Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/riscv/kvm/vcpu.c
29521 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
4
*
5
* Authors:
6
* Anup Patel <[email protected]>
7
*/
8
9
#include <linux/bitops.h>
10
#include <linux/entry-kvm.h>
11
#include <linux/errno.h>
12
#include <linux/err.h>
13
#include <linux/kdebug.h>
14
#include <linux/module.h>
15
#include <linux/percpu.h>
16
#include <linux/vmalloc.h>
17
#include <linux/sched/signal.h>
18
#include <linux/fs.h>
19
#include <linux/kvm_host.h>
20
#include <asm/cacheflush.h>
21
#include <asm/kvm_mmu.h>
22
#include <asm/kvm_nacl.h>
23
#include <asm/kvm_vcpu_vector.h>
24
25
#define CREATE_TRACE_POINTS
26
#include "trace.h"
27
28
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
29
KVM_GENERIC_VCPU_STATS(),
30
STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
31
STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
32
STATS_DESC_COUNTER(VCPU, wrs_exit_stat),
33
STATS_DESC_COUNTER(VCPU, mmio_exit_user),
34
STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
35
STATS_DESC_COUNTER(VCPU, csr_exit_user),
36
STATS_DESC_COUNTER(VCPU, csr_exit_kernel),
37
STATS_DESC_COUNTER(VCPU, signal_exits),
38
STATS_DESC_COUNTER(VCPU, exits),
39
STATS_DESC_COUNTER(VCPU, instr_illegal_exits),
40
STATS_DESC_COUNTER(VCPU, load_misaligned_exits),
41
STATS_DESC_COUNTER(VCPU, store_misaligned_exits),
42
STATS_DESC_COUNTER(VCPU, load_access_exits),
43
STATS_DESC_COUNTER(VCPU, store_access_exits),
44
};
45
46
const struct kvm_stats_header kvm_vcpu_stats_header = {
47
.name_size = KVM_STATS_NAME_SIZE,
48
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
49
.id_offset = sizeof(struct kvm_stats_header),
50
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
51
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
52
sizeof(kvm_vcpu_stats_desc),
53
};
54
55
static void kvm_riscv_vcpu_context_reset(struct kvm_vcpu *vcpu,
56
bool kvm_sbi_reset)
57
{
58
struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
59
struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
60
void *vector_datap = cntx->vector.datap;
61
62
memset(cntx, 0, sizeof(*cntx));
63
memset(csr, 0, sizeof(*csr));
64
memset(&vcpu->arch.smstateen_csr, 0, sizeof(vcpu->arch.smstateen_csr));
65
66
/* Restore datap as it's not a part of the guest context. */
67
cntx->vector.datap = vector_datap;
68
69
if (kvm_sbi_reset)
70
kvm_riscv_vcpu_sbi_load_reset_state(vcpu);
71
72
/* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
73
cntx->sstatus = SR_SPP | SR_SPIE;
74
75
cntx->hstatus |= HSTATUS_VTW;
76
cntx->hstatus |= HSTATUS_SPVP;
77
cntx->hstatus |= HSTATUS_SPV;
78
}
79
80
static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu, bool kvm_sbi_reset)
81
{
82
bool loaded;
83
84
/**
85
* The preemption should be disabled here because it races with
86
* kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
87
* also calls vcpu_load/put.
