Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/arm.c
29524 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
4
* Author: Christoffer Dall <[email protected]>
5
*/
6
7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10
#include <linux/errno.h>
11
#include <linux/err.h>
12
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14
#include <linux/module.h>
15
#include <linux/vmalloc.h>
16
#include <linux/fs.h>
17
#include <linux/mman.h>
18
#include <linux/sched.h>
19
#include <linux/kvm.h>
20
#include <linux/kvm_irqfd.h>
21
#include <linux/irqbypass.h>
22
#include <linux/sched/stat.h>
23
#include <linux/psci.h>
24
#include <trace/events/kvm.h>
25
26
#define CREATE_TRACE_POINTS
27
#include "trace_arm.h"
28
29
#include <linux/uaccess.h>
30
#include <asm/ptrace.h>
31
#include <asm/mman.h>
32
#include <asm/tlbflush.h>
33
#include <asm/cacheflush.h>
34
#include <asm/cpufeature.h>
35
#include <asm/virt.h>
36
#include <asm/kvm_arm.h>
37
#include <asm/kvm_asm.h>
38
#include <asm/kvm_emulate.h>
39
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_nested.h>
41
#include <asm/kvm_pkvm.h>
42
#include <asm/kvm_ptrauth.h>
43
#include <asm/sections.h>
44
45
#include <kvm/arm_hypercalls.h>
46
#include <kvm/arm_pmu.h>
47
#include <kvm/arm_psci.h>
48
49
#include "sys_regs.h"
50
51
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
52
53
enum kvm_wfx_trap_policy {
54
KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
55
KVM_WFX_NOTRAP,
56
KVM_WFX_TRAP,
57
};
58
59
static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60
static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
61
62
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
63
64
DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
65
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
66
67
DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
68
69
static bool vgic_present, kvm_arm_initialised;
70
71
static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
72
73
bool is_kvm_arm_initialised(void)
74
{
75
return kvm_arm_initialised;
76
}
77
78
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
79
{
80
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
81
}
82
83
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84
struct kvm_enable_cap *cap)
85
{
86
int r = -EINVAL;
87
88
if (cap->flags)
89
return -EINVAL;
90
91
if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap))
92
return -EINVAL;
93
94
switch (cap->cap) {
95
case KVM_CAP_ARM_NISV_TO_USER:
96
r = 0;
97
set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
98
&kvm->arch.flags);
99
break;
100
case KVM_CAP_ARM_MTE:
101
mutex_lock(&kvm->lock);
102
if (system_supports_mte() && !kvm->created_vcpus) {
103
r = 0;
104
set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
105
}
106
mutex_unlock(&kvm->lock);
107
break;
108
case KVM_CAP_ARM_SYSTEM_SUSPEND:
109
r = 0;
110
set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
111
break;
112
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
113
mutex_lock(&kvm->slots_lock);
114
/*
115
* To keep things simple, allow changing the chunk
116
* size only when no memory slots have been created.
117
*/
118
if (kvm_are_all_memslots_empty(kvm)) {
119
u64 new_cap = cap->args[0];
120
121
if (!new_cap || kvm_is_block_size_supported(new_cap)) {
122
r = 0;
123
kvm->arch.mmu.split_page_chunk_size = new_cap;
124
}
125
}
126
mutex_unlock(&kvm->slots_lock);
127
break;
128
case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
129
mutex_lock(&kvm->lock);
130
if (!kvm->created_vcpus) {
131
r = 0;
132
set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags);
133
}
134
mutex_unlock(&kvm->lock);
135
break;
136
default:
137
break;
138
}
139
140
return r;
141
}
142
143
static int kvm_arm_default_max_vcpus(void)
144
{
145
return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
}
147
148
/**
149
* kvm_arch_init_vm - initializes a VM data structure
150
* @kvm: pointer to the KVM struct
151
* @type: kvm device type
152
*/
153
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
154
{
155
int ret;
156
157
mutex_init(&kvm->arch.config_lock);
158
159
#ifdef CONFIG_LOCKDEP
160
/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
161
mutex_lock(&kvm->lock);
162
mutex_lock(&kvm->arch.config_lock);
163
mutex_unlock(&kvm->arch.config_lock);
164
mutex_unlock(&kvm->lock);
165
#endif
166
167
kvm_init_nested(kvm);
168
169
ret = kvm_share_hyp(kvm, kvm + 1);
170
if (ret)
171
return ret;
172
173
if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
174
ret = -ENOMEM;
175
goto err_unshare_kvm;
176
}
177
cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
178
179
ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
180
if (ret)
181
goto err_free_cpumask;
182
183
if (is_protected_kvm_enabled()) {
184
/*
185
* If any failures occur after this is successful, make sure to
186
* call __pkvm_unreserve_vm to unreserve the VM in hyp.
187
*/
188
ret = pkvm_init_host_vm(kvm);
189
if (ret)
190
goto err_free_cpumask;
191
}
192
193
kvm_vgic_early_init(kvm);
194
195
kvm_timer_init_vm(kvm);
196
197
/* The maximum number of VCPUs is limited by the host's GIC model */
198
kvm->max_vcpus = kvm_arm_default_max_vcpus();
199
200
kvm_arm_init_hypercalls(kvm);
201
202
bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
203
204
return 0;
205
206
err_free_cpumask:
207
free_cpumask_var(kvm->arch.supported_cpus);
208
err_unshare_kvm:
209
kvm_unshare_hyp(kvm, kvm + 1);
210
return ret;
211
}
212
213
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
214
{
215
return VM_FAULT_SIGBUS;
216
}
217
218
void kvm_arch_create_vm_debugfs(struct kvm *kvm)
219
{
220
kvm_sys_regs_create_debugfs(kvm);
221
kvm_s2_ptdump_create_debugfs(kvm);
222
}
223
224
static void kvm_destroy_mpidr_data(struct kvm *kvm)
225
{
226
struct kvm_mpidr_data *data;
227
228
mutex_lock(&kvm->arch.config_lock);
229
230
data = rcu_dereference_protected(kvm->arch.mpidr_data,
231
lockdep_is_held(&kvm->arch.config_lock));
232
if (data) {
233
rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
234
synchronize_rcu();
235
kfree(data);
236
}
237
238
mutex_unlock(&kvm->arch.config_lock);
239
}
240
241
/**
242
* kvm_arch_destroy_vm - destroy the VM data structure
243
* @kvm: pointer to the KVM struct
244
*/
245
void kvm_arch_destroy_vm(struct kvm *kvm)
246
{
247
bitmap_free(kvm->arch.pmu_filter);
248
free_cpumask_var(kvm->arch.supported_cpus);
249
250
kvm_vgic_destroy(kvm);
251
252
if (is_protected_kvm_enabled())
253
pkvm_destroy_hyp_vm(kvm);
254
255
kvm_destroy_mpidr_data(kvm);
256
257
kfree(kvm->arch.sysreg_masks);
258
kvm_destroy_vcpus(kvm);
259
260
kvm_unshare_hyp(kvm, kvm + 1);
261
262
kvm_arm_teardown_hypercalls(kvm);
263
}
264
265
static bool kvm_has_full_ptr_auth(void)
266
{
267
bool apa, gpa, api, gpi, apa3, gpa3;
268
u64 isar1, isar2, val;
269
270
/*
271
* Check that:
272
*
273
* - both Address and Generic auth are implemented for a given
274
* algorithm (Q5, IMPDEF or Q3)
275
* - only a single algorithm is implemented.
276
*/
277
if (!system_has_full_ptr_auth())
278
return false;
279
280
isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
281
isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
282
283
apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
284
val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
285
gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
286
287
api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
288
val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
289
gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
290
291
apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
292
val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
293
gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
294
295
return (apa == gpa && api == gpi && apa3 == gpa3 &&
296
(apa + api + apa3) == 1);
297
}
298
299
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
300
{
301
int r;
302
303
if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext))
304
return 0;
305
306
switch (ext) {
307
case KVM_CAP_IRQCHIP:
308
r = vgic_present;
309
break;
310
case KVM_CAP_IOEVENTFD:
311
case KVM_CAP_USER_MEMORY:
312
case KVM_CAP_SYNC_MMU:
313
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
314
case KVM_CAP_ONE_REG:
315
case KVM_CAP_ARM_PSCI:
316
case KVM_CAP_ARM_PSCI_0_2:
317
case KVM_CAP_READONLY_MEM:
318
case KVM_CAP_MP_STATE:
319
case KVM_CAP_IMMEDIATE_EXIT:
320
case KVM_CAP_VCPU_EVENTS:
321
case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
322
case KVM_CAP_ARM_NISV_TO_USER:
323
case KVM_CAP_ARM_INJECT_EXT_DABT:
324
case KVM_CAP_SET_GUEST_DEBUG:
325
case KVM_CAP_VCPU_ATTRIBUTES:
326
case KVM_CAP_PTP_KVM:
327
case KVM_CAP_ARM_SYSTEM_SUSPEND:
328
case KVM_CAP_IRQFD_RESAMPLE:
329
case KVM_CAP_COUNTER_OFFSET:
330
case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
331
r = 1;
332
break;
333
case KVM_CAP_SET_GUEST_DEBUG2:
334
return KVM_GUESTDBG_VALID_MASK;
335
case KVM_CAP_ARM_SET_DEVICE_ADDR:
336
r = 1;
337
break;
338
case KVM_CAP_NR_VCPUS:
339
/*
340
* ARM64 treats KVM_CAP_NR_CPUS differently from all other
341
* architectures, as it does not always bound it to
342
* KVM_CAP_MAX_VCPUS. It should not matter much because
343
* this is just an advisory value.
344
*/
345
r = min_t(unsigned int, num_online_cpus(),
346
kvm_arm_default_max_vcpus());
347
break;
348
case KVM_CAP_MAX_VCPUS:
349
case KVM_CAP_MAX_VCPU_ID:
350
if (kvm)
351
r = kvm->max_vcpus;
352
else
353
r = kvm_arm_default_max_vcpus();
354
break;
355
case KVM_CAP_MSI_DEVID:
356
if (!kvm)
357
r = -EINVAL;
358
else
359
r = kvm->arch.vgic.msis_require_devid;
360
break;
361
case KVM_CAP_ARM_USER_IRQ:
362
/*
363
* 1: EL1_VTIMER, EL1_PTIMER, and PMU.
