integral sampling ratios, without smoothing.
136
* Note that this version is not actually used for customary sampling ratios.
137
*/
138
139
METHODDEF(void)
140
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
141
JSAMPARRAY input_data, JSAMPARRAY output_data)
142
{
143
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
144
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
145
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
146
JSAMPROW inptr, outptr;
147
INT32 outvalue;
148
149
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
150
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
151
numpix = h_expand * v_expand;
152
numpix2 = numpix/2;
153
154
/* Expand input data enough to let all the output samples be generated
155
* by the standard loop. Special-casing padded output would be more
156
* efficient.
157
*/
158
expand_right_edge(input_data, cinfo->max_v_samp_factor,
159
cinfo->image_width, output_cols * h_expand);
160
161
inrow = 0;
162
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
163
outptr = output_data[outrow];
164
for (outcol = 0, outcol_h = 0; outcol < output_cols;
165
outcol++, outcol_h += h_expand) {
166
outvalue = 0;
167
for (v = 0; v < v_expand; v++) {
168
inptr = input_data[inrow+v] + outcol_h;
169
for (h = 0; h < h_expand; h++) {
170
outvalue += (INT32) GETJSAMPLE(*inptr++);
171
}
172
}
173
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
174
}
175
inrow += v_expand;
176
}
177
}
178
179
180
/*
181
* Downsample pixel values of a single component.
182
* This version handles the special case of a full-size component,
183
* without smoothing.
184
*/
185
186
METHODDEF(void)
187
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
188
JSAMPARRAY input_data, JSAMPARRAY output_data)
189
{
190
/* Copy the data */
191
jcopy_sample_rows(input_data, 0, output_data, 0,
192
cinfo->max_v_samp_factor, cinfo->image_width);
193
/* Edge-expand */
194
expand_right_edge(output_data, cinfo->max_v_samp_factor,
195
cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
196
}
197
198
199
/*
200
* Downsample pixel values of a single component.
201
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
202
* without smoothing.
203
*
204
* A note about the "bias" calculations: when rounding fractional values to
205
* integer, we do not want to always round 0.5 up to the next integer.
206
* If we did that, we'd introduce a noticeable bias towards larger values.
207
* Instead, this code is arranged so that 0.5 will be rounded up or down at
208
* alternate pixel locations (a simple ordered dither pattern).
209
*/
210
211
METHODDEF(void)
212
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
213
JSAMPARRAY input_data, JSAMPARRAY output_data)
214
{
215
int outrow;
216
JDIMENSION outcol;
217
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
218
register JSAMPROW inptr, outptr;
219
register int bias;
220
221
/* Expand input data enough to let all the output samples be generated
222
* by the standard loop. Special-casing padded output would be more
223
* efficient.
224
*/
225
expand_right_edge(input_data, cinfo->max_v_samp_factor,
226
cinfo->image_width, output_cols * 2);
227
228
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
229
outptr = output_data[outrow];
230
inptr = input_data[outrow];
231
bias = 0; /* bias = 0,1,0,1,... for successive samples */
232
for (outcol = 0; outcol < output_cols; outcol++) {
233
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
234
+ bias) >> 1);
235
bias ^= 1; /* 0=>1, 1=>0 */
236
inptr += 2;
237
}
238
}
239
}
240
241
242
/*
243
* Downsample pixel values of a single component.
244
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
245
* without smoothing.
246
*/
247
248
METHODDEF(void)
249
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
250
JSAMPARRAY input_data, JSAMPARRAY output_data)
251
{
252
int inrow, outrow;
253
JDIMENSION outcol;
254
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
255
register JSAMPROW inptr0, inptr1, outptr;
256
register int bias;
257
258
/* Expand input data enough to let all the output samples be generated
259
* by the standard loop. Special-casing padded output would be more
260
* efficient.
261
*/
262
expand_right_edge(input_data, cinfo->max_v_samp_factor,
263
cinfo->image_width, output_cols * 2);
264
265
inrow = 0;
266
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
267
outptr = output_data[outrow];
268
inptr0 = input_data[inrow];
269
inptr1 = input_data[inrow+1];
270
bias = 1; /* bias = 1,2,1,2,... for successive samples */
271
for (outcol = 0; outcol < output_cols; outcol++) {
272
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
273
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
274
+ bias) >> 2);
275
bias ^= 3; /* 1=>2, 2=>1 */
276
inptr0 += 2; inptr1 += 2;
277
}
278
inrow += 2;
279
}
280
}
281
282
283
#ifdef INPUT_SMOOTHING_SUPPORTED
284
285
/*
286
* Downsample pixel values of a single component.
287
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
288
* with smoothing. One row of context is required.
289
*/
290
291
METHODDEF(void)
292
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
293
JSAMPARRAY input_data, JSAMPARRAY output_data)
294
{
295
int inrow, outrow;
296
JDIMENSION colctr;
297
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
298
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
299
INT32 membersum, neighsum, memberscale, neighscale;
300
301
/* Expand input data enough to let all the output samples be generated
302
* by the standard loop. Special-casing padded output would be more
303
* efficient.
304
*/
305
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
306
cinfo->image_width, output_cols * 2);
307
308
/* We don't bother to form the individual "smoothed" input pixel values;
309
* we can directly compute the output which is the average of the four
310
* smoothed values. Each of the four member pixels contributes a fraction
311
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
312
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
313
* output. The four corner-adjacent neighbor pixels contribute a fraction
314
* SF to just one smoothed pixel, or SF/4 to the final output; while the
315
* eight edge-adjacent neighbors contribute SF to each of two smoothed
316
* pixels, or SF/2 overall. In order to use integer arithmetic, these
317
* factors are scaled by 2^16 = 65536.