88
*/
89
get_cpu();
90
loaded = (vcpu->cpu != -1);
91
if (loaded)
92
kvm_arch_vcpu_put(vcpu);
93
94
vcpu->arch.last_exit_cpu = -1;
95
96
kvm_riscv_vcpu_context_reset(vcpu, kvm_sbi_reset);
97
98
kvm_riscv_vcpu_fp_reset(vcpu);
99
100
kvm_riscv_vcpu_vector_reset(vcpu);
101
102
kvm_riscv_vcpu_timer_reset(vcpu);
103
104
kvm_riscv_vcpu_aia_reset(vcpu);
105
106
bitmap_zero(vcpu->arch.irqs_pending, KVM_RISCV_VCPU_NR_IRQS);
107
bitmap_zero(vcpu->arch.irqs_pending_mask, KVM_RISCV_VCPU_NR_IRQS);
108
109
kvm_riscv_vcpu_pmu_reset(vcpu);
110
111
vcpu->arch.hfence_head = 0;
112
vcpu->arch.hfence_tail = 0;
113
memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue));
114
115
kvm_riscv_vcpu_sbi_reset(vcpu);
116
117
/* Reset the guest CSRs for hotplug usecase */
118
if (loaded)
119
kvm_arch_vcpu_load(vcpu, smp_processor_id());
120
put_cpu();
121
}
122
123
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
124
{
125
return 0;
126
}
127
128
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
129
{
130
int rc;
131
132
spin_lock_init(&vcpu->arch.mp_state_lock);
133
134
/* Mark this VCPU never ran */
135
vcpu->arch.ran_atleast_once = false;
136
137
vcpu->arch.cfg.hedeleg = KVM_HEDELEG_DEFAULT;
138
vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
139
bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX);
140
141
/* Setup ISA features available to VCPU */
142
kvm_riscv_vcpu_setup_isa(vcpu);
143
144
/* Setup vendor, arch, and implementation details */
145
vcpu->arch.mvendorid = sbi_get_mvendorid();
146
vcpu->arch.marchid = sbi_get_marchid();
147
vcpu->arch.mimpid = sbi_get_mimpid();
148
149
/* Setup VCPU hfence queue */
150
spin_lock_init(&vcpu->arch.hfence_lock);
151
152
spin_lock_init(&vcpu->arch.reset_state.lock);
153
154
rc = kvm_riscv_vcpu_alloc_vector_context(vcpu);
155
if (rc)
156
return rc;
157
158
/* Setup VCPU timer */
159
kvm_riscv_vcpu_timer_init(vcpu);
160
161
/* setup performance monitoring */
162
kvm_riscv_vcpu_pmu_init(vcpu);
163
164
/* Setup VCPU AIA */
165
kvm_riscv_vcpu_aia_init(vcpu);
166
167
/*
168
* Setup SBI extensions
169
* NOTE: This must be the last thing to be initialized.
170
*/
171
kvm_riscv_vcpu_sbi_init(vcpu);
172
173
/* Reset VCPU */
174
kvm_riscv_reset_vcpu(vcpu, false);
175
176
return 0;
177
}
178
179
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
180
{
181
/**
182
* vcpu with id 0 is the designated boot cpu.
183
* Keep all vcpus with non-zero id in power-off state so that
184
* they can be brought up using SBI HSM extension.
185
*/
186
if (vcpu->vcpu_idx != 0)
187
kvm_riscv_vcpu_power_off(vcpu);
188
}
189
190
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
191
{
192
kvm_riscv_vcpu_sbi_deinit(vcpu);
193
194
/* Cleanup VCPU AIA context */
195
kvm_riscv_vcpu_aia_deinit(vcpu);
196
197
/* Cleanup VCPU timer */
198
kvm_riscv_vcpu_timer_deinit(vcpu);
199
200
kvm_riscv_vcpu_pmu_deinit(vcpu);
201
202
/* Free unused pages pre-allocated for G-stage page table mappings */
203
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
204
205
/* Free vector context space for host and guest kernel */
206
kvm_riscv_vcpu_free_vector_context(vcpu);
207
}
208
209
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
210
{
211
return kvm_riscv_vcpu_timer_pending(vcpu);
212
}
213
214
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
215
{
216
return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
217
!kvm_riscv_vcpu_stopped(vcpu) && !vcpu->arch.pause);
218
}
219
220
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
221
{
222
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
223
}
224
225
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
226
{
227
return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
228
}
229
230
#ifdef CONFIG_GUEST_PERF_EVENTS
231
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
232
{
233
return vcpu->arch.guest_context.sepc;
234
}
235
#endif
236
237
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
238
{
239
return VM_FAULT_SIGBUS;
240
}
241
242
long kvm_arch_vcpu_async_ioctl(struct file *filp,
243
unsigned int ioctl, unsigned long arg)
244
{
245
struct kvm_vcpu *vcpu = filp->private_data;
246
void __user *argp = (void __user *)arg;
247
248
if (ioctl == KVM_INTERRUPT) {
249
struct kvm_interrupt irq;
250
251
if (copy_from_user(&irq, argp, sizeof(irq)))
252
return -EFAULT;
253
254
if (irq.irq == KVM_INTERRUPT_SET)
255
return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
256
else
257