364
* (bump this number if adding more devices)
365
*/
366
r = 1;
367
break;
368
case KVM_CAP_ARM_MTE:
369
r = system_supports_mte();
370
break;
371
case KVM_CAP_STEAL_TIME:
372
r = kvm_arm_pvtime_supported();
373
break;
374
case KVM_CAP_ARM_EL1_32BIT:
375
r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
376
break;
377
case KVM_CAP_ARM_EL2:
378
r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT);
379
break;
380
case KVM_CAP_ARM_EL2_E2H0:
381
r = cpus_have_final_cap(ARM64_HAS_HCR_NV1);
382
break;
383
case KVM_CAP_GUEST_DEBUG_HW_BPS:
384
r = get_num_brps();
385
break;
386
case KVM_CAP_GUEST_DEBUG_HW_WPS:
387
r = get_num_wrps();
388
break;
389
case KVM_CAP_ARM_PMU_V3:
390
r = kvm_supports_guest_pmuv3();
391
break;
392
case KVM_CAP_ARM_INJECT_SERROR_ESR:
393
r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
394
break;
395
case KVM_CAP_ARM_VM_IPA_SIZE:
396
r = get_kvm_ipa_limit();
397
break;
398
case KVM_CAP_ARM_SVE:
399
r = system_supports_sve();
400
break;
401
case KVM_CAP_ARM_PTRAUTH_ADDRESS:
402
case KVM_CAP_ARM_PTRAUTH_GENERIC:
403
r = kvm_has_full_ptr_auth();
404
break;
405
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
406
if (kvm)
407
r = kvm->arch.mmu.split_page_chunk_size;
408
else
409
r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
410
break;
411
case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
412
r = kvm_supported_block_sizes();
413
break;
414
case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
415
r = BIT(0);
416
break;
417
case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED:
418
if (!kvm)
419
r = -EINVAL;
420
else
421
r = kvm_supports_cacheable_pfnmap();
422
break;
423
424
default:
425
r = 0;
426
}
427
428
return r;
429
}
430
431
long kvm_arch_dev_ioctl(struct file *filp,
432
unsigned int ioctl, unsigned long arg)
433
{
434
return -EINVAL;
435
}
436
437
struct kvm *kvm_arch_alloc_vm(void)
438
{
439
size_t sz = sizeof(struct kvm);
440
441
if (!has_vhe())
442
return kzalloc(sz, GFP_KERNEL_ACCOUNT);
443
444
return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
445
}
446
447
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
448
{
449
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
450
return -EBUSY;
451
452
if (id >= kvm->max_vcpus)
453
return -EINVAL;
454
455
return 0;
456
}
457
458
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
459
{
460
int err;
461
462
spin_lock_init(&vcpu->arch.mp_state_lock);
463
464
#ifdef CONFIG_LOCKDEP
465
/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
466
mutex_lock(&vcpu->mutex);
467
mutex_lock(&vcpu->kvm->arch.config_lock);
468
mutex_unlock(&vcpu->kvm->arch.config_lock);
469
mutex_unlock(&vcpu->mutex);
470
#endif
471
472
/* Force users to call KVM_ARM_VCPU_INIT */
473
vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
474
475
vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
476
477
/* Set up the timer */
478
kvm_timer_vcpu_init(vcpu);
479
480
kvm_pmu_vcpu_init(vcpu);
481
482
kvm_arm_pvtime_vcpu_init(&vcpu->arch);
483
484
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
485
486
/*
487
* This vCPU may have been created after mpidr_data was initialized.
488
* Throw out the pre-computed mappings if that is the case which forces
489
* KVM to fall back to iteratively searching the vCPUs.
490
*/
491
kvm_destroy_mpidr_data(vcpu->kvm);
492
493
err = kvm_vgic_vcpu_init(vcpu);
494
if (err)
495
return err;
496
497
err = kvm_share_hyp(vcpu, vcpu + 1);
498
if (err)
499
kvm_vgic_vcpu_destroy(vcpu);
500
501
return err;
502
}
503
504
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
505
{
506
}
507
508
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
509
{
510
if (!is_protected_kvm_enabled())
511
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
512
else
513
free_hyp_memcache(&vcpu->arch.pkvm_memcache);
514
kvm_timer_vcpu_terminate(vcpu);
515
kvm_pmu_vcpu_destroy(vcpu);
516
kvm_vgic_vcpu_destroy(vcpu);
517
kvm_arm_vcpu_destroy(vcpu);
518
}
519
520
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
521
{
522
523
}
524
525
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
526
{
527
528
}
529
530
static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
531
{
532
if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
533
/*
534
* Either we're running an L2 guest, and the API/APK bits come
535
* from L1's HCR_EL2, or API/APK are both set.
536
*/
537
if (unlikely(is_nested_ctxt(vcpu))) {
538
u64 val;
539
540
val = __vcpu_sys_reg(vcpu, HCR_EL2);
541
val &= (HCR_API | HCR_APK);
542
vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
543
vcpu->arch.hcr_el2 |= val;
544
} else {
545
vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
546
}
547
548
/*
549
* Save the host keys if there is any chance for the guest
550
* to use pauth, as the entry code will reload the guest
551
* keys in that case.
552
*/
553
if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
554
struct kvm_cpu_context *ctxt;
555
556
ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
557
ptrauth_save_keys(ctxt);
558
}
559
}
560
}
561
562
static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
563
{
564
if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
565
return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
566
567
return single_task_running() &&
568
(atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
569
vcpu->kvm->arch.vgic.nassgireq);
570
}
571
572
static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
573
{
574
if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
575
return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
576
577
return single_task_running();
578
}
579
580
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
581
{
582
struct kvm_s2_mmu *mmu;
583
int *last_ran;
584
585
if (is_protected_kvm_enabled())
586
goto nommu;
587
588
if (vcpu_has_nv(vcpu))
589
kvm_vcpu_load_hw_mmu(vcpu);
590
591
mmu = vcpu->arch.hw_mmu;
592
last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
593
594
/*
595
* Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
596
* which happens eagerly in VHE.
597
*
598
* Also, the VMID allocator only preserves VMIDs that are active at the
599
* time of rollover, so KVM might need to grab a new VMID for the MMU if
600
* this is called from kvm_sched_in().
601
*/
602
kvm_arm_vmid_update(&mmu->vmid);
603
604
/*
605
* We guarantee that both TLBs and I-cache are private to each
606
* vcpu. If detecting that a vcpu from the same VM has
607
* previously run on the same physical CPU, call into the
608
* hypervisor code to nuke the relevant contexts.
609
*
610
* We might get preempted before the vCPU actually runs, but
611
* over-invalidation doesn't affect correctness.
612
*/
613
if (*last_ran != vcpu->vcpu_idx) {
614
kvm_call_hyp(__kvm_flush_cpu_context, mmu);
615
*last_ran = vcpu->vcpu_idx;
616
}
617
618
nommu:
619
vcpu->cpu = cpu;
620
621
/*
622
* The timer must be loaded before the vgic to correctly set up physical
623
* interrupt deactivation in nested state (e.g. timer interrupt).
624
*/
625
kvm_timer_vcpu_load(vcpu);
626
kvm_vgic_load(vcpu);
627
kvm_vcpu_load_debug(vcpu);
628
if (has_vhe())
629
kvm_vcpu_load_vhe(vcpu);
630
kvm_arch_vcpu_load_fp(vcpu);
631
kvm_vcpu_pmu_restore_guest(vcpu);
632
if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
633
kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
634
635
if (kvm_vcpu_should_clear_twe(vcpu))
636
vcpu->arch.hcr_el2 &= ~HCR_TWE;
637
else
638
vcpu->arch.hcr_el2 |= HCR_TWE;
639
640
if (kvm_vcpu_should_clear_twi(vcpu))
641
vcpu->arch.hcr_el2 &= ~HCR_TWI;
642
else
643
vcpu->arch.hcr_el2 |= HCR_TWI;
644
645
vcpu_set_pauth_traps(vcpu);
646
647
if (is_protected_kvm_enabled()) {
648
kvm_call_hyp_nvhe(__pkvm_vcpu_load,
649
vcpu->kvm->arch.pkvm.handle,
650
vcpu->vcpu_idx, vcpu->arch.hcr_el2);
651
kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
652
&vcpu->arch.vgic_cpu.vgic_v3);
653
}
654
655
if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
656
vcpu_set_on_unsupported_cpu(vcpu);
657
}
658
659
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
660
{
661
if (is_protected_kvm_enabled()) {
662
kvm_call_hyp(__vgic_v3_save_vmcr_aprs,
663
&vcpu->arch.vgic_cpu.vgic_v3);
664
kvm_call_hyp_nvhe(__pkvm_vcpu_put);
665
}
666
667
kvm_vcpu_put_debug(vcpu);
668
kvm_arch_vcpu_put_fp(vcpu);
669
if (has_vhe())
670
kvm_vcpu_put_vhe(vcpu);
671
kvm_timer_vcpu_put(vcpu);
672
kvm_vgic_put(vcpu);
673
kvm_vcpu_pmu_restore_host(vcpu);
674
if (vcpu_has_nv(vcpu))
675
kvm_vcpu_put_hw_mmu(vcpu);
676
kvm_arm_vmid_clear_active();
677
678
vcpu_clear_on_unsupported_cpu(vcpu);
679
vcpu->cpu = -1;
680
}
681
682
static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
683
{
684
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
685
kvm_make_request(KVM_REQ_SLEEP, vcpu);
686
kvm_vcpu_kick(vcpu);
687
}
688
689
void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
690
{
691
spin_lock(&vcpu->arch.mp_state_lock);
692
__kvm_arm_vcpu_power_off(vcpu);
693
spin_unlock(&vcpu->arch.mp_state_lock);
694
}
695
696
bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
697
{
698
return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
699
}
700
701
static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
702
{
703
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
704
kvm_make_request(KVM_REQ_SUSPEND, vcpu);
705
kvm_vcpu_kick(vcpu);
706
}
707
708
static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
709
{
710
return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
711
}
712
713
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
714
struct kvm_mp_state *mp_state)
715
{
716
*mp_state = READ_ONCE(vcpu->arch.mp_state);
717
718
return 0;
719
}
720
721
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
722
struct kvm_mp_state *mp_state)
723
{
724
int ret = 0;
725
726
spin_lock(&vcpu->arch.mp_state_lock);
727
728
switch (mp_state->mp_state) {
729
case KVM_MP_STATE_RUNNABLE:
730
WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
731
break;
732
case KVM_MP_STATE_STOPPED:
733
__kvm_arm_vcpu_power_off(vcpu);
734
break;
735
case KVM_MP_STATE_SUSPENDED:
736
kvm_arm_vcpu_suspend(vcpu);
737
break;
738
default:
739
ret = -EINVAL;
740
}
741
742
spin_unlock(&vcpu->arch.mp_state_lock);
743
744
return ret;
745
}
746
747
/**
748
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
749
* @v: The VCPU pointer
750
*
751
* If the guest CPU is not waiting for interrupts or an interrupt line is
752
* asserted, the CPU is by definition runnable.
