Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/kvm/interrupt.c
29521 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* handling kvm guest interrupts
4
*
5
* Copyright IBM Corp. 2008, 2020
6
*
7
* Author(s): Carsten Otte <[email protected]>
8
*/
9
10
#define KMSG_COMPONENT "kvm-s390"
11
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12
13
#include <linux/cpufeature.h>
14
#include <linux/interrupt.h>
15
#include <linux/kvm_host.h>
16
#include <linux/hrtimer.h>
17
#include <linux/export.h>
18
#include <linux/mmu_context.h>
19
#include <linux/nospec.h>
20
#include <linux/signal.h>
21
#include <linux/slab.h>
22
#include <linux/bitmap.h>
23
#include <linux/vmalloc.h>
24
#include <asm/access-regs.h>
25
#include <asm/asm-offsets.h>
26
#include <asm/dis.h>
27
#include <linux/uaccess.h>
28
#include <asm/sclp.h>
29
#include <asm/isc.h>
30
#include <asm/gmap.h>
31
#include <asm/nmi.h>
32
#include <asm/airq.h>
33
#include <asm/tpi.h>
34
#include "kvm-s390.h"
35
#include "gaccess.h"
36
#include "trace-s390.h"
37
#include "pci.h"
38
39
#define PFAULT_INIT 0x0600
40
#define PFAULT_DONE 0x0680
41
#define VIRTIO_PARAM 0x0d00
42
43
static struct kvm_s390_gib *gib;
44
45
/* handle external calls via sigp interpretation facility */
46
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
47
{
48
int c, scn;
49
50
if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
51
return 0;
52
53
BUG_ON(!kvm_s390_use_sca_entries());
54
read_lock(&vcpu->kvm->arch.sca_lock);
55
if (vcpu->kvm->arch.use_esca) {
56
struct esca_block *sca = vcpu->kvm->arch.sca;
57
union esca_sigp_ctrl sigp_ctrl =
58
sca->cpu[vcpu->vcpu_id].sigp_ctrl;
59
60
c = sigp_ctrl.c;
61
scn = sigp_ctrl.scn;
62
} else {
63
struct bsca_block *sca = vcpu->kvm->arch.sca;
64
union bsca_sigp_ctrl sigp_ctrl =
65
sca->cpu[vcpu->vcpu_id].sigp_ctrl;
66
67
c = sigp_ctrl.c;
68
scn = sigp_ctrl.scn;
69
}
70
read_unlock(&vcpu->kvm->arch.sca_lock);
71
72
if (src_id)
73
*src_id = scn;
74
75
return c;
76
}
77
78
static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
79
{
80
int expect, rc;
81
82
BUG_ON(!kvm_s390_use_sca_entries());
83
read_lock(&vcpu->kvm->arch.sca_lock);
84
if (vcpu->kvm->arch.use_esca) {
85
struct esca_block *sca = vcpu->kvm->arch.sca;
86
union esca_sigp_ctrl *sigp_ctrl =
87
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
88
union esca_sigp_ctrl new_val = {0}, old_val;
89
90
old_val = READ_ONCE(*sigp_ctrl);
91
new_val.scn = src_id;
92
new_val.c = 1;
93
old_val.c = 0;
94
95
expect = old_val.value;
96
rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
97
} else {
98
struct bsca_block *sca = vcpu->kvm->arch.sca;
99
union bsca_sigp_ctrl *sigp_ctrl =
100
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
101
union bsca_sigp_ctrl new_val = {0}, old_val;
102
103
old_val = READ_ONCE(*sigp_ctrl);
104
new_val.scn = src_id;
105
new_val.c = 1;
106
old_val.c = 0;
107
108
expect = old_val.value;
109
rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
110
}
111
read_unlock(&vcpu->kvm->arch.sca_lock);
112
113
if (rc != expect) {
114
/* another external call is pending */
115
return -EBUSY;
116
}
117
kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
118
return 0;
119
}
120
121
static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
122
{
123
if (!kvm_s390_use_sca_entries())
124
return;
125
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
126
read_lock(&vcpu->kvm->arch.sca_lock);
127
if (vcpu->kvm->arch.use_esca) {
128
struct esca_block *sca = vcpu->kvm->arch.sca;
129
union esca_sigp_ctrl *sigp_ctrl =
130
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
131
132
WRITE_ONCE(sigp_ctrl->value, 0);
133
} else {
134
struct bsca_block *sca = vcpu->kvm->arch.sca;
135
union bsca_sigp_ctrl *sigp_ctrl =
136
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
137
138
WRITE_ONCE(sigp_ctrl->value, 0);
139
}
140
read_unlock(&vcpu->kvm->arch.sca_lock);
141
}
142
143
int psw_extint_disabled(struct kvm_vcpu *vcpu)
144
{
145
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
146
}
147
148
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
149
{
150
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
151
}
152
153
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
154
{
155
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
156
}
157
158
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
159
{
160
return psw_extint_disabled(vcpu) &&
161
psw_ioint_disabled(vcpu) &&
162
psw_mchk_disabled(vcpu);
163
}
164
165
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
166
{
167
if (psw_extint_disabled(vcpu) ||
168
!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
169
return 0;
170
if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
171
/* No timer interrupts when single stepping */
172
return 0;
173
return 1;
174
}
175
176
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
177
{
178
const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
179
const u64 ckc = vcpu->arch.sie_block->ckc;
180
181
if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
182
if ((s64)ckc >= (s64)now)
183
return 0;
184
} else if (ckc >= now) {
185
return 0;
186
}
187
return ckc_interrupts_enabled(vcpu);
188
}
189
190
static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
191
{
192
return !psw_extint_disabled(vcpu) &&
193
(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
194
}
195
196
static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
197
{
198
if (!cpu_timer_interrupts_enabled(vcpu))
199
return 0;
200
return kvm_s390_get_cpu_timer(vcpu) >> 63;
201
}
202
203
static uint64_t isc_to_isc_bits(int isc)
204
{
205
return (0x80 >> isc) << 24;
206
}
207
208
static inline u32 isc_to_int_word(u8 isc)
209
{
210
return ((u32)isc << 27) | 0x80000000;
211
}
212
213
static inline u8 int_word_to_isc(u32 int_word)
214
{
215
return (int_word & 0x38000000) >> 27;
216
}
217
218
/*
219
* To use atomic bitmap functions, we have to provide a bitmap address
220
* that is u64 aligned. However, the ipm might be u32 aligned.
221
* Therefore, we logically start the bitmap at the very beginning of the
222
* struct and fixup the bit number.
223
*/
224
#define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
225
226
/**
227
* gisa_set_iam - change the GISA interruption alert mask
228
*
229
* @gisa: gisa to operate on
230
* @iam: new IAM value to use
231
*
232
* Change the IAM atomically with the next alert address and the IPM
233
* of the GISA if the GISA is not part of the GIB alert list. All three
234
* fields are located in the first long word of the GISA.
235
*
236
* Returns: 0 on success
237
* -EBUSY in case the gisa is part of the alert list
238
*/
239
static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
240
{
241
u64 word, _word;
242
243
word = READ_ONCE(gisa->u64.word[0]);
244
do {
245
if ((u64)gisa != word >> 32)
246
return -EBUSY;
247
_word = (word & ~0xffUL) | iam;
248
} while (!try_cmpxchg(&gisa->u64.word[0], &word, _word));
249
250
return 0;
251
}
252
253
/**
254
* gisa_clear_ipm - clear the GISA interruption pending mask
255
*
256
* @gisa: gisa to operate on
257
*
258
* Clear the IPM atomically with the next alert address and the IAM
259
* of the GISA unconditionally. All three fields are located in the
260
* first long word of the GISA.
261
*/
262
static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
263
{
264
u64 word, _word;
265
266
word = READ_ONCE(gisa->u64.word[0]);
267
do {
268
_word = word & ~(0xffUL << 24);
269
} while (!try_cmpxchg(&gisa->u64.word[0], &word, _word));
270
}
271
272
/**
273
* gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
274
*
275
* @gi: gisa interrupt struct to work on
276
*
277
* Atomically restores the interruption alert mask if none of the
278
* relevant ISCs are pending and return the IPM.
279
*
280
* Returns: the relevant pending ISCs
281
*/
282
static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
283
{
284
u8 pending_mask, alert_mask;
285
u64 word, _word;
286
287
word = READ_ONCE(gi->origin->u64.word[0]);
288
do {
289
alert_mask = READ_ONCE(gi->alert.mask);
290
pending_mask = (u8)(word >> 24) & alert_mask;
291
if (pending_mask)
292
return pending_mask;
293
_word = (word & ~0xffUL) | alert_mask;
294
} while (!try_cmpxchg(&gi->origin->u64.word[0], &word, _word));
295
296
return 0;
297
}
298
299
static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
300
{
301
set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
302
}
303
304
static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
305
{
306
return READ_ONCE(gisa->ipm);
307
}
308
309
static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
310
{
311
return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
312
}
313
314
static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
315
{
316
unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
317
vcpu->arch.local_int.pending_irqs;
318
319
pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
320
return pending;
321
}
322
323
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
324
{
325
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
326
unsigned long pending_mask;
327
328
pending_mask = pending_irqs_no_gisa(vcpu);
329
if (gi->origin)
330
pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
331
return pending_mask;
332
}
333
334
static inline int isc_to_irq_type(unsigned long isc)
335
{
336
return IRQ_PEND_IO_ISC_0 - isc;
337
}
338
339
static inline int irq_type_to_isc(unsigned long irq_type)
340
{
341
return IRQ_PEND_IO_ISC_0 - irq_type;
342
}
343
344
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
345
unsigned long active_mask)
346
{
347
int i;
348
349
for (i = 0; i <= MAX_ISC; i++)
350
if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
351
active_mask &= ~(1UL << (isc_to_irq_type(i)));
352
353
return active_mask;
354
}
355
356
static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
357
{
358
unsigned long active_mask;
359
360
active_mask = pending_irqs(vcpu);
361
if (!active_mask)
362
return 0;
363
364
if (psw_extint_disabled(vcpu))
365
active_mask &= ~IRQ_PEND_EXT_MASK;
366
if (psw_ioint_disabled(vcpu))
367
active_mask &= ~IRQ_PEND_IO_MASK;
368
else
369
active_mask = disable_iscs(vcpu, active_mask);
370
if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
371
__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
372
if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
373
__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
374
if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
375
__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
376
if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
377
__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
378
if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
379
__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
380
__clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
381
}
382
if (psw_mchk_disabled(vcpu))
383
active_mask &= ~IRQ_PEND_MCHK_MASK;
384
/* PV guest cpus can have a single interruption injected at a time. */
385
if (kvm_s390_pv_cpu_get_handle(vcpu) &&
386
vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
387
active_mask &= ~(IRQ_PEND_EXT_II_MASK |
388
IRQ_PEND_IO_MASK |
389
IRQ_PEND_MCHK_MASK);
390
/*
391
* Check both floating and local interrupt's cr14 because
392
* bit IRQ_PEND_MCHK_REP could be set in both cases.
393
*/
394
if (!(vcpu->arch.sie_block->gcr[14] &
395
(vcpu->kvm->arch.float_int.mchk.cr14 |
396
vcpu->arch.local_int.irq.mchk.cr14)))
397
__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
398
399
/*
400
* STOP irqs will never be actively delivered. They are triggered via
401
* intercept requests and cleared when the stop intercept is performed.