return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
258
}
259
260
return -ENOIOCTLCMD;
261
}
262
263
long kvm_arch_vcpu_ioctl(struct file *filp,
264
unsigned int ioctl, unsigned long arg)
265
{
266
struct kvm_vcpu *vcpu = filp->private_data;
267
void __user *argp = (void __user *)arg;
268
long r = -EINVAL;
269
270
switch (ioctl) {
271
case KVM_SET_ONE_REG:
272
case KVM_GET_ONE_REG: {
273
struct kvm_one_reg reg;
274
275
r = -EFAULT;
276
if (copy_from_user(&reg, argp, sizeof(reg)))
277
break;
278
279
if (ioctl == KVM_SET_ONE_REG)
280
r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
281
else
282
r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
283
break;
284
}
285
case KVM_GET_REG_LIST: {
286
struct kvm_reg_list __user *user_list = argp;
287
struct kvm_reg_list reg_list;
288
unsigned int n;
289
290
r = -EFAULT;
291
if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
292
break;
293
n = reg_list.n;
294
reg_list.n = kvm_riscv_vcpu_num_regs(vcpu);
295
if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
296
break;
297
r = -E2BIG;
298
if (n < reg_list.n)
299
break;
300
r = kvm_riscv_vcpu_copy_reg_indices(vcpu, user_list->reg);
301
break;
302
}
303
default:
304
break;
305
}
306
307
return r;
308
}
309
310
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
311
struct kvm_sregs *sregs)
312
{
313
return -EINVAL;
314
}
315
316
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
317
struct kvm_sregs *sregs)
318
{
319
return -EINVAL;
320
}
321
322
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
323
{
324
return -EINVAL;
325
}
326
327
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
328
{
329
return -EINVAL;
330
}
331
332
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
333
struct kvm_translation *tr)
334
{
335
return -EINVAL;
336
}
337
338
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
339
{
340
return -EINVAL;
341
}
342
343
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
344
{
345
return -EINVAL;
346
}
347
348
void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
349
{
350
struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
351
unsigned long mask, val;
352
353
if (READ_ONCE(vcpu->arch.irqs_pending_mask[0])) {
354
mask = xchg_acquire(&vcpu->arch.irqs_pending_mask[0], 0);
355
val = READ_ONCE(vcpu->arch.irqs_pending[0]) & mask;
356
357
csr->hvip &= ~mask;
358
csr->hvip |= val;
359
}
360
361
/* Flush AIA high interrupts */
362
kvm_riscv_vcpu_aia_flush_interrupts(vcpu);
363
}
364
365
void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
366
{
367
unsigned long hvip;
368
struct kvm_vcpu_arch *v = &vcpu->arch;
369
struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
370
371
/* Read current HVIP and VSIE CSRs */
372
csr->vsie = ncsr_read(CSR_VSIE);
373
374
/* Sync-up HVIP.VSSIP bit changes does by Guest */
375
hvip = ncsr_read(CSR_HVIP);
376
if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
377
if (hvip & (1UL << IRQ_VS_SOFT)) {
378
if (!test_and_set_bit(IRQ_VS_SOFT,
379
v->irqs_pending_mask))
380
set_bit(IRQ_VS_SOFT, v->irqs_pending);
381
} else {
382
if (!test_and_set_bit(IRQ_VS_SOFT,
383
v->irqs_pending_mask))
384
clear_bit(IRQ_VS_SOFT, v->irqs_pending);
385
}
386
}
387
388
/* Sync up the HVIP.LCOFIP bit changes (only clear) by the guest */
389
if ((csr->hvip ^ hvip) & (1UL << IRQ_PMU_OVF)) {
390
if (!(hvip & (1UL << IRQ_PMU_OVF)) &&
391
!test_and_set_bit(IRQ_PMU_OVF, v->irqs_pending_mask))
392
clear_bit(IRQ_PMU_OVF, v->irqs_pending);
393
}
394
395
/* Sync-up AIA high interrupts */
396
kvm_riscv_vcpu_aia_sync_interrupts(vcpu);
397
398
/* Sync-up timer CSRs */
399
kvm_riscv_vcpu_timer_sync(vcpu);
400
}
401
402
int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
403
{
404
/*
405
* We only allow VS-mode software, timer, and external
406
* interrupts when irq is one of the local interrupts
407
* defined by RISC-V privilege specification.
408
*/
409
if (irq < IRQ_LOCAL_MAX &&
410
irq != IRQ_VS_SOFT &&
411
irq != IRQ_VS_TIMER &&
412
irq != IRQ_VS_EXT &&
413
irq != IRQ_PMU_OVF)
414
return -EINVAL;
415
416
set_bit(irq, vcpu->arch.irqs_pending);
417
smp_mb__before_atomic();
418
set_bit(irq, vcpu->arch.irqs_pending_mask);
419
420
kvm_vcpu_kick(vcpu);
421
422
return 0;
423
}
424
425
int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
426
{
427
/*
428
* We only allow VS-mode software, timer, counter overflow and external
429
* interrupts when irq is one of the local interrupts
430
* defined by RISC-V privilege specification.