753
*/
754
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
755
{
756
bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE);
757
758
return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
759
&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
760
}
761
762
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
763
{
764
return vcpu_mode_priv(vcpu);
765
}
766
767
#ifdef CONFIG_GUEST_PERF_EVENTS
768
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
769
{
770
return *vcpu_pc(vcpu);
771
}
772
#endif
773
774
static void kvm_init_mpidr_data(struct kvm *kvm)
775
{
776
struct kvm_mpidr_data *data = NULL;
777
unsigned long c, mask, nr_entries;
778
u64 aff_set = 0, aff_clr = ~0UL;
779
struct kvm_vcpu *vcpu;
780
781
mutex_lock(&kvm->arch.config_lock);
782
783
if (rcu_access_pointer(kvm->arch.mpidr_data) ||
784
atomic_read(&kvm->online_vcpus) == 1)
785
goto out;
786
787
kvm_for_each_vcpu(c, vcpu, kvm) {
788
u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
789
aff_set |= aff;
790
aff_clr &= aff;
791
}
792
793
/*
794
* A significant bit can be either 0 or 1, and will only appear in
795
* aff_set. Use aff_clr to weed out the useless stuff.
796
*/
797
mask = aff_set ^ aff_clr;
798
nr_entries = BIT_ULL(hweight_long(mask));
799
800
/*
801
* Don't let userspace fool us. If we need more than a single page
802
* to describe the compressed MPIDR array, just fall back to the
803
* iterative method. Single vcpu VMs do not need this either.
804
*/
805
if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
806
data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
807
GFP_KERNEL_ACCOUNT);
808
809
if (!data)
810
goto out;
811
812
data->mpidr_mask = mask;
813
814
kvm_for_each_vcpu(c, vcpu, kvm) {
815
u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
816
u16 index = kvm_mpidr_index(data, aff);
817
818
data->cmpidr_to_idx[index] = c;
819
}
820
821
rcu_assign_pointer(kvm->arch.mpidr_data, data);
822
out:
823
mutex_unlock(&kvm->arch.config_lock);
824
}
825
826
/*
827
* Handle both the initialisation that is being done when the vcpu is
828
* run for the first time, as well as the updates that must be
829
* performed each time we get a new thread dealing with this vcpu.
830
*/
831
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
832
{
833
struct kvm *kvm = vcpu->kvm;
834
int ret;
835
836
if (!kvm_vcpu_initialized(vcpu))
837
return -ENOEXEC;
838
839
if (!kvm_arm_vcpu_is_finalized(vcpu))
840
return -EPERM;
841
842
if (likely(vcpu_has_run_once(vcpu)))
843
return 0;
844
845
kvm_init_mpidr_data(kvm);
846
847
if (likely(irqchip_in_kernel(kvm))) {
848
/*
849
* Map the VGIC hardware resources before running a vcpu the
850
* first time on this VM.
851
*/
852
ret = kvm_vgic_map_resources(kvm);
853
if (ret)
854
return ret;
855
}
856
857
ret = kvm_finalize_sys_regs(vcpu);
858
if (ret)
859
return ret;
860
861
if (vcpu_has_nv(vcpu)) {
862
ret = kvm_vcpu_allocate_vncr_tlb(vcpu);
863
if (ret)
864
return ret;
865
866
ret = kvm_vgic_vcpu_nv_init(vcpu);
867
if (ret)
868
return ret;
869
}
870
871
/*
872
* This needs to happen after any restriction has been applied
873
* to the feature set.
874
*/
875
kvm_calculate_traps(vcpu);
876
877
ret = kvm_timer_enable(vcpu);
878
if (ret)
879
return ret;
880
881
if (kvm_vcpu_has_pmu(vcpu)) {
882
ret = kvm_arm_pmu_v3_enable(vcpu);
883
if (ret)
884
return ret;
885
}
886
887
if (is_protected_kvm_enabled()) {
888
ret = pkvm_create_hyp_vm(kvm);
889
if (ret)
890
return ret;
891
892
ret = pkvm_create_hyp_vcpu(vcpu);
893
if (ret)
894
return ret;
895
}
896
897
mutex_lock(&kvm->arch.config_lock);
898
set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
899
mutex_unlock(&kvm->arch.config_lock);
900
901
return ret;
902
}
903
904
bool kvm_arch_intc_initialized(struct kvm *kvm)
905
{
906
return vgic_initialized(kvm);
907
}
908
909
void kvm_arm_halt_guest(struct kvm *kvm)
910
{
911
unsigned long i;
912
struct kvm_vcpu *vcpu;
913
914
kvm_for_each_vcpu(i, vcpu, kvm)
915
vcpu->arch.pause = true;
916
kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
917
}
918
919
void kvm_arm_resume_guest(struct kvm *kvm)
920
{
921
unsigned long i;
922
struct kvm_vcpu *vcpu;
923
924
kvm_for_each_vcpu(i, vcpu, kvm) {
925
vcpu->arch.pause = false;
926
__kvm_vcpu_wake_up(vcpu);
927
}
928
}
929
930
static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
931
{
932
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
933
934
rcuwait_wait_event(wait,
935
(!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
936
TASK_INTERRUPTIBLE);
937
938
if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
939
/* Awaken to handle a signal, request we sleep again later. */
940
kvm_make_request(KVM_REQ_SLEEP, vcpu);
941
}
942
943
/*
944
* Make sure we will observe a potential reset request if we've
945
* observed a change to the power state. Pairs with the smp_wmb() in
946
* kvm_psci_vcpu_on().
947
*/
948
smp_rmb();
949
}
950
951
/**
952
* kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
953
* @vcpu: The VCPU pointer
954
*
955
* Suspend execution of a vCPU until a valid wake event is detected, i.e. until
956
* the vCPU is runnable. The vCPU may or may not be scheduled out, depending
957
* on when a wake event arrives, e.g. there may already be a pending wake event.
958
*/
959
void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
960
{
961
/*
962
* Sync back the state of the GIC CPU interface so that we have
963
* the latest PMR and group enables. This ensures that
964
* kvm_arch_vcpu_runnable has up-to-date data to decide whether
965
* we have pending interrupts, e.g. when determining if the
966
* vCPU should block.
967
*
968
* For the same reason, we want to tell GICv4 that we need
969
* doorbells to be signalled, should an interrupt become pending.
970
*/
971
preempt_disable();
972
vcpu_set_flag(vcpu, IN_WFI);
973
kvm_vgic_put(vcpu);
974
preempt_enable();
975
976
kvm_vcpu_halt(vcpu);
977
vcpu_clear_flag(vcpu, IN_WFIT);
978
979
preempt_disable();
980
vcpu_clear_flag(vcpu, IN_WFI);
981
kvm_vgic_load(vcpu);
982
preempt_enable();
983
}
984
985
static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
986
{
987
if (!kvm_arm_vcpu_suspended(vcpu))
988
return 1;
989
990
kvm_vcpu_wfi(vcpu);
991
992
/*
993
* The suspend state is sticky; we do not leave it until userspace
994
* explicitly marks the vCPU as runnable. Request that we suspend again
995
* later.
996
*/
997
kvm_make_request(KVM_REQ_SUSPEND, vcpu);
998
999
/*
1000
* Check to make sure the vCPU is actually runnable. If so, exit to
1001
* userspace informing it of the wakeup condition.
1002
*/
1003
if (kvm_arch_vcpu_runnable(vcpu)) {
1004
memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
1005
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
1006
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1007
return 0;
1008
}
1009
1010
/*
1011
* Otherwise, we were unblocked to process a different event, such as a
1012
* pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1013
* process the event.
1014
*/
1015
return 1;
1016
}
1017
1018
/**
1019
* check_vcpu_requests - check and handle pending vCPU requests
1020
* @vcpu: the VCPU pointer
1021
*
1022
* Return: 1 if we should enter the guest
1023
* 0 if we should exit to userspace
1024
* < 0 if we should exit to userspace, where the return value indicates
1025
* an error
1026
*/
1027
static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1028
{
1029
if (kvm_request_pending(vcpu)) {
1030
if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1031
return -EIO;
1032
1033
if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1034
kvm_vcpu_sleep(vcpu);
1035
1036
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1037
kvm_reset_vcpu(vcpu);
1038
1039
/*
1040
* Clear IRQ_PENDING requests that were made to guarantee
1041
* that a VCPU sees new virtual interrupts.
1042
*/
1043
kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1044
1045
if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1046
kvm_update_stolen_time(vcpu);
1047
1048
if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1049
/* The distributor enable bits were changed */
1050
preempt_disable();
1051
vgic_v4_put(vcpu);
1052
vgic_v4_load(vcpu);
1053
preempt_enable();
1054
}
1055
1056
if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1057
kvm_vcpu_reload_pmu(vcpu);
1058
1059
if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1060
kvm_vcpu_pmu_restore_guest(vcpu);
1061
1062
if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1063
return kvm_vcpu_suspend(vcpu);
1064
1065
if (kvm_dirty_ring_check_request(vcpu))
1066
return 0;
1067
1068
check_nested_vcpu_requests(vcpu);
1069
}
1070
1071
return 1;
1072
}
1073
1074
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1075
{
1076
if (likely(!vcpu_mode_is_32bit(vcpu)))
1077
return false;
1078
1079
if (vcpu_has_nv(vcpu))
1080
return true;
1081
1082
return !kvm_supports_32bit_el0();
1083
}
1084
1085
/**
1086
* kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1087
* @vcpu: The VCPU pointer
1088
* @ret: Pointer to write optional return code
1089
*
1090
* Returns: true if the VCPU needs to return to a preemptible + interruptible
1091
* and skip guest entry.
1092
*
1093
* This function disambiguates between two different types of exits: exits to a
1094
* preemptible + interruptible kernel context and exits to userspace. For an
1095
* exit to userspace, this function will write the return code to ret and return
1096
* true. For an exit to preemptible + interruptible kernel context (i.e. check
1097
* for pending work and re-enter), return true without writing to ret.
1098
*/
1099
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1100
{
1101
struct kvm_run *run = vcpu->run;
1102
1103
/*
1104
* If we're using a userspace irqchip, then check if we need
1105
* to tell a userspace irqchip about timer or PMU level
1106
* changes and if so, exit to userspace (the actual level
1107
* state gets updated in kvm_timer_update_run and
1108
* kvm_pmu_update_run below).