402
*/
403
__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
404
405
return active_mask;
406
}
407
408
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
409
{
410
kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
411
set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
412
}
413
414
static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
415
{
416
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
417
clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
418
}
419
420
static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
421
{
422
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
423
CPUSTAT_STOP_INT);
424
vcpu->arch.sie_block->lctl = 0x0000;
425
vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
426
427
if (guestdbg_enabled(vcpu)) {
428
vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
429
LCTL_CR10 | LCTL_CR11);
430
vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
431
}
432
}
433
434
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
435
{
436
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
437
return;
438
if (psw_ioint_disabled(vcpu))
439
kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
440
else
441
vcpu->arch.sie_block->lctl |= LCTL_CR6;
442
}
443
444
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
445
{
446
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
447
return;
448
if (psw_extint_disabled(vcpu))
449
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
450
else
451
vcpu->arch.sie_block->lctl |= LCTL_CR0;
452
}
453
454
static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
455
{
456
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
457
return;
458
if (psw_mchk_disabled(vcpu))
459
vcpu->arch.sie_block->ictl |= ICTL_LPSW;
460
else
461
vcpu->arch.sie_block->lctl |= LCTL_CR14;
462
}
463
464
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
465
{
466
if (kvm_s390_is_stop_irq_pending(vcpu))
467
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
468
}
469
470
/* Set interception request for non-deliverable interrupts */
471
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
472
{
473
set_intercept_indicators_io(vcpu);
474
set_intercept_indicators_ext(vcpu);
475
set_intercept_indicators_mchk(vcpu);
476
set_intercept_indicators_stop(vcpu);
477
}
478
479
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
480
{
481
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
482
int rc = 0;
483
484
vcpu->stat.deliver_cputm++;
485
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
486
0, 0);
487
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
488
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
489
vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
490
} else {
491
rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
492
(u16 *)__LC_EXT_INT_CODE);
493
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
494
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
495
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
496
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
497
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
498
}
499
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
500
return rc ? -EFAULT : 0;
501
}
502
503
static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
504
{
505
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
506
int rc = 0;
507
508
vcpu->stat.deliver_ckc++;
509
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
510
0, 0);
511
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
512
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
513
vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
514
} else {
515
rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
516
(u16 __user *)__LC_EXT_INT_CODE);
517
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
518
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
519
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
520
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
521
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
522
}
523
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
524
return rc ? -EFAULT : 0;
525
}
526
527
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
528
{
529
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
530
struct kvm_s390_ext_info ext;
531
int rc;
532
533
spin_lock(&li->lock);
534
ext = li->irq.ext;
535
clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
536
li->irq.ext.ext_params2 = 0;
537
spin_unlock(&li->lock);
538
539
VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
540
ext.ext_params2);
541
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
542
KVM_S390_INT_PFAULT_INIT,
543
0, ext.ext_params2);
544
545
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
546
rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
547
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
548
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
549
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
550
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
551
rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
552
return rc ? -EFAULT : 0;
553
}
554
555
static int __write_machine_check(struct kvm_vcpu *vcpu,
556
struct kvm_s390_mchk_info *mchk)
557
{
558
unsigned long ext_sa_addr;
559
unsigned long lc;
560
freg_t fprs[NUM_FPRS];
561
union mci mci;
562
int rc;
563
564
/*
565
* All other possible payload for a machine check (e.g. the register
566
* contents in the save area) will be handled by the ultravisor, as
567
* the hypervisor does not not have the needed information for
568
* protected guests.
569
*/
570
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
571
vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
572
vcpu->arch.sie_block->mcic = mchk->mcic;
573
vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
574
vcpu->arch.sie_block->edc = mchk->ext_damage_code;
575
return 0;
576
}
577
578
mci.val = mchk->mcic;
579
/* take care of lazy register loading */
580
kvm_s390_fpu_store(vcpu->run);
581
save_access_regs(vcpu->run->s.regs.acrs);
582
if (cpu_has_gs() && vcpu->arch.gs_enabled)
583
save_gs_cb(current->thread.gs_cb);
584
585
/* Extended save area */
586
rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
587
sizeof(unsigned long));
588
/* Only bits 0 through 63-LC are used for address formation */
589
lc = ext_sa_addr & MCESA_LC_MASK;
590
if (test_kvm_facility(vcpu->kvm, 133)) {
591
switch (lc) {
592
case 0:
593
case 10:
594
ext_sa_addr &= ~0x3ffUL;
595
break;
596
case 11:
597
ext_sa_addr &= ~0x7ffUL;
598
break;
599
case 12:
600
ext_sa_addr &= ~0xfffUL;
601
break;
602
default:
603
ext_sa_addr = 0;
604
break;
605
}
606
} else {
607
ext_sa_addr &= ~0x3ffUL;
608
}
609
610
if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
611
if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
612
512))
613
mci.vr = 0;
614
} else {
615
mci.vr = 0;
616
}
617
if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
618
&& (lc == 11 || lc == 12)) {
619
if (write_guest_abs(vcpu, ext_sa_addr + 1024,
620
&vcpu->run->s.regs.gscb, 32))
621
mci.gs = 0;
622
} else {
623
mci.gs = 0;
624
}
625
626
/* General interruption information */
627
rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
628
rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
629
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
630
rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
631
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
632
rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
633
634
/* Register-save areas */
635
if (cpu_has_vx()) {
636
convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
637
rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
638
} else {
639
rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
640
vcpu->run->s.regs.fprs, 128);
641
}
642
rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
643
vcpu->run->s.regs.gprs, 128);
644
rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc,
645
(u32 __user *) __LC_FP_CREG_SAVE_AREA);
646
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
647
(u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
648
rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
649
(u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
650
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
651
(u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
652
rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
653
&vcpu->run->s.regs.acrs, 64);
654
rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
655
&vcpu->arch.sie_block->gcr, 128);
656
657
/* Extended interruption information */
658
rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
659
(u32 __user *) __LC_EXT_DAMAGE_CODE);
660
rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
661
(u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
662
rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
663
sizeof(mchk->fixed_logout));
664
return rc ? -EFAULT : 0;
665
}
666
667
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
668
{
669
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
670
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
671
struct kvm_s390_mchk_info mchk = {};
672
int deliver = 0;
673
int rc = 0;
674
675
spin_lock(&fi->lock);
676
spin_lock(&li->lock);
677
if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
678
test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
679
/*
680
* If there was an exigent machine check pending, then any
681
* repressible machine checks that might have been pending
682
* are indicated along with it, so always clear bits for
683
* repressible and exigent interrupts
684
*/
685
mchk = li->irq.mchk;
686
clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
687
clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
688
memset(&li->irq.mchk, 0, sizeof(mchk));
689
deliver = 1;
690
}
691
/*
692
* We indicate floating repressible conditions along with
693
* other pending conditions. Channel Report Pending and Channel
694
* Subsystem damage are the only two and are indicated by
695
* bits in mcic and masked in cr14.
696
*/
697
if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
698
mchk.mcic |= fi->mchk.mcic;
699
mchk.cr14 |= fi->mchk.cr14;
700
memset(&fi->mchk, 0, sizeof(mchk));
701
deliver = 1;
702
}
703
spin_unlock(&li->lock);
704
spin_unlock(&fi->lock);
705
706
if (deliver) {
707
VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
708
mchk.mcic);
709
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
710
KVM_S390_MCHK,
711
mchk.cr14, mchk.mcic);
712
vcpu->stat.deliver_machine_check++;
713
rc = __write_machine_check(vcpu, &mchk);
714
}
715
return rc;
716
}
717
718
static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
719
{
720
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
721
int rc = 0;
722
723
VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
724
vcpu->stat.deliver_restart_signal++;
725
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
726
727
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
728
vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
729
} else {
730
rc = write_guest_lc(vcpu,
731
offsetof(struct lowcore, restart_old_psw),
732
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
733
rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
734
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
735
}
736
clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
737
return rc ? -EFAULT : 0;
738
}
739
740
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
741
{
742
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
743
struct kvm_s390_prefix_info prefix;
744
745
spin_lock(&li->lock);
746
prefix = li->irq.prefix;
747
li->irq.prefix.address = 0;
748
clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
749
spin_unlock(&li->lock);
750
751
vcpu->stat.deliver_prefix_signal++;
752
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
753
KVM_S390_SIGP_SET_PREFIX,
754
prefix.address, 0);
755
756
kvm_s390_set_prefix(vcpu, prefix.address);
757
return 0;
758
}
759
760
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
761
{
762
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
763
int rc;
764
int cpu_addr;
765
766
spin_lock(&li->lock);
767
cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
768
clear_bit(cpu_addr, li->sigp_emerg_pending);
769
if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
770
clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
771
spin_unlock(&li->lock);
772
773
VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
774
vcpu->stat.deliver_emergency_signal++;
775
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
776
cpu_addr, 0);
777
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
778
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
779
vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
780
vcpu->arch.sie_block->extcpuaddr = cpu_addr;
781
return 0;
782
}
783
784
rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
785
(u16 *)__LC_EXT_INT_CODE);
786
rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
787
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
788
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
789
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
790
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
791
return rc ? -EFAULT : 0;
792
}
793
794
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
795
{
796
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
797
struct kvm_s390_extcall_info extcall;
798
int rc;
799
800
spin_lock(&li->lock);
801
extcall = li->irq.extcall;
802
li->irq.extcall.code = 0;
803
clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
804
spin_unlock(&li->lock);
805
806
VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
807
vcpu->stat.deliver_external_call++;
808
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
809
KVM_S390_INT_EXTERNAL_CALL,
810
extcall.code, 0);
811
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
812
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
813
vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
814
vcpu->arch.sie_block->extcpuaddr = extcall.code;
815
return 0;
816
}
817
818
rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
819
(u16 *)__LC_EXT_INT_CODE);
820
rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
821
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
822
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
823
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
824
sizeof(psw_t));
825
return rc ? -EFAULT : 0;
826
}
827
828
static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
829
{
830
switch (code) {
831
case PGM_SPECIFICATION:
832
vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
833
break;
834
case PGM_OPERAND:
835
vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
836
break;
837
default:
838
return -EINVAL;
839
}
840
return 0;
841
}
842
843
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
844
{
845
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
846
struct kvm_s390_pgm_info pgm_info;
847
int rc = 0, nullifying = false;
848
u16 ilen;
849
850
spin_lock(&li->lock);
851
pgm_info = li->irq.pgm;
852
clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
853
memset(&li->irq.pgm, 0, sizeof(pgm_info));
854
spin_unlock(&li->lock);
855
856
ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
857
VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
858
pgm_info.code, ilen);
859
vcpu->stat.deliver_program++;