431
*/
432
if (irq < IRQ_LOCAL_MAX &&
433
irq != IRQ_VS_SOFT &&
434
irq != IRQ_VS_TIMER &&
435
irq != IRQ_VS_EXT &&
436
irq != IRQ_PMU_OVF)
437
return -EINVAL;
438
439
clear_bit(irq, vcpu->arch.irqs_pending);
440
smp_mb__before_atomic();
441
set_bit(irq, vcpu->arch.irqs_pending_mask);
442
443
return 0;
444
}
445
446
bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, u64 mask)
447
{
448
unsigned long ie;
449
450
ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
451
<< VSIP_TO_HVIP_SHIFT) & (unsigned long)mask;
452
ie |= vcpu->arch.guest_csr.vsie & ~IRQ_LOCAL_MASK &
453
(unsigned long)mask;
454
if (READ_ONCE(vcpu->arch.irqs_pending[0]) & ie)
455
return true;
456
457
/* Check AIA high interrupts */
458
return kvm_riscv_vcpu_aia_has_interrupts(vcpu, mask);
459
}
460
461
void __kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
462
{
463
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
464
kvm_make_request(KVM_REQ_SLEEP, vcpu);
465
kvm_vcpu_kick(vcpu);
466
}
467
468
void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
469
{
470
spin_lock(&vcpu->arch.mp_state_lock);
471
__kvm_riscv_vcpu_power_off(vcpu);
472
spin_unlock(&vcpu->arch.mp_state_lock);
473
}
474
475
void __kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
476
{
477
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
478
kvm_vcpu_wake_up(vcpu);
479
}
480
481
void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
482
{
483
spin_lock(&vcpu->arch.mp_state_lock);
484
__kvm_riscv_vcpu_power_on(vcpu);
485
spin_unlock(&vcpu->arch.mp_state_lock);
486
}
487
488
bool kvm_riscv_vcpu_stopped(struct kvm_vcpu *vcpu)
489
{
490
return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
491
}
492
493
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
494
struct kvm_mp_state *mp_state)
495
{
496
*mp_state = READ_ONCE(vcpu->arch.mp_state);
497
498
return 0;
499
}
500
501
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
502
struct kvm_mp_state *mp_state)
503
{
504
int ret = 0;
505
506
spin_lock(&vcpu->arch.mp_state_lock);
507
508
switch (mp_state->mp_state) {
509
case KVM_MP_STATE_RUNNABLE:
510
WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
511
break;
512
case KVM_MP_STATE_STOPPED:
513
__kvm_riscv_vcpu_power_off(vcpu);
514
break;
515
case KVM_MP_STATE_INIT_RECEIVED:
516
if (vcpu->kvm->arch.mp_state_reset)
517
kvm_riscv_reset_vcpu(vcpu, false);
518
else
519
ret = -EINVAL;
520
break;
521
default:
522
ret = -EINVAL;
523
}
524
525
spin_unlock(&vcpu->arch.mp_state_lock);
526
527
return ret;
528
}
529
530
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
531
struct kvm_guest_debug *dbg)
532
{
533
if (dbg->control & KVM_GUESTDBG_ENABLE) {
534
vcpu->guest_debug = dbg->control;
535
vcpu->arch.cfg.hedeleg &= ~BIT(EXC_BREAKPOINT);
536
} else {
537
vcpu->guest_debug = 0;
538
vcpu->arch.cfg.hedeleg |= BIT(EXC_BREAKPOINT);
539
}
540
541
return 0;
542
}
543
544
static void kvm_riscv_vcpu_setup_config(struct kvm_vcpu *vcpu)
545
{
546
const unsigned long *isa = vcpu->arch.isa;
547
struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
548
549
if (riscv_isa_extension_available(isa, SVPBMT))
550
cfg->henvcfg |= ENVCFG_PBMTE;
551
552
if (riscv_isa_extension_available(isa, SSTC))
553
cfg->henvcfg |= ENVCFG_STCE;
554
555
if (riscv_isa_extension_available(isa, ZICBOM))
556
cfg->henvcfg |= (ENVCFG_CBIE | ENVCFG_CBCFE);
557
558
if (riscv_isa_extension_available(isa, ZICBOZ))
559
cfg->henvcfg |= ENVCFG_CBZE;
560
561
if (riscv_isa_extension_available(isa, SVADU) &&
562
!riscv_isa_extension_available(isa, SVADE))
563
cfg->henvcfg |= ENVCFG_ADUE;
564
565
if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
566
cfg->hstateen0 |= SMSTATEEN0_HSENVCFG;
567
if (riscv_isa_extension_available(isa, SSAIA))