1109
*/
1110
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1111
if (kvm_timer_should_notify_user(vcpu) ||
1112
kvm_pmu_should_notify_user(vcpu)) {
1113
*ret = -EINTR;
1114
run->exit_reason = KVM_EXIT_INTR;
1115
return true;
1116
}
1117
}
1118
1119
if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1120
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1121
run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1122
run->fail_entry.cpu = smp_processor_id();
1123
*ret = 0;
1124
return true;
1125
}
1126
1127
return kvm_request_pending(vcpu) ||
1128
xfer_to_guest_mode_work_pending();
1129
}
1130
1131
/*
1132
* Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1133
* the vCPU is running.
1134
*
1135
* This must be noinstr as instrumentation may make use of RCU, and this is not
1136
* safe during the EQS.
1137
*/
1138
static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1139
{
1140
int ret;
1141
1142
guest_state_enter_irqoff();
1143
ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1144
guest_state_exit_irqoff();
1145
1146
return ret;
1147
}
1148
1149
/**
1150
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1151
* @vcpu: The VCPU pointer
1152
*
1153
* This function is called through the VCPU_RUN ioctl called from user space. It
1154
* will execute VM code in a loop until the time slice for the process is used
1155
* or some emulation is needed from user space in which case the function will
1156
* return with return value 0 and with the kvm_run structure filled in with the
1157
* required data for the requested emulation.
1158
*/
1159
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1160
{
1161
struct kvm_run *run = vcpu->run;
1162
int ret;
1163
1164
if (run->exit_reason == KVM_EXIT_MMIO) {
1165
ret = kvm_handle_mmio_return(vcpu);
1166
if (ret <= 0)
1167
return ret;
1168
}
1169
1170
vcpu_load(vcpu);
1171
1172
if (!vcpu->wants_to_run) {
1173
ret = -EINTR;
1174
goto out;
1175
}
1176
1177
kvm_sigset_activate(vcpu);
1178
1179
ret = 1;
1180
run->exit_reason = KVM_EXIT_UNKNOWN;
1181
run->flags = 0;
1182
while (ret > 0) {
1183
/*
1184
* Check conditions before entering the guest
1185
*/
1186
ret = xfer_to_guest_mode_handle_work(vcpu);
1187
if (!ret)
1188
ret = 1;
1189
1190
if (ret > 0)
1191
ret = check_vcpu_requests(vcpu);
1192
1193
/*
1194
* Preparing the interrupts to be injected also
1195
* involves poking the GIC, which must be done in a
1196
* non-preemptible context.
1197
*/
1198
preempt_disable();
1199
1200
kvm_nested_flush_hwstate(vcpu);
1201
1202
if (kvm_vcpu_has_pmu(vcpu))
1203
kvm_pmu_flush_hwstate(vcpu);
1204
1205
local_irq_disable();
1206
1207
kvm_vgic_flush_hwstate(vcpu);
1208
1209
kvm_pmu_update_vcpu_events(vcpu);
1210
1211
/*
1212
* Ensure we set mode to IN_GUEST_MODE after we disable
1213
* interrupts and before the final VCPU requests check.
1214
* See the comment in kvm_vcpu_exiting_guest_mode() and
1215
* Documentation/virt/kvm/vcpu-requests.rst
1216
*/
1217
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1218
1219
if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1220
vcpu->mode = OUTSIDE_GUEST_MODE;
1221
isb(); /* Ensure work in x_flush_hwstate is committed */
1222
if (kvm_vcpu_has_pmu(vcpu))
1223
kvm_pmu_sync_hwstate(vcpu);
1224
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1225
kvm_timer_sync_user(vcpu);
1226
kvm_vgic_sync_hwstate(vcpu);
1227
local_irq_enable();
1228
preempt_enable();
1229
continue;
1230
}
1231
1232
kvm_arch_vcpu_ctxflush_fp(vcpu);
1233
1234
/**************************************************************
1235
* Enter the guest
1236
*/
1237
trace_kvm_entry(*vcpu_pc(vcpu));
1238
guest_timing_enter_irqoff();
1239
1240
ret = kvm_arm_vcpu_enter_exit(vcpu);
1241
1242
vcpu->mode = OUTSIDE_GUEST_MODE;
1243
vcpu->stat.exits++;
1244
/*
1245
* Back from guest
1246
*************************************************************/
1247
1248
/*
1249
* We must sync the PMU state before the vgic state so
1250
* that the vgic can properly sample the updated state of the
1251
* interrupt line.
1252
*/
1253
if (kvm_vcpu_has_pmu(vcpu))
1254
kvm_pmu_sync_hwstate(vcpu);
1255
1256
/*
1257
* Sync the vgic state before syncing the timer state because
1258
* the timer code needs to know if the virtual timer
1259
* interrupts are active.
1260
*/
1261
kvm_vgic_sync_hwstate(vcpu);
1262
1263
/*
1264
* Sync the timer hardware state before enabling interrupts as
1265
* we don't want vtimer interrupts to race with syncing the
1266
* timer virtual interrupt state.
1267
*/
1268
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1269
kvm_timer_sync_user(vcpu);
1270
1271
if (is_hyp_ctxt(vcpu))
1272
kvm_timer_sync_nested(vcpu);
1273
1274
kvm_arch_vcpu_ctxsync_fp(vcpu);
1275
1276
/*
1277
* We must ensure that any pending interrupts are taken before
1278
* we exit guest timing so that timer ticks are accounted as
1279
* guest time. Transiently unmask interrupts so that any
1280
* pending interrupts are taken.
1281
*
1282
* Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1283
* context synchronization event) is necessary to ensure that
1284
* pending interrupts are taken.
1285
*/
1286
if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1287
local_irq_enable();
1288
isb();
1289
local_irq_disable();
1290
}
1291
1292
guest_timing_exit_irqoff();
1293
1294
local_irq_enable();
1295
1296
trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1297
1298
/* Exit types that need handling before we can be preempted */
1299
handle_exit_early(vcpu, ret);
1300
1301
kvm_nested_sync_hwstate(vcpu);
1302
1303
preempt_enable();
1304
1305
/*
1306
* The ARMv8 architecture doesn't give the hypervisor
1307
* a mechanism to prevent a guest from dropping to AArch32 EL0
1308
* if implemented by the CPU. If we spot the guest in such
1309
* state and that we decided it wasn't supposed to do so (like
1310
* with the asymmetric AArch32 case), return to userspace with
1311
* a fatal error.
1312
*/
1313
if (vcpu_mode_is_bad_32bit(vcpu)) {
1314
/*
1315
* As we have caught the guest red-handed, decide that
1316
* it isn't fit for purpose anymore by making the vcpu
1317
* invalid. The VMM can try and fix it by issuing a
1318
* KVM_ARM_VCPU_INIT if it really wants to.
1319
*/
1320
vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1321
ret = ARM_EXCEPTION_IL;
1322
}
1323
1324
ret = handle_exit(vcpu, ret);
1325
}
1326
1327
/* Tell userspace about in-kernel device output levels */
1328
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1329
kvm_timer_update_run(vcpu);
1330
kvm_pmu_update_run(vcpu);
1331
}
1332
1333
kvm_sigset_deactivate(vcpu);
1334
1335
out:
1336
/*
1337
* In the unlikely event that we are returning to userspace
1338
* with pending exceptions or PC adjustment, commit these
1339
* adjustments in order to give userspace a consistent view of
1340
* the vcpu state. Note that this relies on __kvm_adjust_pc()
1341
* being preempt-safe on VHE.
1342
*/
1343
if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1344
vcpu_get_flag(vcpu, INCREMENT_PC)))
1345
kvm_call_hyp(__kvm_adjust_pc, vcpu);
1346
1347
vcpu_put(vcpu);
1348
return ret;
1349
}
1350
1351
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1352
{
1353
int bit_index;
1354
bool set;
1355
unsigned long *hcr;
1356
1357
if (number == KVM_ARM_IRQ_CPU_IRQ)
1358
bit_index = __ffs(HCR_VI);
1359
else /* KVM_ARM_IRQ_CPU_FIQ */
1360
bit_index = __ffs(HCR_VF);
1361
1362
hcr = vcpu_hcr(vcpu);
1363
if (level)
1364
set = test_and_set_bit(bit_index, hcr);
1365
else
1366
set = test_and_clear_bit(bit_index, hcr);
1367
1368
/*
1369
* If we didn't change anything, no need to wake up or kick other CPUs
1370
*/
1371
if (set == level)
1372
return 0;
1373
1374
/*
1375
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1376
* trigger a world-switch round on the running physical CPU to set the
1377
* virtual IRQ/FIQ fields in the HCR appropriately.
1378
*/
1379
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1380
kvm_vcpu_kick(vcpu);
1381
1382
return 0;
1383
}
1384
1385
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1386
bool line_status)
1387
{
1388
u32 irq = irq_level->irq;
1389
unsigned int irq_type, vcpu_id, irq_num;
1390
struct kvm_vcpu *vcpu = NULL;
1391
bool level = irq_level->level;
1392
1393
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1394
vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1395
vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1396
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1397
1398
trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1399
1400
switch (irq_type) {
1401
case KVM_ARM_IRQ_TYPE_CPU:
1402
if (irqchip_in_kernel(kvm))
1403
return -ENXIO;
1404
1405
vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1406
if (!vcpu)
1407
return -EINVAL;
1408
1409
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1410
return -EINVAL;
1411
1412
return vcpu_interrupt_line(vcpu, irq_num, level);
1413
case KVM_ARM_IRQ_TYPE_PPI:
1414
if (!irqchip_in_kernel(kvm))
1415
return -ENXIO;
1416
1417
vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1418
if (!vcpu)
1419
return -EINVAL;
1420
1421
if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1422
return -EINVAL;
1423
1424
return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1425
case KVM_ARM_IRQ_TYPE_SPI:
1426
if (!irqchip_in_kernel(kvm))
1427
return -ENXIO;
1428
1429
if (irq_num < VGIC_NR_PRIVATE_IRQS)
1430
return -EINVAL;
1431
1432
return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1433
}
1434
1435
return -EINVAL;
1436
}
1437
1438
static unsigned long system_supported_vcpu_features(void)
1439
{
1440
unsigned long features = KVM_VCPU_VALID_FEATURES;
1441
1442
if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1443
clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1444
1445
if (!kvm_supports_guest_pmuv3())
1446
clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1447
1448
if (!system_supports_sve())
1449
clear_bit(KVM_ARM_VCPU_SVE, &features);
1450
1451
if (!kvm_has_full_ptr_auth()) {
1452
clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1453
clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1454
}
1455
1456
if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1457
clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1458
1459
return features;
1460
}
1461
1462
static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1463
const struct kvm_vcpu_init *init)
1464
{
1465
unsigned long features = init->features[0];
1466
int i;
1467
1468
if (features & ~KVM_VCPU_VALID_FEATURES)
1469
return -ENOENT;
1470
1471
for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1472
if (init->features[i])
1473
return -ENOENT;
1474
}
1475
1476
if (features & ~system_supported_vcpu_features())
1477
return -EINVAL;
1478
1479
/*
1480
* For now make sure that both address/generic pointer authentication
1481
* features are requested by the userspace together.
