Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
seleniumhq
GitHub Repository: seleniumhq/selenium
Path: blob/trunk/third_party/closure/goog/math/tdma.js
2868 views
1
// Copyright 2011 The Closure Library Authors. All Rights Reserved.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
// http://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS-IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
/**
16
* @fileoverview The Tridiagonal matrix algorithm solver solves a special
17
* version of a sparse linear system Ax = b where A is tridiagonal.
18
*
19
* See http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
20
*
21
*/
22
23
goog.provide('goog.math.tdma');
24
25
26
/**
27
* Solves a linear system where the matrix is square tri-diagonal. That is,
28
* given a system of equations:
29
*
30
* A * result = vecRight,
31
*
32
* this class computes result = inv(A) * vecRight, where A has the special form
33
* of a tri-diagonal matrix:
34
*
35
* |dia(0) sup(0) 0 0 ... 0|
36
* |sub(0) dia(1) sup(1) 0 ... 0|
37
* A =| ... |
38
* |0 ... 0 sub(n-2) dia(n-1) sup(n-1)|
39
* |0 ... 0 0 sub(n-1) dia(n)|
40
*
41
* @param {!Array<number>} subDiag The sub diagonal of the matrix.
42
* @param {!Array<number>} mainDiag The main diagonal of the matrix.
43
* @param {!Array<number>} supDiag The super diagonal of the matrix.
44
* @param {!Array<number>} vecRight The right vector of the system
45
* of equations.
46
* @param {Array<number>=} opt_result The optional array to store the result.
47
* @return {!Array<number>} The vector that is the solution to the system.
48
*/
49
goog.math.tdma.solve = function(
50
subDiag, mainDiag, supDiag, vecRight, opt_result) {
51
// Make a local copy of the main diagonal and the right vector.
52
mainDiag = mainDiag.slice();
53
vecRight = vecRight.slice();
54
55
// The dimension of the matrix.
56
var nDim = mainDiag.length;
57
58
// Construct a modified linear system of equations with the same solution
59
// as the input one.
60
for (var i = 1; i < nDim; ++i) {
61
var m = subDiag[i - 1] / mainDiag[i - 1];
62
mainDiag[i] = mainDiag[i] - m * supDiag[i - 1];
63
vecRight[i] = vecRight[i] - m * vecRight[i - 1];
64
}
65
66
// Solve the new system of equations by simple back-substitution.
67
var result = opt_result || new Array(vecRight.length);
68
result[nDim - 1] = vecRight[nDim - 1] / mainDiag[nDim - 1];
69
for (i = nDim - 2; i >= 0; --i) {
70
result[i] = (vecRight[i] - supDiag[i] * result[i + 1]) / mainDiag[i];
71
}
72
return result;
73
};
74
75