860
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
861
pgm_info.code, 0);
862
863
/* PER is handled by the ultravisor */
864
if (kvm_s390_pv_cpu_is_protected(vcpu))
865
return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
866
867
switch (pgm_info.code & ~PGM_PER) {
868
case PGM_AFX_TRANSLATION:
869
case PGM_ASX_TRANSLATION:
870
case PGM_EX_TRANSLATION:
871
case PGM_LFX_TRANSLATION:
872
case PGM_LSTE_SEQUENCE:
873
case PGM_LSX_TRANSLATION:
874
case PGM_LX_TRANSLATION:
875
case PGM_PRIMARY_AUTHORITY:
876
case PGM_SECONDARY_AUTHORITY:
877
nullifying = true;
878
fallthrough;
879
case PGM_SPACE_SWITCH:
880
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
881
(u64 *)__LC_TRANS_EXC_CODE);
882
break;
883
case PGM_ALEN_TRANSLATION:
884
case PGM_ALE_SEQUENCE:
885
case PGM_ASTE_INSTANCE:
886
case PGM_ASTE_SEQUENCE:
887
case PGM_ASTE_VALIDITY:
888
case PGM_EXTENDED_AUTHORITY:
889
rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
890
(u8 *)__LC_EXC_ACCESS_ID);
891
nullifying = true;
892
break;
893
case PGM_ASCE_TYPE:
894
case PGM_PAGE_TRANSLATION:
895
case PGM_REGION_FIRST_TRANS:
896
case PGM_REGION_SECOND_TRANS:
897
case PGM_REGION_THIRD_TRANS:
898
case PGM_SEGMENT_TRANSLATION:
899
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
900
(u64 *)__LC_TRANS_EXC_CODE);
901
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
902
(u8 *)__LC_EXC_ACCESS_ID);
903
rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
904
(u8 *)__LC_OP_ACCESS_ID);
905
nullifying = true;
906
break;
907
case PGM_MONITOR:
908
rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
909
(u16 *)__LC_MON_CLASS_NR);
910
rc |= put_guest_lc(vcpu, pgm_info.mon_code,
911
(u64 *)__LC_MON_CODE);
912
break;
913
case PGM_VECTOR_PROCESSING:
914
case PGM_DATA:
915
rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
916
(u32 *)__LC_DATA_EXC_CODE);
917
break;
918
case PGM_PROTECTION:
919
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
920
(u64 *)__LC_TRANS_EXC_CODE);
921
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
922
(u8 *)__LC_EXC_ACCESS_ID);
923
break;
924
case PGM_STACK_FULL:
925
case PGM_STACK_EMPTY:
926
case PGM_STACK_SPECIFICATION:
927
case PGM_STACK_TYPE:
928
case PGM_STACK_OPERATION:
929
case PGM_TRACE_TABEL:
930
case PGM_CRYPTO_OPERATION:
931
nullifying = true;
932
break;
933
}
934
935
if (pgm_info.code & PGM_PER) {
936
rc |= put_guest_lc(vcpu, pgm_info.per_code,
937
(u8 *) __LC_PER_CODE);
938
rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
939
(u8 *)__LC_PER_ATMID);
940
rc |= put_guest_lc(vcpu, pgm_info.per_address,
941
(u64 *) __LC_PER_ADDRESS);
942
rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
943
(u8 *) __LC_PER_ACCESS_ID);
944
}
945
946
if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
947
kvm_s390_rewind_psw(vcpu, ilen);
948
949
/* bit 1+2 of the target are the ilc, so we can directly use ilen */
950
rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
951
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
952
(u64 *) __LC_PGM_LAST_BREAK);
953
rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_CODE);
954
rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
955
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
956
rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
957
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
958
return rc ? -EFAULT : 0;
959
}
960
961
#define SCCB_MASK 0xFFFFFFF8
962
#define SCCB_EVENT_PENDING 0x3
963
964
static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
965
{
966
int rc;
967
968
if (kvm_s390_pv_cpu_get_handle(vcpu)) {
969
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
970
vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
971
vcpu->arch.sie_block->eiparams = parm;
972
return 0;
973
}
974
975
rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
976
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
977
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
978
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
979
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
980
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
981
rc |= put_guest_lc(vcpu, parm,
982
(u32 *)__LC_EXT_PARAMS);
983
984
return rc ? -EFAULT : 0;
985
}
986
987
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
988
{
989
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
990
struct kvm_s390_ext_info ext;
991
992
spin_lock(&fi->lock);
993
if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
994
!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
995
spin_unlock(&fi->lock);
996
return 0;
997
}
998
ext = fi->srv_signal;
999
memset(&fi->srv_signal, 0, sizeof(ext));
1000
clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1001
clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1002
if (kvm_s390_pv_cpu_is_protected(vcpu))
1003
set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
1004
spin_unlock(&fi->lock);
1005
1006
VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
1007
ext.ext_params);
1008
vcpu->stat.deliver_service_signal++;
1009
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1010
ext.ext_params, 0);
1011
1012
return write_sclp(vcpu, ext.ext_params);
1013
}
1014
1015
static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
1016
{
1017
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1018
struct kvm_s390_ext_info ext;
1019
1020
spin_lock(&fi->lock);
1021
if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
1022
spin_unlock(&fi->lock);
1023
return 0;
1024
}
1025
ext = fi->srv_signal;
1026
/* only clear the event bits */
1027
fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
1028
clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1029
spin_unlock(&fi->lock);
1030
1031
VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
1032
vcpu->stat.deliver_service_signal++;
1033
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1034
ext.ext_params, 0);
1035
1036
return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING);
1037
}
1038
1039
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
1040
{
1041
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1042
struct kvm_s390_interrupt_info *inti;
1043
int rc = 0;
1044
1045
spin_lock(&fi->lock);
1046
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1047
struct kvm_s390_interrupt_info,
1048
list);
1049
if (inti) {
1050
list_del(&inti->list);
1051
fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1052
}
1053
if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1054
clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1055
spin_unlock(&fi->lock);
1056
1057
if (inti) {
1058
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1059
KVM_S390_INT_PFAULT_DONE, 0,
1060
inti->ext.ext_params2);
1061
VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1062
inti->ext.ext_params2);
1063
1064
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1065
(u16 *)__LC_EXT_INT_CODE);
1066
rc |= put_guest_lc(vcpu, PFAULT_DONE,
1067
(u16 *)__LC_EXT_CPU_ADDR);
1068
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1069
&vcpu->arch.sie_block->gpsw,
1070
sizeof(psw_t));
1071
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1072
&vcpu->arch.sie_block->gpsw,
1073
sizeof(psw_t));
1074
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1075
(u64 *)__LC_EXT_PARAMS2);
1076
kfree(inti);
1077
}
1078
return rc ? -EFAULT : 0;
1079
}
1080
1081
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1082
{
1083
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1084
struct kvm_s390_interrupt_info *inti;
1085
int rc = 0;
1086
1087
spin_lock(&fi->lock);
1088
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1089
struct kvm_s390_interrupt_info,
1090
list);
1091
if (inti) {
1092
VCPU_EVENT(vcpu, 4,
1093
"deliver: virtio parm: 0x%x,parm64: 0x%llx",
1094
inti->ext.ext_params, inti->ext.ext_params2);
1095
vcpu->stat.deliver_virtio++;
1096
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1097
inti->type,
1098
inti->ext.ext_params,
1099
inti->ext.ext_params2);
1100
list_del(&inti->list);
1101
fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1102
}
1103
if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1104
clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1105
spin_unlock(&fi->lock);
1106
1107
if (inti) {
1108
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1109
(u16 *)__LC_EXT_INT_CODE);
1110
rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1111
(u16 *)__LC_EXT_CPU_ADDR);
1112
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1113
&vcpu->arch.sie_block->gpsw,
1114
sizeof(psw_t));
1115
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1116
&vcpu->arch.sie_block->gpsw,
1117
sizeof(psw_t));
1118
rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1119
(u32 *)__LC_EXT_PARAMS);
1120
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1121
(u64 *)__LC_EXT_PARAMS2);
1122
kfree(inti);
1123
}
1124
return rc ? -EFAULT : 0;
1125
}
1126
1127
static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1128
{
1129
int rc;
1130
1131
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1132
vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1133
vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1134
vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1135
vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1136
vcpu->arch.sie_block->io_int_word = io->io_int_word;
1137
return 0;
1138
}
1139
1140
rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1141
rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1142
rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1143
rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1144
rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1145
&vcpu->arch.sie_block->gpsw,
1146
sizeof(psw_t));
1147
rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1148
&vcpu->arch.sie_block->gpsw,
1149
sizeof(psw_t));
1150
return rc ? -EFAULT : 0;
1151
}
1152
1153
static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1154
unsigned long irq_type)
1155
{
1156
struct list_head *isc_list;
1157
struct kvm_s390_float_interrupt *fi;
1158
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1159
struct kvm_s390_interrupt_info *inti = NULL;
1160
struct kvm_s390_io_info io;
1161
u32 isc;
1162
int rc = 0;
1163
1164
fi = &vcpu->kvm->arch.float_int;
1165
1166
spin_lock(&fi->lock);
1167
isc = irq_type_to_isc(irq_type);
1168
isc_list = &fi->lists[isc];
1169
inti = list_first_entry_or_null(isc_list,
1170
struct kvm_s390_interrupt_info,
1171
list);
1172
if (inti) {
1173
if (inti->type & KVM_S390_INT_IO_AI_MASK)
1174
VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1175
else
1176
VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1177
inti->io.subchannel_id >> 8,
1178
inti->io.subchannel_id >> 1 & 0x3,
1179
inti->io.subchannel_nr);
1180
1181
vcpu->stat.deliver_io++;
1182
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1183
inti->type,
1184
((__u32)inti->io.subchannel_id << 16) |
1185
inti->io.subchannel_nr,
1186
((__u64)inti->io.io_int_parm << 32) |
1187
inti->io.io_int_word);
1188
list_del(&inti->list);
1189
fi->counters[FIRQ_CNTR_IO] -= 1;
1190
}
1191
if (list_empty(isc_list))
1192
clear_bit(irq_type, &fi->pending_irqs);
1193
spin_unlock(&fi->lock);
1194
1195
if (inti) {
1196
rc = __do_deliver_io(vcpu, &(inti->io));
1197
kfree(inti);
1198
goto out;
1199
}
1200
1201
if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1202
/*
1203
* in case an adapter interrupt was not delivered
1204
* in SIE context KVM will handle the delivery
1205
*/
1206
VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1207
memset(&io, 0, sizeof(io));
1208
io.io_int_word = isc_to_int_word(isc);
1209
vcpu->stat.deliver_io++;
1210
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1211
KVM_S390_INT_IO(1, 0, 0, 0),
1212
((__u32)io.subchannel_id << 16) |
1213
io.subchannel_nr,
1214
((__u64)io.io_int_parm << 32) |
1215
io.io_int_word);
1216
rc = __do_deliver_io(vcpu, &io);
1217
}
1218
out:
1219
return rc;
1220
}
1221
1222
/* Check whether an external call is pending (deliverable or not) */
1223
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1224
{
1225
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1226
1227
if (!sclp.has_sigpif)
1228
return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1229
1230
return sca_ext_call_pending(vcpu, NULL);
1231
}
1232
1233
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1234
{
1235
if (deliverable_irqs(vcpu))
1236
return 1;
1237
1238
if (kvm_cpu_has_pending_timer(vcpu))
1239
return 1;
1240
1241
/* external call pending and deliverable */
1242
if (kvm_s390_ext_call_pending(vcpu) &&
1243
!psw_extint_disabled(vcpu) &&
1244
(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1245
return 1;
1246
1247
if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1248
return 1;
1249
return 0;
1250
}
1251
1252
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1253
{
1254
return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1255
}
1256
1257
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1258
{
1259
const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1260
const u64 ckc = vcpu->arch.sie_block->ckc;
1261
u64 cputm, sltime = 0;
1262
1263
if (ckc_interrupts_enabled(vcpu)) {
1264
if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1265
if ((s64)now < (s64)ckc)
1266
sltime = tod_to_ns((s64)ckc - (s64)now);
1267
} else if (now < ckc) {
1268
sltime = tod_to_ns(ckc - now);
1269
}
1270
/* already expired */
1271
if (!sltime)
1272
return 0;
1273
if (cpu_timer_interrupts_enabled(vcpu)) {
1274
cputm = kvm_s390_get_cpu_timer(vcpu);
1275
/* already expired? */
1276
if (cputm >> 63)
1277
return 0;
1278
return min_t(u64, sltime, tod_to_ns(cputm));
1279
}
1280
} else if (cpu_timer_interrupts_enabled(vcpu)) {
1281
sltime = kvm_s390_get_cpu_timer(vcpu);
1282
/* already expired? */
1283
if (sltime >> 63)
1284
return 0;
1285
}
1286
return sltime;
1287
}
1288
1289
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1290
{
1291
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1292
u64 sltime;
1293
1294
vcpu->stat.exit_wait_state++;
1295
1296
/* fast path */
1297
if (kvm_arch_vcpu_runnable(vcpu))
1298
return 0;
1299
1300
if (psw_interrupts_disabled(vcpu)) {
1301
VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1302
return -EOPNOTSUPP; /* disabled wait */
1303
}
1304
1305
if (gi->origin &&
1306
(gisa_get_ipm_or_restore_iam(gi) &
1307
vcpu->arch.sie_block->gcr[6] >> 24))
1308
return 0;
1309
1310
if (!ckc_interrupts_enabled(vcpu) &&
1311
!cpu_timer_interrupts_enabled(vcpu)) {
1312
VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1313
__set_cpu_idle(vcpu);
1314
goto no_timer;
1315
}
1316
1317
sltime = __calculate_sltime(vcpu);
1318
if (!sltime)
1319
return 0;
1320
1321
__set_cpu_idle(vcpu);
1322
hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1323
VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1324
no_timer:
1325
kvm_vcpu_srcu_read_unlock(vcpu);
1326
vcpu->kvm->arch.float_int.last_sleep_cpu = vcpu->vcpu_idx;
1327
kvm_vcpu_halt(vcpu);
1328
vcpu->valid_wakeup = false;
1329
__unset_cpu_idle(vcpu);
1330
kvm_vcpu_srcu_read_lock(vcpu);
1331
1332
hrtimer_cancel(&vcpu->arch.ckc_timer);
1333
return 0;
1334
}
1335
1336
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1337
{
1338
vcpu->valid_wakeup = true;
1339
kvm_vcpu_wake_up(vcpu);
1340
1341
/*
1342
* The VCPU might not be sleeping but rather executing VSIE. Let's
1343
* kick it, so it leaves the SIE to process the request.