1482
*/
1483
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1484
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1485
return -EINVAL;
1486
1487
if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1488
return 0;
1489
1490
/* MTE is incompatible with AArch32 */
1491
if (kvm_has_mte(vcpu->kvm))
1492
return -EINVAL;
1493
1494
/* NV is incompatible with AArch32 */
1495
if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1496
return -EINVAL;
1497
1498
return 0;
1499
}
1500
1501
static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1502
const struct kvm_vcpu_init *init)
1503
{
1504
unsigned long features = init->features[0];
1505
1506
return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1507
KVM_VCPU_MAX_FEATURES);
1508
}
1509
1510
static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1511
{
1512
struct kvm *kvm = vcpu->kvm;
1513
int ret = 0;
1514
1515
/*
1516
* When the vCPU has a PMU, but no PMU is set for the guest
1517
* yet, set the default one.
1518
*/
1519
if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1520
ret = kvm_arm_set_default_pmu(kvm);
1521
1522
/* Prepare for nested if required */
1523
if (!ret && vcpu_has_nv(vcpu))
1524
ret = kvm_vcpu_init_nested(vcpu);
1525
1526
return ret;
1527
}
1528
1529
static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1530
const struct kvm_vcpu_init *init)
1531
{
1532
unsigned long features = init->features[0];
1533
struct kvm *kvm = vcpu->kvm;
1534
int ret = -EINVAL;
1535
1536
mutex_lock(&kvm->arch.config_lock);
1537
1538
if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1539
kvm_vcpu_init_changed(vcpu, init))
1540
goto out_unlock;
1541
1542
bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1543
1544
ret = kvm_setup_vcpu(vcpu);
1545
if (ret)
1546
goto out_unlock;
1547
1548
/* Now we know what it is, we can reset it. */
1549
kvm_reset_vcpu(vcpu);
1550
1551
set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1552
vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1553
ret = 0;
1554
out_unlock:
1555
mutex_unlock(&kvm->arch.config_lock);
1556
return ret;
1557
}
1558
1559
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1560
const struct kvm_vcpu_init *init)
1561
{
1562
int ret;
1563
1564
if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1565
init->target != kvm_target_cpu())
1566
return -EINVAL;
1567
1568
ret = kvm_vcpu_init_check_features(vcpu, init);
1569
if (ret)
1570
return ret;
1571
1572
if (!kvm_vcpu_initialized(vcpu))
1573
return __kvm_vcpu_set_target(vcpu, init);
1574
1575
if (kvm_vcpu_init_changed(vcpu, init))
1576
return -EINVAL;
1577
1578
kvm_reset_vcpu(vcpu);
1579
return 0;
1580
}
1581
1582
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1583
struct kvm_vcpu_init *init)
1584
{
1585
bool power_off = false;
1586
int ret;
1587
1588
/*
1589
* Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1590
* reflecting it in the finalized feature set, thus limiting its scope
1591
* to a single KVM_ARM_VCPU_INIT call.
1592
*/
1593
if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1594
init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1595
power_off = true;
1596
}
1597
1598
ret = kvm_vcpu_set_target(vcpu, init);
1599
if (ret)
1600
return ret;
1601
1602
/*
1603
* Ensure a rebooted VM will fault in RAM pages and detect if the
1604
* guest MMU is turned off and flush the caches as needed.
1605
*
1606
* S2FWB enforces all memory accesses to RAM being cacheable,
1607
* ensuring that the data side is always coherent. We still
1608
* need to invalidate the I-cache though, as FWB does *not*
1609
* imply CTR_EL0.DIC.
1610
*/
1611
if (vcpu_has_run_once(vcpu)) {
1612
if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1613
stage2_unmap_vm(vcpu->kvm);
1614
else
1615
icache_inval_all_pou();
1616
}
1617
1618
vcpu_reset_hcr(vcpu);
1619
1620
/*
1621
* Handle the "start in power-off" case.
1622
*/
1623
spin_lock(&vcpu->arch.mp_state_lock);
1624
1625
if (power_off)
1626
__kvm_arm_vcpu_power_off(vcpu);
1627
else
1628
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1629
1630
spin_unlock(&vcpu->arch.mp_state_lock);
1631
1632
return 0;
1633
}
1634
1635
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1636
struct kvm_device_attr *attr)
1637
{
1638
int ret = -ENXIO;
1639
1640
switch (attr->group) {
1641
default:
1642
ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1643
break;
1644
}
1645
1646
return ret;
1647
}
1648
1649
static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1650
struct kvm_device_attr *attr)
1651
{
1652
int ret = -ENXIO;
1653
1654
switch (attr->group) {
1655
default:
1656
ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1657
break;
1658
}
1659
1660
return ret;
1661
}
1662
1663
static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1664
struct kvm_device_attr *attr)
1665
{
1666
int ret = -ENXIO;
1667
1668
switch (attr->group) {
1669
default:
1670
ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1671
break;
1672
}
1673
1674
return ret;
1675
}
1676
1677
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1678
struct kvm_vcpu_events *events)
1679
{
1680
memset(events, 0, sizeof(*events));
1681
1682
return __kvm_arm_vcpu_get_events(vcpu, events);
1683
}
1684
1685
static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1686
struct kvm_vcpu_events *events)
1687
{
1688
int i;
1689
1690
/* check whether the reserved field is zero */
1691
for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1692
if (events->reserved[i])
1693
return -EINVAL;
1694
1695
/* check whether the pad field is zero */
1696
for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1697
if (events->exception.pad[i])
1698
return -EINVAL;
1699
1700
return __kvm_arm_vcpu_set_events(vcpu, events);
1701
}
1702
1703
long kvm_arch_vcpu_ioctl(struct file *filp,
1704
unsigned int ioctl, unsigned long arg)
1705
{
1706
struct kvm_vcpu *vcpu = filp->private_data;
1707
void __user *argp = (void __user *)arg;
1708
struct kvm_device_attr attr;
1709
long r;
1710
1711
switch (ioctl) {
1712
case KVM_ARM_VCPU_INIT: {
1713
struct kvm_vcpu_init init;
1714
1715
r = -EFAULT;
1716
if (copy_from_user(&init, argp, sizeof(init)))
1717
break;
1718
1719
r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1720
break;
1721
}
1722
case KVM_SET_ONE_REG:
1723
case KVM_GET_ONE_REG: {
1724
struct kvm_one_reg reg;
1725
1726
r = -ENOEXEC;
1727
if (unlikely(!kvm_vcpu_initialized(vcpu)))
1728
break;
1729
1730
r = -EFAULT;
1731
if (copy_from_user(&reg, argp, sizeof(reg)))
1732
break;
1733
1734
/*
1735
* We could owe a reset due to PSCI. Handle the pending reset
1736
* here to ensure userspace register accesses are ordered after
1737
* the reset.