318
* Also recall that SF = smoothing_factor / 1024.
319
*/
320
321
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
322
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
323
324
inrow = 0;
325
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
326
outptr = output_data[outrow];
327
inptr0 = input_data[inrow];
328
inptr1 = input_data[inrow+1];
329
above_ptr = input_data[inrow-1];
330
below_ptr = input_data[inrow+2];
331
332
/* Special case for first column: pretend column -1 is same as column 0 */
333
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
334
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
335
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
336
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
337
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
338
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
339
neighsum += neighsum;
340
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
341
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
342
membersum = membersum * memberscale + neighsum * neighscale;
343
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
344
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
345
346
for (colctr = output_cols - 2; colctr > 0; colctr--) {
347
/* sum of pixels directly mapped to this output element */
348
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
349
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
350
/* sum of edge-neighbor pixels */
351
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
352
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
353
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
354
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
355
/* The edge-neighbors count twice as much as corner-neighbors */
356
neighsum += neighsum;
357
/* Add in the corner-neighbors */
358
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
359
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
360
/* form final output scaled up by 2^16 */
361
membersum = membersum * memberscale + neighsum * neighscale;
362
/* round, descale and output it */
363
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
364
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
365
}
366
367
/* Special case for last column */
368
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
369
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
370
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
371
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
372
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
373
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
374
neighsum += neighsum;
375
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
376
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
377
membersum = membersum * memberscale + neighsum * neighscale;
378
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
379
380
inrow += 2;
381
}
382
}
383
384
385
/*
386
* Downsample pixel values of a single component.
387
* This version handles the special case of a full-size component,
388
* with smoothing. One row of context is required.
389
*/
390
391
METHODDEF(void)
392
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
393
JSAMPARRAY input_data, JSAMPARRAY output_data)
394
{
395
int outrow;
396
JDIMENSION colctr;
397
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
398
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
399
INT32 membersum, neighsum, memberscale, neighscale;
400
int colsum, lastcolsum, nextcolsum;
401
402
/* Expand input data enough to let all the output samples be generated
403
* by the standard loop. Special-casing padded output would be more
404
* efficient.
405
*/
406
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
407
cinfo->image_width, output_cols);
408
409
/* Each of the eight neighbor pixels contributes a fraction SF to the
410
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
411
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
412
* Also recall that SF = smoothing_factor / 1024.
413
*/
414
415
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
416
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
417
418
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
419
outptr = output_data[outrow];
420
inptr = input_data[outrow];
421
above_ptr = input_data[outrow-1];
422
below_ptr = input_data[outrow+1];
423
424
/* Special case for first column */
425
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
426
GETJSAMPLE(*inptr);
427
membersum = GETJSAMPLE(*inptr++);
428
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
429
GETJSAMPLE(*inptr);
430
neighsum = colsum + (colsum - membersum) + nextcolsum;
431
membersum = membersum * memberscale + neighsum * neighscale;
432
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
433
lastcolsum = colsum; colsum = nextcolsum;
434
435
for (colctr = output_cols - 2; colctr > 0; colctr--) {
436
membersum = GETJSAMPLE(*inptr++);
437
above_ptr++; below_ptr++;
438
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
439
GETJSAMPLE(*inptr);
440
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
441
membersum = membersum * memberscale + neighsum * neighscale;
442
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
443
lastcolsum = colsum; colsum = nextcolsum;
444
}
445
446
/* Special case for last column */
447
membersum = GETJSAMPLE(*inptr);
448
neighsum = lastcolsum + (colsum - membersum) + colsum;
449
membersum = membersum * memberscale + neighsum * neighscale;
450
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
451
452
}
453
}
454
455
#endif /* INPUT_SMOOTHING_SUPPORTED */
456
457
458
/*
459
* Module initialization routine for downsampling.
460
* Note that we must select a routine for each component.
461
*/
462
463
GLOBAL(void)
464
jinit_downsampler (j_compress_ptr cinfo)
465
{
466
my_downsample_ptr downsample;
467
int ci;
468
jpeg_component_info * compptr;
469
boolean smoothok = TRUE;
470
471
downsample = (my_downsample_ptr)
472
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
473
SIZEOF(my_downsampler));
474
cinfo->downsample = (struct jpeg_downsampler *) downsample;
475
downsample->pub.start_pass = start_pass_downsample;
476
downsample->pub.downsample = sep_downsample;
477
downsample->pub.need_context_rows = FALSE;
478
479
if (cinfo->CCIR601_sampling)
480
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
481
482
/* Verify we can handle the sampling factors, and set up method pointers */
483
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
484
ci++, compptr++) {
485
if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
486
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
487
#ifdef INPUT_SMOOTHING_SUPPORTED
488
if (cinfo->smoothing_factor) {
489
downsample->methods[ci] = fullsize_smooth_downsample;
490
downsample->pub.need_context_rows = TRUE;
491
} else
492
#endif
493
downsample->methods[ci] = fullsize_downsample;
494
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
495
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
496
smoothok = FALSE;
497
downsample->methods[ci] = h2v1_downsample;
498
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
499
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
500
#ifdef INPUT_SMOOTHING_SUPPORTED
501
if (cinfo->smoothing_factor) {
502
downsample->methods[ci] = h2v2_smooth_downsample;
503
downsample->pub.need_context_rows = TRUE;
504
} else
505
#endif
506
downsample->methods[ci] = h2v2_downsample;
507
} else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
508
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
509
smoothok = FALSE;
510
downsample->methods[ci] = int_downsample;
511
} else
512
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
513
}
514
515
#ifdef INPUT_SMOOTHING_SUPPORTED
516
if (cinfo->smoothing_factor && !smoothok)
517
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
518
#endif
519
}
520
521