1344
*/
1345
kvm_s390_vsie_kick(vcpu);
1346
}
1347
1348
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1349
{
1350
struct kvm_vcpu *vcpu;
1351
u64 sltime;
1352
1353
vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1354
sltime = __calculate_sltime(vcpu);
1355
1356
/*
1357
* If the monotonic clock runs faster than the tod clock we might be
1358
* woken up too early and have to go back to sleep to avoid deadlocks.
1359
*/
1360
if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1361
return HRTIMER_RESTART;
1362
kvm_s390_vcpu_wakeup(vcpu);
1363
return HRTIMER_NORESTART;
1364
}
1365
1366
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1367
{
1368
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1369
1370
spin_lock(&li->lock);
1371
li->pending_irqs = 0;
1372
bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1373
memset(&li->irq, 0, sizeof(li->irq));
1374
spin_unlock(&li->lock);
1375
1376
sca_clear_ext_call(vcpu);
1377
}
1378
1379
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1380
{
1381
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1382
int rc = 0;
1383
bool delivered = false;
1384
unsigned long irq_type;
1385
unsigned long irqs;
1386
1387
__reset_intercept_indicators(vcpu);
1388
1389
/* pending ckc conditions might have been invalidated */
1390
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1391
if (ckc_irq_pending(vcpu))
1392
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1393
1394
/* pending cpu timer conditions might have been invalidated */
1395
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1396
if (cpu_timer_irq_pending(vcpu))
1397
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1398
1399
while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1400
/* bits are in the reverse order of interrupt priority */
1401
irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1402
switch (irq_type) {
1403
case IRQ_PEND_IO_ISC_0:
1404
case IRQ_PEND_IO_ISC_1:
1405
case IRQ_PEND_IO_ISC_2:
1406
case IRQ_PEND_IO_ISC_3:
1407
case IRQ_PEND_IO_ISC_4:
1408
case IRQ_PEND_IO_ISC_5:
1409
case IRQ_PEND_IO_ISC_6:
1410
case IRQ_PEND_IO_ISC_7:
1411
rc = __deliver_io(vcpu, irq_type);
1412
break;
1413
case IRQ_PEND_MCHK_EX:
1414
case IRQ_PEND_MCHK_REP:
1415
rc = __deliver_machine_check(vcpu);
1416
break;
1417
case IRQ_PEND_PROG:
1418
rc = __deliver_prog(vcpu);
1419
break;
1420
case IRQ_PEND_EXT_EMERGENCY:
1421
rc = __deliver_emergency_signal(vcpu);
1422
break;
1423
case IRQ_PEND_EXT_EXTERNAL:
1424
rc = __deliver_external_call(vcpu);
1425
break;
1426
case IRQ_PEND_EXT_CLOCK_COMP:
1427
rc = __deliver_ckc(vcpu);
1428
break;
1429
case IRQ_PEND_EXT_CPU_TIMER:
1430
rc = __deliver_cpu_timer(vcpu);
1431
break;
1432
case IRQ_PEND_RESTART:
1433
rc = __deliver_restart(vcpu);
1434
break;
1435
case IRQ_PEND_SET_PREFIX:
1436
rc = __deliver_set_prefix(vcpu);
1437
break;
1438
case IRQ_PEND_PFAULT_INIT:
1439
rc = __deliver_pfault_init(vcpu);
1440
break;
1441
case IRQ_PEND_EXT_SERVICE:
1442
rc = __deliver_service(vcpu);
1443
break;
1444
case IRQ_PEND_EXT_SERVICE_EV:
1445
rc = __deliver_service_ev(vcpu);
1446
break;
1447
case IRQ_PEND_PFAULT_DONE:
1448
rc = __deliver_pfault_done(vcpu);
1449
break;
1450
case IRQ_PEND_VIRTIO:
1451
rc = __deliver_virtio(vcpu);
1452
break;
1453
default:
1454
WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1455
clear_bit(irq_type, &li->pending_irqs);
1456
}
1457
delivered |= !rc;
1458
}
1459
1460
/*
1461
* We delivered at least one interrupt and modified the PC. Force a
1462
* singlestep event now.
1463
*/
1464
if (delivered && guestdbg_sstep_enabled(vcpu)) {
1465
struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
1466
1467
debug_exit->addr = vcpu->arch.sie_block->gpsw.addr;
1468
debug_exit->type = KVM_SINGLESTEP;
1469
vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
1470
}
1471
1472
set_intercept_indicators(vcpu);
1473
1474
return rc;
1475
}
1476
1477
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1478
{
1479
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1480
1481
vcpu->stat.inject_program++;
1482
VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1483
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1484
irq->u.pgm.code, 0);
1485
1486
if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1487
/* auto detection if no valid ILC was given */
1488
irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1489
irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1490
irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1491
}
1492
1493
if (irq->u.pgm.code == PGM_PER) {
1494
li->irq.pgm.code |= PGM_PER;
1495
li->irq.pgm.flags = irq->u.pgm.flags;
1496
/* only modify PER related information */
1497
li->irq.pgm.per_address = irq->u.pgm.per_address;
1498
li->irq.pgm.per_code = irq->u.pgm.per_code;
1499
li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1500
li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1501
} else if (!(irq->u.pgm.code & PGM_PER)) {
1502
li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1503
irq->u.pgm.code;
1504
li->irq.pgm.flags = irq->u.pgm.flags;
1505
/* only modify non-PER information */
1506
li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1507
li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1508
li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1509
li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1510
li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1511
li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1512
} else {
1513
li->irq.pgm = irq->u.pgm;
1514
}
1515
set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1516
return 0;
1517
}
1518
1519
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1520
{
1521
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1522
1523
vcpu->stat.inject_pfault_init++;
1524
VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1525
irq->u.ext.ext_params2);
1526
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1527
irq->u.ext.ext_params,
1528
irq->u.ext.ext_params2);
1529
1530
li->irq.ext = irq->u.ext;
1531
set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1532
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1533
return 0;
1534
}
1535
1536
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1537
{
1538
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1539
struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1540
uint16_t src_id = irq->u.extcall.code;
1541
1542
vcpu->stat.inject_external_call++;
1543
VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1544
src_id);
1545
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1546
src_id, 0);
1547
1548
/* sending vcpu invalid */
1549
if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1550
return -EINVAL;
1551
1552
if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1553
return sca_inject_ext_call(vcpu, src_id);
1554
1555
if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1556
return -EBUSY;
1557
*extcall = irq->u.extcall;
1558
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1559
return 0;
1560
}
1561
1562
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1563
{
1564
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1565
struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1566
1567
vcpu->stat.inject_set_prefix++;
1568
VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1569
irq->u.prefix.address);
1570
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1571
irq->u.prefix.address, 0);
1572
1573
if (!is_vcpu_stopped(vcpu))
1574
return -EBUSY;
1575
1576
*prefix = irq->u.prefix;
1577
set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1578
return 0;
1579
}
1580
1581
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1582
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1583
{
1584
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1585
struct kvm_s390_stop_info *stop = &li->irq.stop;
1586
int rc = 0;
1587
1588
vcpu->stat.inject_stop_signal++;
1589
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1590
1591
if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1592
return -EINVAL;
1593
1594
if (is_vcpu_stopped(vcpu)) {
1595
if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1596
rc = kvm_s390_store_status_unloaded(vcpu,
1597
KVM_S390_STORE_STATUS_NOADDR);
1598
return rc;
1599
}
1600
1601
if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1602
return -EBUSY;
1603
stop->flags = irq->u.stop.flags;
1604
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1605
return 0;
1606
}
1607
1608
static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1609
{
1610
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1611
1612
vcpu->stat.inject_restart++;
1613
VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1614
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1615
1616
set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1617
return 0;
1618
}
1619
1620
static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1621
struct kvm_s390_irq *irq)
1622
{
1623
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1624
1625
vcpu->stat.inject_emergency_signal++;
1626
VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1627
irq->u.emerg.code);
1628
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1629
irq->u.emerg.code, 0);
1630
1631
/* sending vcpu invalid */
1632
if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1633
return -EINVAL;
1634
1635
set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1636
set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1637
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1638
return 0;
1639
}
1640
1641
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1642
{
1643
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1644
struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1645
1646
vcpu->stat.inject_mchk++;
1647
VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1648
irq->u.mchk.mcic);
1649
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1650
irq->u.mchk.mcic);
1651
1652
/*
1653
* Because repressible machine checks can be indicated along with
1654
* exigent machine checks (PoP, Chapter 11, Interruption action)
1655
* we need to combine cr14, mcic and external damage code.