1738
*/
1739
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1740
kvm_reset_vcpu(vcpu);
1741
1742
if (ioctl == KVM_SET_ONE_REG)
1743
r = kvm_arm_set_reg(vcpu, &reg);
1744
else
1745
r = kvm_arm_get_reg(vcpu, &reg);
1746
break;
1747
}
1748
case KVM_GET_REG_LIST: {
1749
struct kvm_reg_list __user *user_list = argp;
1750
struct kvm_reg_list reg_list;
1751
unsigned n;
1752
1753
r = -ENOEXEC;
1754
if (unlikely(!kvm_vcpu_initialized(vcpu)))
1755
break;
1756
1757
r = -EPERM;
1758
if (!kvm_arm_vcpu_is_finalized(vcpu))
1759
break;
1760
1761
r = -EFAULT;
1762
if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1763
break;
1764
n = reg_list.n;
1765
reg_list.n = kvm_arm_num_regs(vcpu);
1766
if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1767
break;
1768
r = -E2BIG;
1769
if (n < reg_list.n)
1770
break;
1771
r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1772
break;
1773
}
1774
case KVM_SET_DEVICE_ATTR: {
1775
r = -EFAULT;
1776
if (copy_from_user(&attr, argp, sizeof(attr)))
1777
break;
1778
r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1779
break;
1780
}
1781
case KVM_GET_DEVICE_ATTR: {
1782
r = -EFAULT;
1783
if (copy_from_user(&attr, argp, sizeof(attr)))
1784
break;
1785
r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1786
break;
1787
}
1788
case KVM_HAS_DEVICE_ATTR: {
1789
r = -EFAULT;
1790
if (copy_from_user(&attr, argp, sizeof(attr)))
1791
break;
1792
r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1793
break;
1794
}
1795
case KVM_GET_VCPU_EVENTS: {
1796
struct kvm_vcpu_events events;
1797
1798
if (kvm_arm_vcpu_get_events(vcpu, &events))
1799
return -EINVAL;
1800
1801
if (copy_to_user(argp, &events, sizeof(events)))
1802
return -EFAULT;
1803
1804
return 0;
1805
}
1806
case KVM_SET_VCPU_EVENTS: {
1807
struct kvm_vcpu_events events;
1808
1809
if (copy_from_user(&events, argp, sizeof(events)))
1810
return -EFAULT;
1811
1812
return kvm_arm_vcpu_set_events(vcpu, &events);
1813
}
1814
case KVM_ARM_VCPU_FINALIZE: {
1815
int what;
1816
1817
if (!kvm_vcpu_initialized(vcpu))
1818
return -ENOEXEC;
1819
1820
if (get_user(what, (const int __user *)argp))
1821
return -EFAULT;
1822
1823
return kvm_arm_vcpu_finalize(vcpu, what);
1824
}
1825
default:
1826
r = -EINVAL;
1827
}
1828
1829
return r;
1830
}
1831
1832
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1833
{
1834
1835
}
1836
1837
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1838
struct kvm_arm_device_addr *dev_addr)
1839
{
1840
switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1841
case KVM_ARM_DEVICE_VGIC_V2:
1842
if (!vgic_present)
1843
return -ENXIO;
1844
return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1845
default:
1846
return -ENODEV;
1847
}
1848
}
1849
1850
static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1851
{
1852
switch (attr->group) {
1853
case KVM_ARM_VM_SMCCC_CTRL:
1854
return kvm_vm_smccc_has_attr(kvm, attr);
1855
default:
1856
return -ENXIO;
1857
}
1858
}
1859
1860
static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1861
{
1862
switch (attr->group) {
1863
case KVM_ARM_VM_SMCCC_CTRL:
1864
return kvm_vm_smccc_set_attr(kvm, attr);
1865
default:
1866
return -ENXIO;
1867
}
1868
}
1869
1870
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1871
{
1872
struct kvm *kvm = filp->private_data;
1873
void __user *argp = (void __user *)arg;
1874
struct kvm_device_attr attr;
1875
1876
switch (ioctl) {
1877
case KVM_CREATE_IRQCHIP: {
1878
int ret;
1879
if (!vgic_present)
1880
return -ENXIO;
1881
mutex_lock(&kvm->lock);
1882
ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1883
mutex_unlock(&kvm->lock);
1884
return ret;
1885
}
1886
case KVM_ARM_SET_DEVICE_ADDR: {
1887
struct kvm_arm_device_addr dev_addr;
1888
1889
if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1890
return -EFAULT;
1891
return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1892
}
1893
case KVM_ARM_PREFERRED_TARGET: {
1894
struct kvm_vcpu_init init = {
1895
.target = KVM_ARM_TARGET_GENERIC_V8,
1896
};
1897
1898
if (copy_to_user(argp, &init, sizeof(init)))
1899
return -EFAULT;
1900
1901
return 0;
1902
}
1903
case KVM_ARM_MTE_COPY_TAGS: {
1904
struct kvm_arm_copy_mte_tags copy_tags;
1905
1906
if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1907
return -EFAULT;
1908
return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1909
}
1910
case KVM_ARM_SET_COUNTER_OFFSET: {
1911
struct kvm_arm_counter_offset offset;
1912
1913
if (copy_from_user(&offset, argp, sizeof(offset)))
1914
return -EFAULT;
1915
return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1916
}
1917
case KVM_HAS_DEVICE_ATTR: {
1918
if (copy_from_user(&attr, argp, sizeof(attr)))
1919
return -EFAULT;
1920
1921
return kvm_vm_has_attr(kvm, &attr);
1922
}
1923
case KVM_SET_DEVICE_ATTR: {
1924
if (copy_from_user(&attr, argp, sizeof(attr)))
1925
return -EFAULT;
1926
1927
return kvm_vm_set_attr(kvm, &attr);
1928
}
1929
case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1930
struct reg_mask_range range;
1931
1932
if (copy_from_user(&range, argp, sizeof(range)))
1933
return -EFAULT;
1934
return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1935
}
1936
default:
1937
return -EINVAL;
1938
}
1939
}
1940
1941
static unsigned long nvhe_percpu_size(void)
1942
{
1943
return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1944
(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1945
}
1946
1947
static unsigned long nvhe_percpu_order(void)
1948
{
1949
unsigned long size = nvhe_percpu_size();
1950
1951
return size ? get_order(size) : 0;
1952
}
1953
1954
static size_t pkvm_host_sve_state_order(void)
1955
{
1956
return get_order(pkvm_host_sve_state_size());
1957
}
1958
1959
/* A lookup table holding the hypervisor VA for each vector slot */
1960
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1961
1962
static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1963
{
1964
hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1965
}
1966
1967
static int kvm_init_vector_slots(void)
1968
{
1969
int err;
1970
void *base;
1971
1972
base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1973
kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1974
1975
base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1976
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1977
1978
if (kvm_system_needs_idmapped_vectors() &&
1979
!is_protected_kvm_enabled()) {
1980
err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1981
__BP_HARDEN_HYP_VECS_SZ, &base);
1982
if (err)
1983
return err;
1984
}
1985
1986
kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1987
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1988
return 0;
1989
}
1990
1991
static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1992
{
1993
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1994
unsigned long tcr;
1995
1996
/*
1997
* Calculate the raw per-cpu offset without a translation from the
1998
* kernel's mapping to the linear mapping, and store it in tpidr_el2
1999
* so that we can use adr_l to access per-cpu variables in EL2.
2000
* Also drop the KASAN tag which gets in the way...
2001
*/
2002
params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2003
(unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2004
2005
params->mair_el2 = read_sysreg(mair_el1);
2006
2007
tcr = read_sysreg(tcr_el1);
2008
if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2009
tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
2010
tcr |= TCR_EPD1_MASK;
2011
} else {
2012
unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr);
2013
2014
tcr &= TCR_EL2_MASK;
2015
tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips);
2016
if (lpa2_is_enabled())
2017
tcr |= TCR_EL2_DS;
2018
}
2019
tcr |= TCR_T0SZ(hyp_va_bits);
2020
params->tcr_el2 = tcr;
2021
2022
params->pgd_pa = kvm_mmu_get_httbr();
2023
if (is_protected_kvm_enabled())
2024
params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2025
else
2026
params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2027
if (cpus_have_final_cap(ARM64_KVM_HVHE))
2028
params->hcr_el2 |= HCR_E2H;
2029
params->vttbr = params->vtcr = 0;
2030
2031
/*
2032
* Flush the init params from the data cache because the struct will
2033
* be read while the MMU is off.
2034
*/
2035
kvm_flush_dcache_to_poc(params, sizeof(*params));
2036
}
2037
2038
static void hyp_install_host_vector(void)
2039
{
2040
struct kvm_nvhe_init_params *params;
2041
struct arm_smccc_res res;
2042
2043
/* Switch from the HYP stub to our own HYP init vector */
2044
__hyp_set_vectors(kvm_get_idmap_vector());
2045
2046
/*
2047
* Call initialization code, and switch to the full blown HYP code.
2048
* If the cpucaps haven't been finalized yet, something has gone very
2049
* wrong, and hyp will crash and burn when it uses any
2050
* cpus_have_*_cap() wrapper.
2051
*/
2052
BUG_ON(!system_capabilities_finalized());
2053
params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2054
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2055
WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2056
}
2057
2058
static void cpu_init_hyp_mode(void)
2059
{
2060
hyp_install_host_vector();
2061
2062
/*
2063
* Disabling SSBD on a non-VHE system requires us to enable SSBS
2064
* at EL2.
2065
*/
2066
if (this_cpu_has_cap(ARM64_SSBS) &&
2067
arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2068
kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2069
}
2070
}
2071
2072
static void cpu_hyp_reset(void)
2073
{
2074
if (!is_kernel_in_hyp_mode())
2075
__hyp_reset_vectors();
2076
}
2077
2078
/*
2079
* EL2 vectors can be mapped and rerouted in a number of ways,
2080
* depending on the kernel configuration and CPU present:
2081
*
2082
* - If the CPU is affected by Spectre-v2, the hardening sequence is
2083
* placed in one of the vector slots, which is executed before jumping
2084
* to the real vectors.
2085
*
2086
* - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2087
* containing the hardening sequence is mapped next to the idmap page,
2088
* and executed before jumping to the real vectors.
2089
*
2090
* - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2091
* empty slot is selected, mapped next to the idmap page, and
2092
* executed before jumping to the real vectors.
2093
*
2094
* Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2095
* VHE, as we don't have hypervisor-specific mappings. If the system
2096
* is VHE and yet selects this capability, it will be ignored.
2097
*/
2098
static void cpu_set_hyp_vector(void)
2099
{
2100
struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2101
void *vector = hyp_spectre_vector_selector[data->slot];
2102
2103
if (!is_protected_kvm_enabled())
2104
*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2105
else
2106
kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2107
}
2108
2109
static void cpu_hyp_init_context(void)
2110
{
2111
kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2112
kvm_init_host_debug_data();
2113
2114
if (!is_kernel_in_hyp_mode())
2115
cpu_init_hyp_mode();
2116
}
2117
2118
static void cpu_hyp_init_features(void)
2119
{
2120
cpu_set_hyp_vector();
2121
2122
if (is_kernel_in_hyp_mode()) {
2123
kvm_timer_init_vhe();
2124
kvm_debug_init_vhe();
2125
}
2126
2127
if (vgic_present)
2128
kvm_vgic_init_cpu_hardware();
2129
}
2130
2131
static void cpu_hyp_reinit(void)
2132
{
2133
cpu_hyp_reset();
2134
cpu_hyp_init_context();
2135
cpu_hyp_init_features();
2136
}
2137
2138
static void cpu_hyp_init(void *discard)
2139
{
2140
if (!__this_cpu_read(kvm_hyp_initialized)) {
2141
cpu_hyp_reinit();
2142
__this_cpu_write(kvm_hyp_initialized, 1);
2143
}
2144
}
2145
2146
static void cpu_hyp_uninit(void *discard)
2147
{
2148
if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) {
2149
cpu_hyp_reset();
2150
__this_cpu_write(kvm_hyp_initialized, 0);
2151
}
2152
}
2153
2154
int kvm_arch_enable_virtualization_cpu(void)
2155
{
2156
/*
2157
* Most calls to this function are made with migration
2158
* disabled, but not with preemption disabled. The former is
2159
* enough to ensure correctness, but most of the helpers
2160
* expect the later and will throw a tantrum otherwise.
2161
*/
2162
preempt_disable();
2163
2164
cpu_hyp_init(NULL);
2165
2166
kvm_vgic_cpu_up();
2167
kvm_timer_cpu_up();
2168
2169
preempt_enable();
2170
2171
return 0;
2172
}
2173
2174
void kvm_arch_disable_virtualization_cpu(void)
2175
{
2176
kvm_timer_cpu_down();
2177
kvm_vgic_cpu_down();
2178
2179
if (!is_protected_kvm_enabled())
2180
cpu_hyp_uninit(NULL);
2181
}
2182
2183
#ifdef CONFIG_CPU_PM
2184
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2185
unsigned long cmd,
2186
void *v)
2187
{
2188
/*
2189
* kvm_hyp_initialized is left with its old value over
2190
* PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2191
* re-enable hyp.
2192
*/
2193
switch (cmd) {
2194
case CPU_PM_ENTER:
2195
if (__this_cpu_read(kvm_hyp_initialized))
2196
/*
2197
* don't update kvm_hyp_initialized here
2198
* so that the hyp will be re-enabled
2199
* when we resume. See below.