568
cfg->hstateen0 |= SMSTATEEN0_AIA_IMSIC |
569
SMSTATEEN0_AIA |
570
SMSTATEEN0_AIA_ISEL;
571
if (riscv_isa_extension_available(isa, SMSTATEEN))
572
cfg->hstateen0 |= SMSTATEEN0_SSTATEEN0;
573
}
574
575
if (vcpu->guest_debug)
576
cfg->hedeleg &= ~BIT(EXC_BREAKPOINT);
577
}
578
579
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
580
{
581
void *nsh;
582
struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
583
struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
584
585
if (kvm_riscv_nacl_sync_csr_available()) {
586
nsh = nacl_shmem();
587
nacl_csr_write(nsh, CSR_VSSTATUS, csr->vsstatus);
588
nacl_csr_write(nsh, CSR_VSIE, csr->vsie);
589
nacl_csr_write(nsh, CSR_VSTVEC, csr->vstvec);
590
nacl_csr_write(nsh, CSR_VSSCRATCH, csr->vsscratch);
591
nacl_csr_write(nsh, CSR_VSEPC, csr->vsepc);
592
nacl_csr_write(nsh, CSR_VSCAUSE, csr->vscause);
593
nacl_csr_write(nsh, CSR_VSTVAL, csr->vstval);
594
nacl_csr_write(nsh, CSR_HEDELEG, cfg->hedeleg);
595
nacl_csr_write(nsh, CSR_HVIP, csr->hvip);
596
nacl_csr_write(nsh, CSR_VSATP, csr->vsatp);
597
nacl_csr_write(nsh, CSR_HENVCFG, cfg->henvcfg);
598
if (IS_ENABLED(CONFIG_32BIT))
599
nacl_csr_write(nsh, CSR_HENVCFGH, cfg->henvcfg >> 32);
600
if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
601
nacl_csr_write(nsh, CSR_HSTATEEN0, cfg->hstateen0);
602
if (IS_ENABLED(CONFIG_32BIT))
603
nacl_csr_write(nsh, CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
604
}
605
} else {
606
csr_write(CSR_VSSTATUS, csr->vsstatus);
607
csr_write(CSR_VSIE, csr->vsie);
608
csr_write(CSR_VSTVEC, csr->vstvec);
609
csr_write(CSR_VSSCRATCH, csr->vsscratch);
610
csr_write(CSR_VSEPC, csr->vsepc);
611
csr_write(CSR_VSCAUSE, csr->vscause);
612
csr_write(CSR_VSTVAL, csr->vstval);
613
csr_write(CSR_HEDELEG, cfg->hedeleg);
614
csr_write(CSR_HVIP, csr->hvip);
615
csr_write(CSR_VSATP, csr->vsatp);
616
csr_write(CSR_HENVCFG, cfg->henvcfg);
617
if (IS_ENABLED(CONFIG_32BIT))
618
csr_write(CSR_HENVCFGH, cfg->henvcfg >> 32);
619
if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
620
csr_write(CSR_HSTATEEN0, cfg->hstateen0);
621
if (IS_ENABLED(CONFIG_32BIT))
622
csr_write(CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
623
}
624
}
625
626
kvm_riscv_mmu_update_hgatp(vcpu);
627
628
kvm_riscv_vcpu_timer_restore(vcpu);
629
630
kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
631
kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
632
vcpu->arch.isa);
633
kvm_riscv_vcpu_host_vector_save(&vcpu->arch.host_context);
634
kvm_riscv_vcpu_guest_vector_restore(&vcpu->arch.guest_context,
635
vcpu->arch.isa);
636
637
kvm_riscv_vcpu_aia_load(vcpu, cpu);
638
639
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
640
641
vcpu->cpu = cpu;
642
}
643
644
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
645
{
646
void *nsh;
647
struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
648
649
vcpu->cpu = -1;
650
651
kvm_riscv_vcpu_aia_put(vcpu);
652
653
kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
654
vcpu->arch.isa);
655
kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
656
657
kvm_riscv_vcpu_timer_save(vcpu);
658
kvm_riscv_vcpu_guest_vector_save(&vcpu->arch.guest_context,
659
vcpu->arch.isa);
660
kvm_riscv_vcpu_host_vector_restore(&vcpu->arch.host_context);
661
662
if (kvm_riscv_nacl_available()) {
663
nsh = nacl_shmem();
664
csr->vsstatus = nacl_csr_read(nsh, CSR_VSSTATUS);
665
csr->vsie = nacl_csr_read(nsh, CSR_VSIE);
666
csr->vstvec = nacl_csr_read(nsh, CSR_VSTVEC);
667
csr->vsscratch = nacl_csr_read(nsh, CSR_VSSCRATCH);
668
csr->vsepc = nacl_csr_read(nsh, CSR_VSEPC);
669
csr->vscause = nacl_csr_read(nsh, CSR_VSCAUSE);
670
csr->vstval = nacl_csr_read(nsh, CSR_VSTVAL);
671