1656
* Failing storage address and the logout area should not be or'ed
1657
* together, we just indicate the last occurrence of the corresponding
1658
* machine check
1659
*/
1660
mchk->cr14 |= irq->u.mchk.cr14;
1661
mchk->mcic |= irq->u.mchk.mcic;
1662
mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1663
mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1664
memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1665
sizeof(mchk->fixed_logout));
1666
if (mchk->mcic & MCHK_EX_MASK)
1667
set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1668
else if (mchk->mcic & MCHK_REP_MASK)
1669
set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
1670
return 0;
1671
}
1672
1673
static int __inject_ckc(struct kvm_vcpu *vcpu)
1674
{
1675
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1676
1677
vcpu->stat.inject_ckc++;
1678
VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1679
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1680
0, 0);
1681
1682
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1683
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1684
return 0;
1685
}
1686
1687
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1688
{
1689
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1690
1691
vcpu->stat.inject_cputm++;
1692
VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1693
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1694
0, 0);
1695
1696
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1697
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1698
return 0;
1699
}
1700
1701
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1702
int isc, u32 schid)
1703
{
1704
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1705
struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1706
struct kvm_s390_interrupt_info *iter;
1707
u16 id = (schid & 0xffff0000U) >> 16;
1708
u16 nr = schid & 0x0000ffffU;
1709
1710
spin_lock(&fi->lock);
1711
list_for_each_entry(iter, isc_list, list) {
1712
if (schid && (id != iter->io.subchannel_id ||
1713
nr != iter->io.subchannel_nr))
1714
continue;
1715
/* found an appropriate entry */
1716
list_del_init(&iter->list);
1717
fi->counters[FIRQ_CNTR_IO] -= 1;
1718
if (list_empty(isc_list))
1719
clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1720
spin_unlock(&fi->lock);
1721
return iter;
1722
}
1723
spin_unlock(&fi->lock);
1724
return NULL;
1725
}
1726
1727
static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1728
u64 isc_mask, u32 schid)
1729
{
1730
struct kvm_s390_interrupt_info *inti = NULL;
1731
int isc;
1732
1733
for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1734
if (isc_mask & isc_to_isc_bits(isc))
1735
inti = get_io_int(kvm, isc, schid);
1736
}
1737
return inti;
1738
}
1739
1740
static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1741
{
1742
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1743
unsigned long active_mask;
1744
int isc;
1745
1746
if (schid)
1747
goto out;
1748
if (!gi->origin)
1749
goto out;
1750
1751
active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1752
while (active_mask) {
1753
isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1754
if (gisa_tac_ipm_gisc(gi->origin, isc))
1755
return isc;
1756
clear_bit_inv(isc, &active_mask);
1757
}
1758
out:
1759
return -EINVAL;
1760
}
1761
1762
/*
1763
* Dequeue and return an I/O interrupt matching any of the interruption
1764
* subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1765
* Take into account the interrupts pending in the interrupt list and in GISA.
1766
*
1767
* Note that for a guest that does not enable I/O interrupts
1768
* but relies on TPI, a flood of classic interrupts may starve
1769
* out adapter interrupts on the same isc. Linux does not do
1770
* that, and it is possible to work around the issue by configuring
1771
* different iscs for classic and adapter interrupts in the guest,
1772
* but we may want to revisit this in the future.
1773
*/
1774
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1775
u64 isc_mask, u32 schid)
1776
{
1777
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1778
struct kvm_s390_interrupt_info *inti, *tmp_inti;
1779
int isc;
1780
1781
inti = get_top_io_int(kvm, isc_mask, schid);
1782
1783
isc = get_top_gisa_isc(kvm, isc_mask, schid);
1784
if (isc < 0)
1785
/* no AI in GISA */
1786
goto out;
1787
1788
if (!inti)
1789
/* AI in GISA but no classical IO int */
1790
goto gisa_out;
1791
1792
/* both types of interrupts present */
1793
if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1794
/* classical IO int with higher priority */
1795
gisa_set_ipm_gisc(gi->origin, isc);
1796
goto out;
1797
}
1798
gisa_out:
1799
tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1800
if (tmp_inti) {
1801
tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1802
tmp_inti->io.io_int_word = isc_to_int_word(isc);
1803
if (inti)
1804
kvm_s390_reinject_io_int(kvm, inti);
1805
inti = tmp_inti;
1806
} else
1807
gisa_set_ipm_gisc(gi->origin, isc);
1808
out:
1809
return inti;
1810
}
1811
1812
static int __inject_service(struct kvm *kvm,
1813
struct kvm_s390_interrupt_info *inti)
1814
{
1815
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1816
1817
kvm->stat.inject_service_signal++;
1818
spin_lock(&fi->lock);
1819
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1820
1821
/* We always allow events, track them separately from the sccb ints */
1822
if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1823
set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1824
1825
/*
1826
* Early versions of the QEMU s390 bios will inject several
1827
* service interrupts after another without handling a
1828
* condition code indicating busy.
1829
* We will silently ignore those superfluous sccb values.
1830
* A future version of QEMU will take care of serialization
1831
* of servc requests
1832
*/
1833
if (fi->srv_signal.ext_params & SCCB_MASK)
1834
goto out;
1835
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1836
set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1837
out:
1838
spin_unlock(&fi->lock);
1839
kfree(inti);
1840
return 0;
1841
}
1842
1843
static int __inject_virtio(struct kvm *kvm,
1844
struct kvm_s390_interrupt_info *inti)
1845
{
1846
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1847
1848
kvm->stat.inject_virtio++;
1849
spin_lock(&fi->lock);
1850
if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1851
spin_unlock(&fi->lock);
1852
return -EBUSY;
1853
}
1854
fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1855
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1856
set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1857
spin_unlock(&fi->lock);
1858
return 0;
1859
}
1860
1861
static int __inject_pfault_done(struct kvm *kvm,
1862
struct kvm_s390_interrupt_info *inti)
1863
{
1864
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1865
1866
kvm->stat.inject_pfault_done++;
1867
spin_lock(&fi->lock);
1868
if (fi->counters[FIRQ_CNTR_PFAULT] >=
1869
(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1870
spin_unlock(&fi->lock);
1871
return -EBUSY;
1872
}
1873
fi->counters[FIRQ_CNTR_PFAULT] += 1;
1874
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1875
set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1876
spin_unlock(&fi->lock);
1877
return 0;
1878
}
1879
1880
#define CR_PENDING_SUBCLASS 28
1881
static int __inject_float_mchk(struct kvm *kvm,
1882
struct kvm_s390_interrupt_info *inti)
1883
{
1884
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1885
1886
kvm->stat.inject_float_mchk++;
1887
spin_lock(&fi->lock);
1888
fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1889
fi->mchk.mcic |= inti->mchk.mcic;
1890
set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1891
spin_unlock(&fi->lock);
1892
kfree(inti);
1893
return 0;
1894
}
1895
1896
static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1897
{
1898
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1899
struct kvm_s390_float_interrupt *fi;
1900
struct list_head *list;
1901
int isc;
1902
1903
kvm->stat.inject_io++;
1904
isc = int_word_to_isc(inti->io.io_int_word);
1905
1906
/*
1907
* We do not use the lock checking variant as this is just a
1908
* performance optimization and we do not hold the lock here.
1909
* This is ok as the code will pick interrupts from both "lists"
1910
* for delivery.
1911
*/
1912
if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1913
VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1914
gisa_set_ipm_gisc(gi->origin, isc);
1915
kfree(inti);
1916
return 0;
1917
}
1918
1919
fi = &kvm->arch.float_int;
1920
spin_lock(&fi->lock);
1921
if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1922
spin_unlock(&fi->lock);
1923
return -EBUSY;
1924
}
1925
fi->counters[FIRQ_CNTR_IO] += 1;
1926
1927
if (inti->type & KVM_S390_INT_IO_AI_MASK)
1928
VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1929
else
1930
VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1931
inti->io.subchannel_id >> 8,
1932
inti->io.subchannel_id >> 1 & 0x3,
1933
inti->io.subchannel_nr);
1934
list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1935
list_add_tail(&inti->list, list);
1936
set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1937
spin_unlock(&fi->lock);
1938
return 0;
1939
}
1940
1941
/*
1942
* Find a destination VCPU for a floating irq and kick it.
1943
*/
1944
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1945
{
1946
struct kvm_vcpu *dst_vcpu;
1947
int sigcpu, online_vcpus, nr_tries = 0;
1948
1949
online_vcpus = atomic_read(&kvm->online_vcpus);
1950
if (!online_vcpus)
1951
return;
1952
1953
for (sigcpu = kvm->arch.float_int.last_sleep_cpu; ; sigcpu++) {
1954
sigcpu %= online_vcpus;
1955
dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1956
if (!is_vcpu_stopped(dst_vcpu))
1957
break;
1958
/* avoid endless loops if all vcpus are stopped */
1959
if (nr_tries++ >= online_vcpus)
1960
return;
1961
}
1962
1963
/* make the VCPU drop out of the SIE, or wake it up if sleeping */
1964
switch (type) {
1965
case KVM_S390_MCHK:
1966
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1967
break;
1968
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1969
if (!(type & KVM_S390_INT_IO_AI_MASK &&
1970
kvm->arch.gisa_int.origin) ||
1971
kvm_s390_pv_cpu_get_handle(dst_vcpu))
1972
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1973
break;
1974
default:
1975
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1976
break;
1977
}
1978
kvm_s390_vcpu_wakeup(dst_vcpu);
1979
}
1980
1981
static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1982
{
1983
u64 type = READ_ONCE(inti->type);
1984
int rc;
1985
1986
switch (type) {
1987
case KVM_S390_MCHK:
1988
rc = __inject_float_mchk(kvm, inti);
1989
break;
1990
case KVM_S390_INT_VIRTIO:
1991
rc = __inject_virtio(kvm, inti);
1992
break;
1993
case KVM_S390_INT_SERVICE:
1994
rc = __inject_service(kvm, inti);
1995
break;
1996
case KVM_S390_INT_PFAULT_DONE:
1997
rc = __inject_pfault_done(kvm, inti);
1998
break;
1999
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2000
rc = __inject_io(kvm, inti);
2001
break;
2002
default:
2003
rc = -EINVAL;
2004
}
2005
if (rc)
2006
return rc;
2007
2008
__floating_irq_kick(kvm, type);
2009
return 0;
2010
}
2011
2012
int kvm_s390_inject_vm(struct kvm *kvm,
2013
struct kvm_s390_interrupt *s390int)
2014
{
2015
struct kvm_s390_interrupt_info *inti;
2016
int rc;
2017
2018
inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2019
if (!inti)
2020
return -ENOMEM;
2021
2022
inti->type = s390int->type;
2023
switch (inti->type) {
2024
case KVM_S390_INT_VIRTIO:
2025
VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
2026
s390int->parm, s390int->parm64);
2027
inti->ext.ext_params = s390int->parm;
2028
inti->ext.ext_params2 = s390int->parm64;
2029
break;
2030
case KVM_S390_INT_SERVICE:
2031
VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
2032
inti->ext.ext_params = s390int->parm;
2033
break;
2034
case KVM_S390_INT_PFAULT_DONE:
2035
inti->ext.ext_params2 = s390int->parm64;
2036
break;
2037
case KVM_S390_MCHK:
2038
VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
2039
s390int->parm64);
2040
inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
2041
inti->mchk.mcic = s390int->parm64;
2042
break;
2043
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2044
inti->io.subchannel_id = s390int->parm >> 16;
2045
inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
2046
inti->io.io_int_parm = s390int->parm64 >> 32;
2047
inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2048
break;
2049
