Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
seleniumhq
GitHub Repository: seleniumhq/selenium
Path: blob/trunk/third_party/closure/goog/math/interpolator/pchip1.js
2868 views
1
// Copyright 2012 The Closure Library Authors. All Rights Reserved.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
// http://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS-IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
/**
16
* @fileoverview A one dimensional monotone cubic spline interpolator.
17
*
18
* See http://en.wikipedia.org/wiki/Monotone_cubic_interpolation.
19
*
20
*/
21
22
goog.provide('goog.math.interpolator.Pchip1');
23
24
goog.require('goog.math');
25
goog.require('goog.math.interpolator.Spline1');
26
27
28
29
/**
30
* A one dimensional monotone cubic spline interpolator.
31
* @extends {goog.math.interpolator.Spline1}
32
* @constructor
33
* @final
34
*/
35
goog.math.interpolator.Pchip1 = function() {
36
goog.math.interpolator.Pchip1.base(this, 'constructor');
37
};
38
goog.inherits(goog.math.interpolator.Pchip1, goog.math.interpolator.Spline1);
39
40
41
/** @override */
42
goog.math.interpolator.Pchip1.prototype.computeDerivatives = function(
43
dx, slope) {
44
var len = dx.length;
45
var deriv = new Array(len + 1);
46
for (var i = 1; i < len; ++i) {
47
if (goog.math.sign(slope[i - 1]) * goog.math.sign(slope[i]) <= 0) {
48
deriv[i] = 0;
49
} else {
50
var w1 = 2 * dx[i] + dx[i - 1];
51
var w2 = dx[i] + 2 * dx[i - 1];
52
deriv[i] = (w1 + w2) / (w1 / slope[i - 1] + w2 / slope[i]);
53
}
54
}
55
deriv[0] =
56
this.computeDerivativeAtBoundary_(dx[0], dx[1], slope[0], slope[1]);
57
deriv[len] = this.computeDerivativeAtBoundary_(
58
dx[len - 1], dx[len - 2], slope[len - 1], slope[len - 2]);
59
return deriv;
60
};
61
62
63
/**
64
* Computes the derivative of a data point at a boundary.
65
* @param {number} dx0 The spacing of the 1st data point.
66
* @param {number} dx1 The spacing of the 2nd data point.
67
* @param {number} slope0 The slope of the 1st data point.
68
* @param {number} slope1 The slope of the 2nd data point.
69
* @return {number} The derivative at the 1st data point.
70
* @private
71
*/
72
goog.math.interpolator.Pchip1.prototype.computeDerivativeAtBoundary_ = function(
73
dx0, dx1, slope0, slope1) {
74
var deriv = ((2 * dx0 + dx1) * slope0 - dx0 * slope1) / (dx0 + dx1);
75
if (goog.math.sign(deriv) != goog.math.sign(slope0)) {
76
deriv = 0;
77
} else if (
78
goog.math.sign(slope0) != goog.math.sign(slope1) &&
79
Math.abs(deriv) > Math.abs(3 * slope0)) {
80
deriv = 3 * slope0;
81
}
82
return deriv;
83
};
84
85