csr->hvip = nacl_csr_read(nsh, CSR_HVIP);
672
csr->vsatp = nacl_csr_read(nsh, CSR_VSATP);
673
} else {
674
csr->vsstatus = csr_read(CSR_VSSTATUS);
675
csr->vsie = csr_read(CSR_VSIE);
676
csr->vstvec = csr_read(CSR_VSTVEC);
677
csr->vsscratch = csr_read(CSR_VSSCRATCH);
678
csr->vsepc = csr_read(CSR_VSEPC);
679
csr->vscause = csr_read(CSR_VSCAUSE);
680
csr->vstval = csr_read(CSR_VSTVAL);
681
csr->hvip = csr_read(CSR_HVIP);
682
csr->vsatp = csr_read(CSR_VSATP);
683
}
684
}
685
686
/**
687
* kvm_riscv_check_vcpu_requests - check and handle pending vCPU requests
688
* @vcpu: the VCPU pointer
689
*
690
* Return: 1 if we should enter the guest
691
* 0 if we should exit to userspace
692
*/
693
static int kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
694
{
695
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
696
697
if (kvm_request_pending(vcpu)) {
698
if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
699
kvm_vcpu_srcu_read_unlock(vcpu);
700
rcuwait_wait_event(wait,
701
(!kvm_riscv_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
702
TASK_INTERRUPTIBLE);
703
kvm_vcpu_srcu_read_lock(vcpu);
704
705
if (kvm_riscv_vcpu_stopped(vcpu) || vcpu->arch.pause) {
706
/*
707
* Awaken to handle a signal, request to
708
* sleep again later.
709
*/
710
kvm_make_request(KVM_REQ_SLEEP, vcpu);
711
}
712
}
713
714
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
715
kvm_riscv_reset_vcpu(vcpu, true);
716
717
if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
718
kvm_riscv_mmu_update_hgatp(vcpu);
719
720
if (kvm_check_request(KVM_REQ_FENCE_I, vcpu))
721
kvm_riscv_fence_i_process(vcpu);
722
723
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
724
kvm_riscv_tlb_flush_process(vcpu);
725
726
if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu))
727
kvm_riscv_hfence_vvma_all_process(vcpu);
728
729
if (kvm_check_request(KVM_REQ_HFENCE, vcpu))
730
kvm_riscv_hfence_process(vcpu);
731
732
if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
733
kvm_riscv_vcpu_record_steal_time(vcpu);
734
735
if (kvm_dirty_ring_check_request(vcpu))
736
return 0;
737
}
738
739
return 1;
740
}
741
742
static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
743
{
744
struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
745
746
ncsr_write(CSR_HVIP, csr->hvip);
747
kvm_riscv_vcpu_aia_update_hvip(vcpu);
748
}
749
750
static __always_inline void kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu *vcpu)
751
{
752
struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
753
struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
754
struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
755
756
vcpu->arch.host_scounteren = csr_swap(CSR_SCOUNTEREN, csr->scounteren);
757
vcpu->arch.host_senvcfg = csr_swap(CSR_SENVCFG, csr->senvcfg);
758
if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
759
(cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
760
vcpu->arch.host_sstateen0 = csr_swap(CSR_SSTATEEN0,
761
smcsr->sstateen0);
762
}
763
764
static __always_inline void kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu *vcpu)
765
{
766
struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
767
struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
768
struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
769
770
csr->scounteren = csr_swap(CSR_SCOUNTEREN, vcpu->arch.host_scounteren);
771
csr->senvcfg = csr_swap(CSR_SENVCFG, vcpu->arch.host_senvcfg);
772
if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
773
(cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
774
smcsr->sstateen0 = csr_swap(CSR_SSTATEEN0,
775
vcpu->arch.host_sstateen0);
776
}
777
778
/*
779
* Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
780
* the vCPU is running.