default:
2050
kfree(inti);
2051
return -EINVAL;
2052
}
2053
trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2054
2);
2055
2056
rc = __inject_vm(kvm, inti);
2057
if (rc)
2058
kfree(inti);
2059
return rc;
2060
}
2061
2062
int kvm_s390_reinject_io_int(struct kvm *kvm,
2063
struct kvm_s390_interrupt_info *inti)
2064
{
2065
return __inject_vm(kvm, inti);
2066
}
2067
2068
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2069
struct kvm_s390_irq *irq)
2070
{
2071
irq->type = s390int->type;
2072
switch (irq->type) {
2073
case KVM_S390_PROGRAM_INT:
2074
if (s390int->parm & 0xffff0000)
2075
return -EINVAL;
2076
irq->u.pgm.code = s390int->parm;
2077
break;
2078
case KVM_S390_SIGP_SET_PREFIX:
2079
irq->u.prefix.address = s390int->parm;
2080
break;
2081
case KVM_S390_SIGP_STOP:
2082
irq->u.stop.flags = s390int->parm;
2083
break;
2084
case KVM_S390_INT_EXTERNAL_CALL:
2085
if (s390int->parm & 0xffff0000)
2086
return -EINVAL;
2087
irq->u.extcall.code = s390int->parm;
2088
break;
2089
case KVM_S390_INT_EMERGENCY:
2090
if (s390int->parm & 0xffff0000)
2091
return -EINVAL;
2092
irq->u.emerg.code = s390int->parm;
2093
break;
2094
case KVM_S390_MCHK:
2095
irq->u.mchk.mcic = s390int->parm64;
2096
break;
2097
case KVM_S390_INT_PFAULT_INIT:
2098
irq->u.ext.ext_params = s390int->parm;
2099
irq->u.ext.ext_params2 = s390int->parm64;
2100
break;
2101
case KVM_S390_RESTART:
2102
case KVM_S390_INT_CLOCK_COMP:
2103
case KVM_S390_INT_CPU_TIMER:
2104
break;
2105
default:
2106
return -EINVAL;
2107
}
2108
return 0;
2109
}
2110
2111
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2112
{
2113
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2114
2115
return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2116
}
2117
2118
int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2119
{
2120
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2121
2122
return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2123
}
2124
2125
void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2126
{
2127
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2128
2129
spin_lock(&li->lock);
2130
li->irq.stop.flags = 0;
2131
clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2132
spin_unlock(&li->lock);
2133
}
2134
2135
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2136
{
2137
int rc;
2138
2139
switch (irq->type) {
2140
case KVM_S390_PROGRAM_INT:
2141
rc = __inject_prog(vcpu, irq);
2142
break;
2143
case KVM_S390_SIGP_SET_PREFIX:
2144
rc = __inject_set_prefix(vcpu, irq);
2145
break;
2146
case KVM_S390_SIGP_STOP:
2147
rc = __inject_sigp_stop(vcpu, irq);
2148
break;
2149
case KVM_S390_RESTART:
2150
rc = __inject_sigp_restart(vcpu);
2151
break;
2152
case KVM_S390_INT_CLOCK_COMP:
2153
rc = __inject_ckc(vcpu);
2154
break;
2155
case KVM_S390_INT_CPU_TIMER:
2156
rc = __inject_cpu_timer(vcpu);
2157
break;
2158
case KVM_S390_INT_EXTERNAL_CALL:
2159
rc = __inject_extcall(vcpu, irq);
2160
break;
2161
case KVM_S390_INT_EMERGENCY:
2162
rc = __inject_sigp_emergency(vcpu, irq);
2163
break;
2164
case KVM_S390_MCHK:
2165
rc = __inject_mchk(vcpu, irq);
2166
break;
2167
case KVM_S390_INT_PFAULT_INIT:
2168
rc = __inject_pfault_init(vcpu, irq);
2169
break;
2170
case KVM_S390_INT_VIRTIO:
2171
case KVM_S390_INT_SERVICE:
2172
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2173
default:
2174
rc = -EINVAL;
2175
}
2176
2177
return rc;
2178
}
2179
2180
int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2181
{
2182
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2183
int rc;
2184
2185
spin_lock(&li->lock);
2186
rc = do_inject_vcpu(vcpu, irq);
2187
spin_unlock(&li->lock);
2188
if (!rc)
2189
kvm_s390_vcpu_wakeup(vcpu);
2190
return rc;
2191
}
2192
2193
static inline void clear_irq_list(struct list_head *_list)
2194
{
2195
struct kvm_s390_interrupt_info *inti, *n;
2196
2197
list_for_each_entry_safe(inti, n, _list, list) {
2198
list_del(&inti->list);
2199
kfree(inti);
2200
}
2201
}
2202
2203
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2204
struct kvm_s390_irq *irq)
2205
{
2206
irq->type = inti->type;
2207
switch (inti->type) {
2208
case KVM_S390_INT_PFAULT_INIT:
2209
case KVM_S390_INT_PFAULT_DONE:
2210
case KVM_S390_INT_VIRTIO:
2211
irq->u.ext = inti->ext;
2212
break;
2213
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2214
irq->u.io = inti->io;
2215
break;
2216
}
2217
}
2218
2219
void kvm_s390_clear_float_irqs(struct kvm *kvm)
2220
{
2221
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2222
int i;
2223
2224
mutex_lock(&kvm->lock);
2225
if (!kvm_s390_pv_is_protected(kvm))
2226
fi->masked_irqs = 0;
2227
mutex_unlock(&kvm->lock);
2228
spin_lock(&fi->lock);
2229
fi->pending_irqs = 0;
2230
memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2231
memset(&fi->mchk, 0, sizeof(fi->mchk));
2232
for (i = 0; i < FIRQ_LIST_COUNT; i++)
2233
clear_irq_list(&fi->lists[i]);
2234
for (i = 0; i < FIRQ_MAX_COUNT; i++)
2235
fi->counters[i] = 0;
2236
spin_unlock(&fi->lock);
2237
kvm_s390_gisa_clear(kvm);
2238
};
2239
2240
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2241
{
2242
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2243
struct kvm_s390_interrupt_info *inti;
2244
struct kvm_s390_float_interrupt *fi;
2245
struct kvm_s390_irq *buf;
2246
struct kvm_s390_irq *irq;
2247
int max_irqs;
2248
int ret = 0;
2249
int n = 0;
2250
int i;
2251
2252
if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2253
return -EINVAL;
2254
2255
/*
2256
* We are already using -ENOMEM to signal
2257
* userspace it may retry with a bigger buffer,
2258
* so we need to use something else for this case
2259
*/
2260
buf = vzalloc(len);
2261
if (!buf)
2262
return -ENOBUFS;
2263
2264
max_irqs = len / sizeof(struct kvm_s390_irq);
2265
2266
if (gi->origin && gisa_get_ipm(gi->origin)) {
2267
for (i = 0; i <= MAX_ISC; i++) {
2268
if (n == max_irqs) {
2269
/* signal userspace to try again */
2270
ret = -ENOMEM;
2271
goto out_nolock;
2272
}
2273
if (gisa_tac_ipm_gisc(gi->origin, i)) {
2274
irq = (struct kvm_s390_irq *) &buf[n];
2275
irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2276
irq->u.io.io_int_word = isc_to_int_word(i);
2277
n++;
2278
}
2279
}
2280
}
2281
fi = &kvm->arch.float_int;
2282
spin_lock(&fi->lock);
2283
for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2284
list_for_each_entry(inti, &fi->lists[i], list) {
2285
if (n == max_irqs) {
2286
/* signal userspace to try again */
2287
ret = -ENOMEM;
2288
goto out;
2289
}
2290
inti_to_irq(inti, &buf[n]);
2291
n++;
2292
}
2293
}
2294
if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2295
test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2296
if (n == max_irqs) {
2297
/* signal userspace to try again */
2298
ret = -ENOMEM;
2299
goto out;
2300
}
2301
irq = (struct kvm_s390_irq *) &buf[n];
2302
irq->type = KVM_S390_INT_SERVICE;
2303
irq->u.ext = fi->srv_signal;
2304
n++;
2305
}
2306
if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2307
if (n == max_irqs) {
2308
/* signal userspace to try again */
2309
ret = -ENOMEM;
2310
goto out;
2311
}
2312
irq = (struct kvm_s390_irq *) &buf[n];
2313
irq->type = KVM_S390_MCHK;
2314
irq->u.mchk = fi->mchk;
2315
n++;
2316
}
2317
2318
out:
2319
spin_unlock(&fi->lock);
2320
out_nolock:
2321
if (!ret && n > 0) {
2322
if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2323
ret = -EFAULT;
2324
}
2325
vfree(buf);
2326
2327
return ret < 0 ? ret : n;
2328
}
2329
2330
static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2331
{
2332
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2333
struct kvm_s390_ais_all ais;
2334
2335
if (attr->attr < sizeof(ais))
2336
return -EINVAL;
2337
2338
if (!test_kvm_facility(kvm, 72))
2339
return -EOPNOTSUPP;
2340
2341
mutex_lock(&fi->ais_lock);
2342
ais.simm = fi->simm;
2343
ais.nimm = fi->nimm;
2344
mutex_unlock(&fi->ais_lock);
2345
2346
if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2347
return -EFAULT;
2348
2349
return 0;
2350
}
2351
2352
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2353
{
2354
int r;
2355
2356
switch (attr->group) {
2357
case KVM_DEV_FLIC_GET_ALL_IRQS:
2358
r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2359
attr->attr);
2360
break;
2361
case KVM_DEV_FLIC_AISM_ALL:
2362
r = flic_ais_mode_get_all(dev->kvm, attr);
2363
break;
2364
default:
2365
r = -EINVAL;
2366
}
2367
2368
return r;
2369
}
2370
2371
static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2372
u64 addr)
2373
{
2374
struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2375
void *target = NULL;
2376
void __user *source;
2377
u64 size;
2378
2379
if (get_user(inti->type, (u64 __user *)addr))
2380
return -EFAULT;
2381
2382
switch (inti->type) {
2383
case KVM_S390_INT_PFAULT_INIT:
2384
case KVM_S390_INT_PFAULT_DONE:
2385
case KVM_S390_INT_VIRTIO:
2386
case KVM_S390_INT_SERVICE:
2387
target = (void *) &inti->ext;
2388
source = &uptr->u.ext;
2389
size = sizeof(inti->ext);
2390
break;
2391
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2392
target = (void *) &inti->io;
2393
source = &uptr->u.io;
2394
size = sizeof(inti->io);
2395
break;
2396
case KVM_S390_MCHK:
2397
target = (void *) &inti->mchk;
2398
source = &uptr->u.mchk;
2399
size = sizeof(inti->mchk);
2400
break;
2401
default:
2402
return -EINVAL;
2403
}
2404
2405
if (copy_from_user(target, source, size))
2406
return -EFAULT;
2407
2408
return 0;
2409
}
2410
2411
static int enqueue_floating_irq(struct kvm_device *dev,
2412
struct kvm_device_attr *attr)
2413
{
2414
struct kvm_s390_interrupt_info *inti = NULL;
2415
int r = 0;
2416
int len = attr->attr;
2417
2418
if (len % sizeof(struct kvm_s390_irq) != 0)
2419
return -EINVAL;
2420
else if (len > KVM_S390_FLIC_MAX_BUFFER)
2421
return -EINVAL;
2422
2423
while (len >= sizeof(struct kvm_s390_irq)) {
2424
inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2425
if (!inti)
2426
return -ENOMEM;
2427
2428
r = copy_irq_from_user(inti, attr->addr);
2429
if (r) {
2430
kfree(inti);
2431
return r;
2432
}
2433
r = __inject_vm(dev->kvm, inti);
2434
if (r) {
2435
kfree(inti);
2436
return r;
2437
}
2438
len -= sizeof(struct kvm_s390_irq);
2439
attr->addr += sizeof(struct kvm_s390_irq);
2440
}
2441
2442
return r;
2443
}
2444
2445
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2446
{
2447
if (id >= MAX_S390_IO_ADAPTERS)
2448
return NULL;
2449
id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2450
return kvm->arch.adapters[id];
2451
}
2452
2453
static int register_io_adapter(struct kvm_device *dev,
2454
struct kvm_device_attr *attr)
2455
{
2456
struct s390_io_adapter *adapter;
2457
struct kvm_s390_io_adapter adapter_info;
2458
2459
if (copy_from_user(&adapter_info,
2460
(void __user *)attr->addr, sizeof(adapter_info)))
2461
return -EFAULT;
2462
2463
if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2464
return -EINVAL;
2465
2466
adapter_info.id = array_index_nospec(adapter_info.id,
2467
MAX_S390_IO_ADAPTERS);
2468
2469
if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2470
return -EINVAL;
2471
2472
adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2473
if (!adapter)
2474
return -ENOMEM;
2475
2476
adapter->id = adapter_info.id;
2477
adapter->isc = adapter_info.isc;
2478
adapter->maskable = adapter_info.maskable;
2479
adapter->masked = false;
2480
adapter->swap = adapter_info.swap;
2481
adapter->suppressible = (adapter_info.flags) &
2482
KVM_S390_ADAPTER_SUPPRESSIBLE;
2483
dev->kvm->arch.adapters[adapter->id] = adapter;
2484
2485
return 0;
2486
}
2487
2488
int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2489
{
2490
int ret;
2491
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2492
2493
if (!adapter || !adapter->maskable)
2494
return -EINVAL;
2495
ret = adapter->masked;
2496
adapter->masked = masked;
2497
return ret;
2498
}
2499
2500
void kvm_s390_destroy_adapters(struct kvm *kvm)
2501
{
2502
int i;
2503
2504
for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2505
kfree(kvm->arch.adapters[i]);
2506
}
2507
2508
static int modify_io_adapter(struct kvm_device *dev,
2509
struct kvm_device_attr *attr)
2510
{
2511
struct kvm_s390_io_adapter_req req;
2512
struct s390_io_adapter *adapter;
2513
int ret;
2514
2515
if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2516
return -EFAULT;
2517
2518
adapter = get_io_adapter(dev->kvm, req.id);
2519
if (!adapter)
2520
return -EINVAL;
2521
switch (req.type) {
2522
case KVM_S390_IO_ADAPTER_MASK:
2523
ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2524
if (ret > 0)
2525
ret = 0;
2526
break;
2527
/*
2528
* The following operations are no longer needed and therefore no-ops.