2200
*/
2201
cpu_hyp_reset();
2202
2203
return NOTIFY_OK;
2204
case CPU_PM_ENTER_FAILED:
2205
case CPU_PM_EXIT:
2206
if (__this_cpu_read(kvm_hyp_initialized))
2207
/* The hyp was enabled before suspend. */
2208
cpu_hyp_reinit();
2209
2210
return NOTIFY_OK;
2211
2212
default:
2213
return NOTIFY_DONE;
2214
}
2215
}
2216
2217
static struct notifier_block hyp_init_cpu_pm_nb = {
2218
.notifier_call = hyp_init_cpu_pm_notifier,
2219
};
2220
2221
static void __init hyp_cpu_pm_init(void)
2222
{
2223
if (!is_protected_kvm_enabled())
2224
cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2225
}
2226
static void __init hyp_cpu_pm_exit(void)
2227
{
2228
if (!is_protected_kvm_enabled())
2229
cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2230
}
2231
#else
2232
static inline void __init hyp_cpu_pm_init(void)
2233
{
2234
}
2235
static inline void __init hyp_cpu_pm_exit(void)
2236
{
2237
}
2238
#endif
2239
2240
static void __init init_cpu_logical_map(void)
2241
{
2242
unsigned int cpu;
2243
2244
/*
2245
* Copy the MPIDR <-> logical CPU ID mapping to hyp.
2246
* Only copy the set of online CPUs whose features have been checked
2247
* against the finalized system capabilities. The hypervisor will not
2248
* allow any other CPUs from the `possible` set to boot.
2249
*/
2250
for_each_online_cpu(cpu)
2251
hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2252
}
2253
2254
#define init_psci_0_1_impl_state(config, what) \
2255
config.psci_0_1_ ## what ## _implemented = psci_ops.what
2256
2257
static bool __init init_psci_relay(void)
2258
{
2259
/*
2260
* If PSCI has not been initialized, protected KVM cannot install
2261
* itself on newly booted CPUs.
2262
*/
2263
if (!psci_ops.get_version) {
2264
kvm_err("Cannot initialize protected mode without PSCI\n");
2265
return false;
2266
}
2267
2268
kvm_host_psci_config.version = psci_ops.get_version();
2269
kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2270
2271
if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2272
kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2273
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2274
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2275
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2276
init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2277
}
2278
return true;
2279
}
2280
2281
static int __init init_subsystems(void)
2282
{
2283
int err = 0;
2284
2285
/*
2286
* Enable hardware so that subsystem initialisation can access EL2.
2287
*/
2288
on_each_cpu(cpu_hyp_init, NULL, 1);
2289
2290
/*
2291
* Register CPU lower-power notifier
2292
*/
2293
hyp_cpu_pm_init();
2294
2295
/*
2296
* Init HYP view of VGIC
2297
*/
2298
err = kvm_vgic_hyp_init();
2299
switch (err) {
2300
case 0:
2301
vgic_present = true;
2302
break;
2303
case -ENODEV:
2304
case -ENXIO:
2305
/*
2306
* No VGIC? No pKVM for you.
2307
*
2308
* Protected mode assumes that VGICv3 is present, so no point
2309
* in trying to hobble along if vgic initialization fails.
2310
*/
2311
if (is_protected_kvm_enabled())
2312
goto out;
2313
2314
/*
2315
* Otherwise, userspace could choose to implement a GIC for its
2316
* guest on non-cooperative hardware.
2317
*/
2318
vgic_present = false;
2319
err = 0;
2320
break;
2321
default:
2322
goto out;
2323
}
2324
2325
if (kvm_mode == KVM_MODE_NV &&
2326
!(vgic_present && (kvm_vgic_global_state.type == VGIC_V3 ||
2327
kvm_vgic_global_state.has_gcie_v3_compat))) {
2328
kvm_err("NV support requires GICv3 or GICv5 with legacy support, giving up\n");
2329
err = -EINVAL;
2330
goto out;
2331
}
2332
2333
/*
2334
* Init HYP architected timer support
2335
*/
2336
err = kvm_timer_hyp_init(vgic_present);
2337
if (err)
2338
goto out;
2339
2340
kvm_register_perf_callbacks(NULL);
2341
2342
out:
2343
if (err)
2344
hyp_cpu_pm_exit();
2345
2346
if (err || !is_protected_kvm_enabled())
2347
on_each_cpu(cpu_hyp_uninit, NULL, 1);
2348
2349
return err;
2350
}
2351
2352
static void __init teardown_subsystems(void)
2353
{
2354
kvm_unregister_perf_callbacks();
2355
hyp_cpu_pm_exit();
2356
}
2357
2358
static void __init teardown_hyp_mode(void)
2359
{
2360
bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2361
int cpu;
2362
2363
free_hyp_pgds();
2364
for_each_possible_cpu(cpu) {
2365
if (per_cpu(kvm_hyp_initialized, cpu))
2366
continue;
2367
2368
free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2369
2370
if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu])
2371
continue;
2372
2373
if (free_sve) {
2374
struct cpu_sve_state *sve_state;
2375
2376
sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2377
free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2378
}
2379
2380
free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2381
2382
}
2383
}
2384
2385
static int __init do_pkvm_init(u32 hyp_va_bits)
2386
{
2387
void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2388
int ret;
2389
2390
preempt_disable();
2391
cpu_hyp_init_context();
2392
ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2393
num_possible_cpus(), kern_hyp_va(per_cpu_base),
2394
hyp_va_bits);
2395
cpu_hyp_init_features();
2396
2397
/*
2398
* The stub hypercalls are now disabled, so set our local flag to
2399
* prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2400
*/
2401
__this_cpu_write(kvm_hyp_initialized, 1);
2402
preempt_enable();
2403
2404
return ret;
2405
}
2406
2407
static u64 get_hyp_id_aa64pfr0_el1(void)
2408
{
2409
/*
2410
* Track whether the system isn't affected by spectre/meltdown in the
2411
* hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2412
* Although this is per-CPU, we make it global for simplicity, e.g., not
2413
* to have to worry about vcpu migration.
2414
*
2415
* Unlike for non-protected VMs, userspace cannot override this for
2416
* protected VMs.
2417
*/
2418
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2419
2420
val &= ~(ID_AA64PFR0_EL1_CSV2 |
2421
ID_AA64PFR0_EL1_CSV3);
2422
2423
val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2,
2424
arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2425
val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3,
2426
arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2427
2428
return val;
2429
}
2430
2431
static void kvm_hyp_init_symbols(void)
2432
{
2433
kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2434
kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2435
kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2436
kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2437
kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2438
kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2439
kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2440
kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2441
kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2442
kvm_nvhe_sym(__icache_flags) = __icache_flags;
2443
kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2444
2445
/* Propagate the FGT state to the the nVHE side */
2446
kvm_nvhe_sym(hfgrtr_masks) = hfgrtr_masks;
2447
kvm_nvhe_sym(hfgwtr_masks) = hfgwtr_masks;
2448
kvm_nvhe_sym(hfgitr_masks) = hfgitr_masks;
2449
kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks;
2450
kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks;
2451
kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks;
2452
kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks;
2453
kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks;
2454
kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks;
2455
kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks;
2456
kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks;
2457
2458
/*
2459
* Flush entire BSS since part of its data containing init symbols is read
2460
* while the MMU is off.
2461
*/
2462
kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2463
kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2464
}
2465
2466
static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2467
{
2468
void *addr = phys_to_virt(hyp_mem_base);
2469
int ret;
2470
2471
ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2472
if (ret)
2473
return ret;
2474
2475
ret = do_pkvm_init(hyp_va_bits);
2476
if (ret)
2477
return ret;
2478
2479
free_hyp_pgds();
2480
2481
return 0;
2482
}
2483
2484
static int init_pkvm_host_sve_state(void)
2485
{
2486
int cpu;
2487
2488
if (!system_supports_sve())
2489
return 0;
2490
2491
/* Allocate pages for host sve state in protected mode. */
2492
for_each_possible_cpu(cpu) {
2493
struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2494
2495
if (!page)
2496
return -ENOMEM;
2497
2498
per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2499
}
2500
2501
/*
2502
* Don't map the pages in hyp since these are only used in protected
2503
* mode, which will (re)create its own mapping when initialized.
2504
*/
2505
2506
return 0;
2507
}
2508
2509
/*
2510
* Finalizes the initialization of hyp mode, once everything else is initialized
2511
* and the initialziation process cannot fail.
2512
*/
2513
static void finalize_init_hyp_mode(void)
2514
{
2515
int cpu;
2516
2517
if (system_supports_sve() && is_protected_kvm_enabled()) {
2518
for_each_possible_cpu(cpu) {
2519
struct cpu_sve_state *sve_state;
2520
2521
sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2522
per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2523
kern_hyp_va(sve_state);
2524
}
2525
}
2526
}
2527
2528
static void pkvm_hyp_init_ptrauth(void)
2529
{
2530
struct kvm_cpu_context *hyp_ctxt;
2531
int cpu;
2532
2533
for_each_possible_cpu(cpu) {
2534
hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2535
hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2536
hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2537
hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2538
hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2539
hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2540
hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2541
hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2542
hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2543
hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2544
hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2545
}
2546
}
2547
2548
/* Inits Hyp-mode on all online CPUs */
2549
static int __init init_hyp_mode(void)
2550
{
2551
u32 hyp_va_bits;
2552
int cpu;
2553
int err = -ENOMEM;
2554
2555
/*
2556
* The protected Hyp-mode cannot be initialized if the memory pool
2557
* allocation has failed.
2558
*/
2559
if (is_protected_kvm_enabled() && !hyp_mem_base)
2560
goto out_err;
2561
2562
/*
2563
* Allocate Hyp PGD and setup Hyp identity mapping
2564
*/
2565
err = kvm_mmu_init(&hyp_va_bits);
2566
if (err)
2567
goto out_err;
2568
2569
/*
2570
* Allocate stack pages for Hypervisor-mode
2571
*/
2572
for_each_possible_cpu(cpu) {
2573
unsigned long stack_base;
2574
2575
stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2576
if (!stack_base) {
2577
err = -ENOMEM;
2578
goto out_err;
2579
}
2580
2581
per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2582
}
2583
2584
/*
2585
* Allocate and initialize pages for Hypervisor-mode percpu regions.