781
*
782
* This must be noinstr as instrumentation may make use of RCU, and this is not
783
* safe during the EQS.
784
*/
785
static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu,
786
struct kvm_cpu_trap *trap)
787
{
788
void *nsh;
789
struct kvm_cpu_context *gcntx = &vcpu->arch.guest_context;
790
struct kvm_cpu_context *hcntx = &vcpu->arch.host_context;
791
792
/*
793
* We save trap CSRs (such as SEPC, SCAUSE, STVAL, HTVAL, and
794
* HTINST) here because we do local_irq_enable() after this
795
* function in kvm_arch_vcpu_ioctl_run() which can result in
796
* an interrupt immediately after local_irq_enable() and can
797
* potentially change trap CSRs.
798
*/
799
800
kvm_riscv_vcpu_swap_in_guest_state(vcpu);
801
guest_state_enter_irqoff();
802
803
if (kvm_riscv_nacl_sync_sret_available()) {
804
nsh = nacl_shmem();
805
806
if (kvm_riscv_nacl_autoswap_csr_available()) {
807
hcntx->hstatus =
808
nacl_csr_read(nsh, CSR_HSTATUS);
809
nacl_scratch_write_long(nsh,
810
SBI_NACL_SHMEM_AUTOSWAP_OFFSET +
811
SBI_NACL_SHMEM_AUTOSWAP_HSTATUS,
812
gcntx->hstatus);
813
nacl_scratch_write_long(nsh,
814
SBI_NACL_SHMEM_AUTOSWAP_OFFSET,
815
SBI_NACL_SHMEM_AUTOSWAP_FLAG_HSTATUS);
816
} else if (kvm_riscv_nacl_sync_csr_available()) {
817
hcntx->hstatus = nacl_csr_swap(nsh,
818
CSR_HSTATUS, gcntx->hstatus);
819
} else {
820
hcntx->hstatus = csr_swap(CSR_HSTATUS, gcntx->hstatus);
821
}
822
823
nacl_scratch_write_longs(nsh,
824
SBI_NACL_SHMEM_SRET_OFFSET +
825
SBI_NACL_SHMEM_SRET_X(1),
826
&gcntx->ra,
827
SBI_NACL_SHMEM_SRET_X_LAST);
828
829
__kvm_riscv_nacl_switch_to(&vcpu->arch, SBI_EXT_NACL,
830
SBI_EXT_NACL_SYNC_SRET);
831
832
if (kvm_riscv_nacl_autoswap_csr_available()) {
833
nacl_scratch_write_long(nsh,
834
SBI_NACL_SHMEM_AUTOSWAP_OFFSET,
835
0);
836
gcntx->hstatus = nacl_scratch_read_long(nsh,
837
SBI_NACL_SHMEM_AUTOSWAP_OFFSET +
838
SBI_NACL_SHMEM_AUTOSWAP_HSTATUS);
839
} else {
840
gcntx->hstatus = csr_swap(CSR_HSTATUS, hcntx->hstatus);
841
}
842
843
trap->htval = nacl_csr_read(nsh, CSR_HTVAL);
844
trap->htinst = nacl_csr_read(nsh, CSR_HTINST);
845
} else {
846
hcntx->hstatus = csr_swap(CSR_HSTATUS, gcntx->hstatus);
847
848
__kvm_riscv_switch_to(&vcpu->arch);
849
850
gcntx->hstatus = csr_swap(CSR_HSTATUS, hcntx->hstatus);
851
852
trap->htval = csr_read(CSR_HTVAL);
853
trap->htinst = csr_read(CSR_HTINST);
854
}
855
856
trap->sepc = gcntx->sepc;
857
trap->scause = csr_read(CSR_SCAUSE);
858
trap->stval = csr_read(CSR_STVAL);
859
860
vcpu->arch.last_exit_cpu = vcpu->cpu;
861
guest_state_exit_irqoff();
862
kvm_riscv_vcpu_swap_in_host_state(vcpu);
863
}
864
865
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
866
{
867
int ret;
868
struct kvm_cpu_trap trap;
869
struct kvm_run *run = vcpu->run;
870
871
if (!vcpu->arch.ran_atleast_once)
872
kvm_riscv_vcpu_setup_config(vcpu);
873
874
/* Mark this VCPU ran at least once */
875
vcpu->arch.ran_atleast_once = true;
876
877
kvm_vcpu_srcu_read_lock(vcpu);
878
879
switch (run->exit_reason) {
880
case KVM_EXIT_MMIO:
881
/* Process MMIO value returned from user-space */
882
ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
883
break;
884
case KVM_EXIT_RISCV_SBI:
885
/* Process SBI value returned from user-space */
886
ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