2529
* The gpa to hva translation is done when an IRQ route is set up. The
2530
* set_irq code uses get_user_pages_remote() to do the actual write.
2531
*/
2532
case KVM_S390_IO_ADAPTER_MAP:
2533
case KVM_S390_IO_ADAPTER_UNMAP:
2534
ret = 0;
2535
break;
2536
default:
2537
ret = -EINVAL;
2538
}
2539
2540
return ret;
2541
}
2542
2543
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2544
2545
{
2546
const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2547
u32 schid;
2548
2549
if (attr->flags)
2550
return -EINVAL;
2551
if (attr->attr != sizeof(schid))
2552
return -EINVAL;
2553
if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2554
return -EFAULT;
2555
if (!schid)
2556
return -EINVAL;
2557
kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2558
/*
2559
* If userspace is conforming to the architecture, we can have at most
2560
* one pending I/O interrupt per subchannel, so this is effectively a
2561
* clear all.
2562
*/
2563
return 0;
2564
}
2565
2566
static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2567
{
2568
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2569
struct kvm_s390_ais_req req;
2570
int ret = 0;
2571
2572
if (!test_kvm_facility(kvm, 72))
2573
return -EOPNOTSUPP;
2574
2575
if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2576
return -EFAULT;
2577
2578
if (req.isc > MAX_ISC)
2579
return -EINVAL;
2580
2581
trace_kvm_s390_modify_ais_mode(req.isc,
2582
(fi->simm & AIS_MODE_MASK(req.isc)) ?
2583
(fi->nimm & AIS_MODE_MASK(req.isc)) ?
2584
2 : KVM_S390_AIS_MODE_SINGLE :
2585
KVM_S390_AIS_MODE_ALL, req.mode);
2586
2587
mutex_lock(&fi->ais_lock);
2588
switch (req.mode) {
2589
case KVM_S390_AIS_MODE_ALL:
2590
fi->simm &= ~AIS_MODE_MASK(req.isc);
2591
fi->nimm &= ~AIS_MODE_MASK(req.isc);
2592
break;
2593
case KVM_S390_AIS_MODE_SINGLE:
2594
fi->simm |= AIS_MODE_MASK(req.isc);
2595
fi->nimm &= ~AIS_MODE_MASK(req.isc);
2596
break;
2597
default:
2598
ret = -EINVAL;
2599
}
2600
mutex_unlock(&fi->ais_lock);
2601
2602
return ret;
2603
}
2604
2605
static int kvm_s390_inject_airq(struct kvm *kvm,
2606
struct s390_io_adapter *adapter)
2607
{
2608
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2609
struct kvm_s390_interrupt s390int = {
2610
.type = KVM_S390_INT_IO(1, 0, 0, 0),
2611
.parm = 0,
2612
.parm64 = isc_to_int_word(adapter->isc),
2613
};
2614
int ret = 0;
2615
2616
if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2617
return kvm_s390_inject_vm(kvm, &s390int);
2618
2619
mutex_lock(&fi->ais_lock);
2620
if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2621
trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2622
goto out;
2623
}
2624
2625
ret = kvm_s390_inject_vm(kvm, &s390int);
2626
if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2627
fi->nimm |= AIS_MODE_MASK(adapter->isc);
2628
trace_kvm_s390_modify_ais_mode(adapter->isc,
2629
KVM_S390_AIS_MODE_SINGLE, 2);
2630
}
2631
out:
2632
mutex_unlock(&fi->ais_lock);
2633
return ret;
2634
}
2635
2636
static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2637
{
2638
unsigned int id = attr->attr;
2639
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2640
2641
if (!adapter)
2642
return -EINVAL;
2643
2644
return kvm_s390_inject_airq(kvm, adapter);
2645
}
2646
2647
static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2648
{
2649
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2650
struct kvm_s390_ais_all ais;
2651
2652
if (!test_kvm_facility(kvm, 72))
2653
return -EOPNOTSUPP;
2654
2655
if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2656
return -EFAULT;
2657
2658
mutex_lock(&fi->ais_lock);
2659
fi->simm = ais.simm;
2660
fi->nimm = ais.nimm;
2661
mutex_unlock(&fi->ais_lock);
2662
2663
return 0;
2664
}
2665
2666
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2667
{
2668
int r = 0;
2669
unsigned long i;
2670
struct kvm_vcpu *vcpu;
2671
2672
switch (attr->group) {
2673
case KVM_DEV_FLIC_ENQUEUE:
2674
r = enqueue_floating_irq(dev, attr);
2675
break;
2676
case KVM_DEV_FLIC_CLEAR_IRQS:
2677
kvm_s390_clear_float_irqs(dev->kvm);
2678
break;
2679
case KVM_DEV_FLIC_APF_ENABLE:
2680
if (kvm_is_ucontrol(dev->kvm))
2681
return -EINVAL;
2682
dev->kvm->arch.gmap->pfault_enabled = 1;
2683
break;
2684
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2685
if (kvm_is_ucontrol(dev->kvm))
2686
return -EINVAL;
2687
dev->kvm->arch.gmap->pfault_enabled = 0;
2688
/*
2689
* Make sure no async faults are in transition when
2690
* clearing the queues. So we don't need to worry
2691
* about late coming workers.
2692
*/
2693
synchronize_srcu(&dev->kvm->srcu);
2694
kvm_for_each_vcpu(i, vcpu, dev->kvm)
2695
kvm_clear_async_pf_completion_queue(vcpu);
2696
break;
2697
case KVM_DEV_FLIC_ADAPTER_REGISTER:
2698
r = register_io_adapter(dev, attr);
2699
break;
2700
case KVM_DEV_FLIC_ADAPTER_MODIFY:
2701
r = modify_io_adapter(dev, attr);
2702
break;
2703
case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2704
r = clear_io_irq(dev->kvm, attr);
2705
break;
2706
case KVM_DEV_FLIC_AISM:
2707
r = modify_ais_mode(dev->kvm, attr);
2708
break;
2709
case KVM_DEV_FLIC_AIRQ_INJECT:
2710
r = flic_inject_airq(dev->kvm, attr);
2711
break;
2712
case KVM_DEV_FLIC_AISM_ALL:
2713
r = flic_ais_mode_set_all(dev->kvm, attr);
2714
break;
2715
default:
2716
r = -EINVAL;
2717
}
2718
2719
return r;
2720
}
2721
2722
static int flic_has_attr(struct kvm_device *dev,
2723
struct kvm_device_attr *attr)
2724
{
2725
switch (attr->group) {
2726
case KVM_DEV_FLIC_GET_ALL_IRQS:
2727
case KVM_DEV_FLIC_ENQUEUE:
2728
case KVM_DEV_FLIC_CLEAR_IRQS:
2729
case KVM_DEV_FLIC_APF_ENABLE:
2730
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2731
case KVM_DEV_FLIC_ADAPTER_REGISTER:
2732
case KVM_DEV_FLIC_ADAPTER_MODIFY:
2733
case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2734
case KVM_DEV_FLIC_AISM:
2735
case KVM_DEV_FLIC_AIRQ_INJECT:
2736
case KVM_DEV_FLIC_AISM_ALL:
2737
return 0;
2738
}
2739
return -ENXIO;
2740
}
2741
2742
static int flic_create(struct kvm_device *dev, u32 type)
2743
{
2744
if (!dev)
2745
return -EINVAL;
2746
if (dev->kvm->arch.flic)
2747
return -EINVAL;
2748
dev->kvm->arch.flic = dev;
2749
return 0;
2750
}
2751
2752
static void flic_destroy(struct kvm_device *dev)
2753
{
2754
dev->kvm->arch.flic = NULL;
2755
kfree(dev);
2756
}
2757
2758
/* s390 floating irq controller (flic) */
2759
struct kvm_device_ops kvm_flic_ops = {
2760
.name = "kvm-flic",
2761
.get_attr = flic_get_attr,
2762
.set_attr = flic_set_attr,
2763
.has_attr = flic_has_attr,
2764
.create = flic_create,
2765
.destroy = flic_destroy,
2766
};
2767
2768
static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2769
{
2770
unsigned long bit;
2771
2772
bit = bit_nr + (addr % PAGE_SIZE) * 8;
2773
2774
return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2775
}
2776
2777
static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2778
{
2779
struct mm_struct *mm = kvm->mm;
2780
struct page *page = NULL;
2781
int locked = 1;
2782
2783
if (mmget_not_zero(mm)) {
2784
mmap_read_lock(mm);
2785
get_user_pages_remote(mm, uaddr, 1, FOLL_WRITE,
2786
&page, &locked);
2787
if (locked)
2788
mmap_read_unlock(mm);
2789
mmput(mm);
2790
}
2791
2792
return page;
2793
}
2794
2795
static int adapter_indicators_set(struct kvm *kvm,
2796
struct s390_io_adapter *adapter,
2797
struct kvm_s390_adapter_int *adapter_int)
2798
{
2799
unsigned long bit;
2800
int summary_set, idx;
2801
struct page *ind_page, *summary_page;
2802
void *map;
2803
2804
ind_page = get_map_page(kvm, adapter_int->ind_addr);
2805
if (!ind_page)
2806
return -1;
2807
summary_page = get_map_page(kvm, adapter_int->summary_addr);
2808
if (!summary_page) {
2809
put_page(ind_page);
2810
return -1;
2811
}
2812
2813
idx = srcu_read_lock(&kvm->srcu);
2814
map = page_address(ind_page);
2815
bit = get_ind_bit(adapter_int->ind_addr,
2816
adapter_int->ind_offset, adapter->swap);
2817
set_bit(bit, map);
2818
mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2819
set_page_dirty_lock(ind_page);
2820
map = page_address(summary_page);
2821
bit = get_ind_bit(adapter_int->summary_addr,
2822
adapter_int->summary_offset, adapter->swap);
2823
summary_set = test_and_set_bit(bit, map);
2824
mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2825
set_page_dirty_lock(summary_page);
2826
srcu_read_unlock(&kvm->srcu, idx);
2827
2828
put_page(ind_page);
2829
put_page(summary_page);
2830
return summary_set ? 0 : 1;
2831
}
2832
2833
/*
2834
* < 0 - not injected due to error
2835
* = 0 - coalesced, summary indicator already active
2836
* > 0 - injected interrupt
2837
*/
2838
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2839
struct kvm *kvm, int irq_source_id, int level,
2840
bool line_status)
2841
{
2842
int ret;
2843
struct s390_io_adapter *adapter;
2844
2845
/* We're only interested in the 0->1 transition. */
2846
if (!level)
2847
return 0;
2848
adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2849
if (!adapter)
2850
return -1;
2851
ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2852
if ((ret > 0) && !adapter->masked) {
2853
ret = kvm_s390_inject_airq(kvm, adapter);
2854
if (ret == 0)
2855
ret = 1;
2856
}
2857
return ret;
2858
}
2859
2860
/*
2861
* Inject the machine check to the guest.