2586
*/
2587
for_each_possible_cpu(cpu) {
2588
struct page *page;
2589
void *page_addr;
2590
2591
page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2592
if (!page) {
2593
err = -ENOMEM;
2594
goto out_err;
2595
}
2596
2597
page_addr = page_address(page);
2598
memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2599
kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2600
}
2601
2602
/*
2603
* Map the Hyp-code called directly from the host
2604
*/
2605
err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2606
kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2607
if (err) {
2608
kvm_err("Cannot map world-switch code\n");
2609
goto out_err;
2610
}
2611
2612
err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2613
kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2614
if (err) {
2615
kvm_err("Cannot map .hyp.data section\n");
2616
goto out_err;
2617
}
2618
2619
err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2620
kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2621
if (err) {
2622
kvm_err("Cannot map .hyp.rodata section\n");
2623
goto out_err;
2624
}
2625
2626
err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2627
kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2628
if (err) {
2629
kvm_err("Cannot map rodata section\n");
2630
goto out_err;
2631
}
2632
2633
/*
2634
* .hyp.bss is guaranteed to be placed at the beginning of the .bss
2635
* section thanks to an assertion in the linker script. Map it RW and
2636
* the rest of .bss RO.
2637
*/
2638
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2639
kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2640
if (err) {
2641
kvm_err("Cannot map hyp bss section: %d\n", err);
2642
goto out_err;
2643
}
2644
2645
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2646
kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2647
if (err) {
2648
kvm_err("Cannot map bss section\n");
2649
goto out_err;
2650
}
2651
2652
/*
2653
* Map the Hyp stack pages
2654
*/
2655
for_each_possible_cpu(cpu) {
2656
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2657
char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2658
2659
err = create_hyp_stack(__pa(stack_base), &params->stack_hyp_va);
2660
if (err) {
2661
kvm_err("Cannot map hyp stack\n");
2662
goto out_err;
2663
}
2664
2665
/*
2666
* Save the stack PA in nvhe_init_params. This will be needed
2667
* to recreate the stack mapping in protected nVHE mode.
2668
* __hyp_pa() won't do the right thing there, since the stack
2669
* has been mapped in the flexible private VA space.
2670
*/
2671
params->stack_pa = __pa(stack_base);
2672
}
2673
2674
for_each_possible_cpu(cpu) {
2675
char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2676
char *percpu_end = percpu_begin + nvhe_percpu_size();
2677
2678
/* Map Hyp percpu pages */
2679
err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2680
if (err) {
2681
kvm_err("Cannot map hyp percpu region\n");
2682
goto out_err;
2683
}
2684
2685
/* Prepare the CPU initialization parameters */
2686
cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2687
}
2688
2689
kvm_hyp_init_symbols();
2690
2691
if (is_protected_kvm_enabled()) {
2692
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2693
cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2694
pkvm_hyp_init_ptrauth();
2695
2696
init_cpu_logical_map();
2697
2698
if (!init_psci_relay()) {
2699
err = -ENODEV;
2700
goto out_err;
2701
}
2702
2703
err = init_pkvm_host_sve_state();
2704
if (err)
2705
goto out_err;
2706
2707
err = kvm_hyp_init_protection(hyp_va_bits);
2708
if (err) {
2709
kvm_err("Failed to init hyp memory protection\n");
2710
goto out_err;
2711
}
2712
}
2713
2714
return 0;
2715
2716
out_err:
2717
teardown_hyp_mode();
2718
kvm_err("error initializing Hyp mode: %d\n", err);
2719
return err;
2720
}
2721
2722
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2723
{
2724
struct kvm_vcpu *vcpu = NULL;
2725
struct kvm_mpidr_data *data;
2726
unsigned long i;
2727
2728
mpidr &= MPIDR_HWID_BITMASK;
2729
2730
rcu_read_lock();
2731
data = rcu_dereference(kvm->arch.mpidr_data);
2732
2733
if (data) {
2734
u16 idx = kvm_mpidr_index(data, mpidr);
2735
2736
vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2737
if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2738
vcpu = NULL;
2739
}
2740
2741
rcu_read_unlock();
2742
2743
if (vcpu)
2744
return vcpu;
2745
2746
kvm_for_each_vcpu(i, vcpu, kvm) {
2747
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2748
return vcpu;
2749
}
2750
return NULL;
2751
}
2752
2753
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2754
{
2755
return irqchip_in_kernel(kvm);
2756
}
2757
2758
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2759
struct irq_bypass_producer *prod)
2760
{
2761
struct kvm_kernel_irqfd *irqfd =
2762
container_of(cons, struct kvm_kernel_irqfd, consumer);
2763
struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2764
2765
/*
2766
* The only thing we have a chance of directly-injecting is LPIs. Maybe
2767
* one day...
2768
*/
2769
if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2770
return 0;
2771
2772
return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2773
&irqfd->irq_entry);
2774
}
2775
2776
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2777
struct irq_bypass_producer *prod)
2778
{
2779
struct kvm_kernel_irqfd *irqfd =
2780
container_of(cons, struct kvm_kernel_irqfd, consumer);
2781
struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2782
2783
if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2784
return;
2785
2786
kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq);
2787
}
2788
2789
void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2790
struct kvm_kernel_irq_routing_entry *old,
2791
struct kvm_kernel_irq_routing_entry *new)
2792
{
2793
if (old->type == KVM_IRQ_ROUTING_MSI &&
2794
new->type == KVM_IRQ_ROUTING_MSI &&
2795
!memcmp(&old->msi, &new->msi, sizeof(new->msi)))
2796
return;
2797
2798
/*
2799
* Remapping the vLPI requires taking the its_lock mutex to resolve
2800
* the new translation. We're in spinlock land at this point, so no
2801
* chance of resolving the translation.
2802
*
2803
* Unmap the vLPI and fall back to software LPI injection.
2804
*/
2805
return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq);
2806
}
2807
2808
void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2809
{
2810
struct kvm_kernel_irqfd *irqfd =
2811
container_of(cons, struct kvm_kernel_irqfd, consumer);
2812
2813
kvm_arm_halt_guest(irqfd->kvm);
2814
}
2815
2816
void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2817
{
2818
struct kvm_kernel_irqfd *irqfd =
2819
container_of(cons, struct kvm_kernel_irqfd, consumer);
2820
2821
kvm_arm_resume_guest(irqfd->kvm);
2822
}
2823
2824
/* Initialize Hyp-mode and memory mappings on all CPUs */
2825
static __init int kvm_arm_init(void)
2826
{
2827
int err;
2828
bool in_hyp_mode;
2829
2830
if (!is_hyp_mode_available()) {
2831
kvm_info("HYP mode not available\n");
2832
return -ENODEV;
2833
}
2834
2835
if (kvm_get_mode() == KVM_MODE_NONE) {
2836
kvm_info("KVM disabled from command line\n");
2837
return -ENODEV;
2838
}
2839
2840
err = kvm_sys_reg_table_init();
2841
if (err) {
2842
kvm_info("Error initializing system register tables");
2843
return err;
2844
}
2845
2846
in_hyp_mode = is_kernel_in_hyp_mode();
2847
2848
if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2849
cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2850
kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2851
"Only trusted guests should be used on this system.\n");
2852
2853
err = kvm_set_ipa_limit();
2854
if (err)
2855
return err;
2856
2857
err = kvm_arm_init_sve();
2858
if (err)
2859
return err;
2860
2861
err = kvm_arm_vmid_alloc_init();
2862
if (err) {
2863
kvm_err("Failed to initialize VMID allocator.\n");
2864
return err;
2865
}
2866
2867
if (!in_hyp_mode) {
2868
err = init_hyp_mode();
2869
if (err)
2870
goto out_err;
2871
}
2872
2873
err = kvm_init_vector_slots();
2874
if (err) {
2875
kvm_err("Cannot initialise vector slots\n");
2876
goto out_hyp;
2877
}
2878
2879
err = init_subsystems();
2880
if (err)
2881
goto out_hyp;
2882
2883
kvm_info("%s%sVHE%s mode initialized successfully\n",
2884
in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2885
"Protected " : "Hyp "),
2886
in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2887
"h" : "n"),
2888
cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": "");
2889
2890
/*
2891
* FIXME: Do something reasonable if kvm_init() fails after pKVM
2892
* hypervisor protection is finalized.
2893
*/
2894
err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2895
if (err)
2896
goto out_subs;
2897
2898
/*
2899
* This should be called after initialization is done and failure isn't
2900
* possible anymore.
2901
*/
2902
if (!in_hyp_mode)
2903
finalize_init_hyp_mode();
2904
2905
kvm_arm_initialised = true;
2906
2907
return 0;
2908
2909
out_subs:
2910
teardown_subsystems();
2911
out_hyp:
2912
if (!in_hyp_mode)
2913
teardown_hyp_mode();
2914
out_err:
2915
kvm_arm_vmid_alloc_free();
2916
return err;
2917
}
2918
2919
static int __init early_kvm_mode_cfg(char *arg)
2920
{
2921
if (!arg)
2922
return -EINVAL;
2923
2924
if (strcmp(arg, "none") == 0) {
2925
kvm_mode = KVM_MODE_NONE;
2926
return 0;
2927
}
2928
2929
if (!is_hyp_mode_available()) {
2930
pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2931
return 0;
2932
}
2933
2934
if (strcmp(arg, "protected") == 0) {
2935
if (!is_kernel_in_hyp_mode())
2936
kvm_mode = KVM_MODE_PROTECTED;
2937
else
2938
pr_warn_once("Protected KVM not available with VHE\n");
2939
2940
return 0;
2941
}
2942
2943
if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2944
kvm_mode = KVM_MODE_DEFAULT;
2945
return 0;
2946
}
2947
2948
if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2949
kvm_mode = KVM_MODE_NV;
2950
return 0;
2951
}
2952
2953
return -EINVAL;
2954
}
2955
early_param("kvm-arm.mode", early_kvm_mode_cfg);
2956
2957
static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2958
{
2959
if (!arg)
2960
return -EINVAL;
2961
2962
if (strcmp(arg, "trap") == 0) {
2963
*p = KVM_WFX_TRAP;
2964
return 0;
2965
}
2966
2967
if (strcmp(arg, "notrap") == 0) {
2968
*p = KVM_WFX_NOTRAP;
2969
return 0;
2970
}
2971
2972
return -EINVAL;
2973
}
2974
2975
static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2976
{
2977
return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2978
}
2979
early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2980
2981
static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2982
{
2983
return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2984
}
2985
early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2986
2987
enum kvm_mode kvm_get_mode(void)
2988
{
2989
return kvm_mode;
2990
}
2991
2992
module_init(kvm_arm_init);
2993
2994