887
break;
888
case KVM_EXIT_RISCV_CSR:
889
/* Process CSR value returned from user-space */
890
ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run);
891
break;
892
default:
893
ret = 0;
894
break;
895
}
896
if (ret) {
897
kvm_vcpu_srcu_read_unlock(vcpu);
898
return ret;
899
}
900
901
if (!vcpu->wants_to_run) {
902
kvm_vcpu_srcu_read_unlock(vcpu);
903
return -EINTR;
904
}
905
906
vcpu_load(vcpu);
907
908
kvm_sigset_activate(vcpu);
909
910
ret = 1;
911
run->exit_reason = KVM_EXIT_UNKNOWN;
912
while (ret > 0) {
913
/* Check conditions before entering the guest */
914
ret = xfer_to_guest_mode_handle_work(vcpu);
915
if (ret)
916
continue;
917
ret = 1;
918
919
kvm_riscv_gstage_vmid_update(vcpu);
920
921
ret = kvm_riscv_check_vcpu_requests(vcpu);
922
if (ret <= 0)
923
continue;
924
925
preempt_disable();
926
927
/* Update AIA HW state before entering guest */
928
ret = kvm_riscv_vcpu_aia_update(vcpu);
929
if (ret <= 0) {
930
preempt_enable();
931
continue;
932
}
933
934
local_irq_disable();
935
936
/*
937
* Ensure we set mode to IN_GUEST_MODE after we disable
938
* interrupts and before the final VCPU requests check.
939
* See the comment in kvm_vcpu_exiting_guest_mode() and
940
* Documentation/virt/kvm/vcpu-requests.rst
941
*/
942
vcpu->mode = IN_GUEST_MODE;
943
944
kvm_vcpu_srcu_read_unlock(vcpu);
945
smp_mb__after_srcu_read_unlock();
946
947
/*
948
* We might have got VCPU interrupts updated asynchronously
949
* so update it in HW.
950
*/
951
kvm_riscv_vcpu_flush_interrupts(vcpu);
952
953
/* Update HVIP CSR for current CPU */
954
kvm_riscv_update_hvip(vcpu);
955
956
if (kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
957
kvm_request_pending(vcpu) ||
958
xfer_to_guest_mode_work_pending()) {
959
vcpu->mode = OUTSIDE_GUEST_MODE;
960
local_irq_enable();
961
preempt_enable();
962
kvm_vcpu_srcu_read_lock(vcpu);
963
continue;
964
}
965
966
/*
967
* Sanitize VMID mappings cached (TLB) on current CPU
968
*
969
* Note: This should be done after G-stage VMID has been
970
* updated using kvm_riscv_gstage_vmid_ver_changed()
971
*/
972
kvm_riscv_gstage_vmid_sanitize(vcpu);
973
974
trace_kvm_entry(vcpu);
975
976
guest_timing_enter_irqoff();
977
978
kvm_riscv_vcpu_enter_exit(vcpu, &trap);
979
980
vcpu->mode = OUTSIDE_GUEST_MODE;
981
vcpu->stat.exits++;
982
983
/* Syncup interrupts state with HW */
984
kvm_riscv_vcpu_sync_interrupts(vcpu);
985
986
/*
987
* We must ensure that any pending interrupts are taken before
988
* we exit guest timing so that timer ticks are accounted as
989
* guest time. Transiently unmask interrupts so that any
990
* pending interrupts are taken.
991
*
992
* There's no barrier which ensures that pending interrupts are
993
* recognised, so we just hope that the CPU takes any pending
994
* interrupts between the enable and disable.
995
*/
996
local_irq_enable();
997
local_irq_disable();
998
999
guest_timing_exit_irqoff();
1000
1001
local_irq_enable();
1002
1003
trace_kvm_exit(&trap);
1004
1005
preempt_enable();
1006
1007
kvm_vcpu_srcu_read_lock(vcpu);
1008
1009
ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
1010
}
1011
1012
kvm_sigset_deactivate(vcpu);
1013
1014
vcpu_put(vcpu);
1015
1016
kvm_vcpu_srcu_read_unlock(vcpu);
1017
1018
return ret;
1019
}
1020
1021