2862
*/
2863
void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2864
struct mcck_volatile_info *mcck_info)
2865
{
2866
struct kvm_s390_interrupt_info inti;
2867
struct kvm_s390_irq irq;
2868
struct kvm_s390_mchk_info *mchk;
2869
union mci mci;
2870
__u64 cr14 = 0; /* upper bits are not used */
2871
int rc;
2872
2873
mci.val = mcck_info->mcic;
2874
if (mci.sr)
2875
cr14 |= CR14_RECOVERY_SUBMASK;
2876
if (mci.dg)
2877
cr14 |= CR14_DEGRADATION_SUBMASK;
2878
if (mci.w)
2879
cr14 |= CR14_WARNING_SUBMASK;
2880
2881
mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2882
mchk->cr14 = cr14;
2883
mchk->mcic = mcck_info->mcic;
2884
mchk->ext_damage_code = mcck_info->ext_damage_code;
2885
mchk->failing_storage_address = mcck_info->failing_storage_address;
2886
if (mci.ck) {
2887
/* Inject the floating machine check */
2888
inti.type = KVM_S390_MCHK;
2889
rc = __inject_vm(vcpu->kvm, &inti);
2890
} else {
2891
/* Inject the machine check to specified vcpu */
2892
irq.type = KVM_S390_MCHK;
2893
rc = kvm_s390_inject_vcpu(vcpu, &irq);
2894
}
2895
WARN_ON_ONCE(rc);
2896
}
2897
2898
int kvm_set_routing_entry(struct kvm *kvm,
2899
struct kvm_kernel_irq_routing_entry *e,
2900
const struct kvm_irq_routing_entry *ue)
2901
{
2902
u64 uaddr_s, uaddr_i;
2903
int idx;
2904
2905
switch (ue->type) {
2906
/* we store the userspace addresses instead of the guest addresses */
2907
case KVM_IRQ_ROUTING_S390_ADAPTER:
2908
if (kvm_is_ucontrol(kvm))
2909
return -EINVAL;
2910
e->set = set_adapter_int;
2911
2912
idx = srcu_read_lock(&kvm->srcu);
2913
uaddr_s = gpa_to_hva(kvm, ue->u.adapter.summary_addr);
2914
uaddr_i = gpa_to_hva(kvm, ue->u.adapter.ind_addr);
2915
srcu_read_unlock(&kvm->srcu, idx);
2916
2917
if (kvm_is_error_hva(uaddr_s) || kvm_is_error_hva(uaddr_i))
2918
return -EFAULT;
2919
e->adapter.summary_addr = uaddr_s;
2920
e->adapter.ind_addr = uaddr_i;
2921
e->adapter.summary_offset = ue->u.adapter.summary_offset;
2922
e->adapter.ind_offset = ue->u.adapter.ind_offset;
2923
e->adapter.adapter_id = ue->u.adapter.adapter_id;
2924
return 0;
2925
default:
2926
return -EINVAL;
2927
}
2928
}
2929
2930
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2931
int irq_source_id, int level, bool line_status)
2932
{
2933
return -EINVAL;
2934
}
2935
2936
int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2937
{
2938
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2939
struct kvm_s390_irq *buf;
2940
int r = 0;
2941
int n;
2942
2943
buf = vmalloc(len);
2944
if (!buf)
2945
return -ENOMEM;
2946
2947
if (copy_from_user((void *) buf, irqstate, len)) {
2948
r = -EFAULT;
2949
goto out_free;
2950
}
2951
2952
/*
2953
* Don't allow setting the interrupt state
2954
* when there are already interrupts pending
2955
*/
2956
spin_lock(&li->lock);
2957
if (li->pending_irqs) {
2958
r = -EBUSY;
2959
goto out_unlock;
2960
}
2961
2962
for (n = 0; n < len / sizeof(*buf); n++) {
2963
r = do_inject_vcpu(vcpu, &buf[n]);
2964
if (r)
2965
break;
2966
}
2967
2968
out_unlock:
2969
spin_unlock(&li->lock);
2970
out_free:
2971
vfree(buf);
2972
2973
return r;
2974
}
2975
2976
static void store_local_irq(struct kvm_s390_local_interrupt *li,
2977
struct kvm_s390_irq *irq,
2978
unsigned long irq_type)
2979
{
2980
switch (irq_type) {
2981
case IRQ_PEND_MCHK_EX:
2982
case IRQ_PEND_MCHK_REP:
2983
irq->type = KVM_S390_MCHK;
2984
irq->u.mchk = li->irq.mchk;
2985
break;
2986
case IRQ_PEND_PROG:
2987
irq->type = KVM_S390_PROGRAM_INT;
2988
irq->u.pgm = li->irq.pgm;
2989
break;
2990
case IRQ_PEND_PFAULT_INIT:
2991
irq->type = KVM_S390_INT_PFAULT_INIT;
2992
irq->u.ext = li->irq.ext;
2993
break;
2994
case IRQ_PEND_EXT_EXTERNAL:
2995
irq->type = KVM_S390_INT_EXTERNAL_CALL;
2996
irq->u.extcall = li->irq.extcall;
2997
break;
2998
case IRQ_PEND_EXT_CLOCK_COMP:
2999
irq->type = KVM_S390_INT_CLOCK_COMP;
3000
break;
3001
case IRQ_PEND_EXT_CPU_TIMER:
3002
irq->type = KVM_S390_INT_CPU_TIMER;
3003
break;
3004
case IRQ_PEND_SIGP_STOP:
3005
irq->type = KVM_S390_SIGP_STOP;
3006
irq->u.stop = li->irq.stop;
3007
break;
3008
case IRQ_PEND_RESTART:
3009
irq->type = KVM_S390_RESTART;
3010
break;
3011
case IRQ_PEND_SET_PREFIX:
3012
irq->type = KVM_S390_SIGP_SET_PREFIX;
3013
irq->u.prefix = li->irq.prefix;
3014
break;
3015
}
3016
}
3017
3018
int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
3019
{
3020
int scn;
3021
DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
3022
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
3023
unsigned long pending_irqs;
3024
struct kvm_s390_irq irq;
3025
unsigned long irq_type;
3026
int cpuaddr;
3027
int n = 0;
3028
3029
spin_lock(&li->lock);
3030
pending_irqs = li->pending_irqs;
3031
memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
3032
sizeof(sigp_emerg_pending));
3033
spin_unlock(&li->lock);
3034
3035
for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
3036
memset(&irq, 0, sizeof(irq));
3037
if (irq_type == IRQ_PEND_EXT_EMERGENCY)
3038
continue;
3039
if (n + sizeof(irq) > len)
3040
return -ENOBUFS;
3041
store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
3042
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3043
return -EFAULT;
3044
n += sizeof(irq);
3045
}
3046
3047
if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3048
for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3049
memset(&irq, 0, sizeof(irq));
3050
if (n + sizeof(irq) > len)
3051
return -ENOBUFS;
3052
irq.type = KVM_S390_INT_EMERGENCY;
3053
irq.u.emerg.code = cpuaddr;
3054
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3055
return -EFAULT;
3056
n += sizeof(irq);
3057
}
3058
}
3059
3060
if (sca_ext_call_pending(vcpu, &scn)) {
3061
if (n + sizeof(irq) > len)
3062
return -ENOBUFS;
3063
memset(&irq, 0, sizeof(irq));
3064
irq.type = KVM_S390_INT_EXTERNAL_CALL;
3065
irq.u.extcall.code = scn;
3066
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3067
return -EFAULT;
3068
n += sizeof(irq);
3069
}
3070
3071
return n;
3072
}
3073
3074
static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3075
{
3076
int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3077
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3078
struct kvm_vcpu *vcpu;
3079
u8 vcpu_isc_mask;
3080
3081
for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3082
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3083
if (psw_ioint_disabled(vcpu))
3084
continue;
3085
vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3086
if (deliverable_mask & vcpu_isc_mask) {
3087
/* lately kicked but not yet running */
3088
if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3089
return;
3090
kvm_s390_vcpu_wakeup(vcpu);
3091
return;
3092
}
3093
}
3094
}
3095
3096
static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3097
{
3098
struct kvm_s390_gisa_interrupt *gi =
3099
container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3100
struct kvm *kvm =
3101
container_of(gi->origin, struct sie_page2, gisa)->kvm;
3102
u8 pending_mask;
3103
3104
pending_mask = gisa_get_ipm_or_restore_iam(gi);
3105
if (pending_mask) {
3106
__airqs_kick_single_vcpu(kvm, pending_mask);
3107
hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3108
return HRTIMER_RESTART;
3109
}
3110
3111
return HRTIMER_NORESTART;
3112
}
3113
3114
#define NULL_GISA_ADDR 0x00000000UL
3115
#define NONE_GISA_ADDR 0x00000001UL
3116
#define GISA_ADDR_MASK 0xfffff000UL
3117
3118
static void process_gib_alert_list(void)
3119
{
3120
struct kvm_s390_gisa_interrupt *gi;
3121
u32 final, gisa_phys, origin = 0UL;
3122
struct kvm_s390_gisa *gisa;
3123
struct kvm *kvm;
3124
3125
do {
3126
/*
3127
* If the NONE_GISA_ADDR is still stored in the alert list
3128
* origin, we will leave the outer loop. No further GISA has
3129
* been added to the alert list by millicode while processing
3130
* the current alert list.
3131
*/
3132
final = (origin & NONE_GISA_ADDR);
3133
/*
3134
* Cut off the alert list and store the NONE_GISA_ADDR in the
3135
* alert list origin to avoid further GAL interruptions.
3136
* A new alert list can be build up by millicode in parallel
3137
* for guests not in the yet cut-off alert list. When in the
3138
* final loop, store the NULL_GISA_ADDR instead. This will re-
3139
* enable GAL interruptions on the host again.
3140
*/
3141
origin = xchg(&gib->alert_list_origin,
3142
(!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3143
/*
3144
* Loop through the just cut-off alert list and start the
3145
* gisa timers to kick idle vcpus to consume the pending
3146
* interruptions asap.
3147
*/
3148
while (origin & GISA_ADDR_MASK) {
3149
gisa_phys = origin;
3150
gisa = phys_to_virt(gisa_phys);
3151
origin = gisa->next_alert;
3152
gisa->next_alert = gisa_phys;
3153
kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3154
gi = &kvm->arch.gisa_int;
3155
if (hrtimer_active(&gi->timer))
3156
hrtimer_cancel(&gi->timer);
3157
hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3158
}
3159
} while (!final);
3160
3161
}
3162
3163
void kvm_s390_gisa_clear(struct kvm *kvm)
3164
{
3165
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3166
3167
if (!gi->origin)
3168
return;
3169
gisa_clear_ipm(gi->origin);
3170
VM_EVENT(kvm, 3, "gisa 0x%p cleared", gi->origin);
3171
}
3172
3173
void kvm_s390_gisa_init(struct kvm *kvm)
3174
{
3175
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3176
3177
if (!css_general_characteristics.aiv)
3178
return;
3179
gi->origin = &kvm->arch.sie_page2->gisa;
3180
gi->alert.mask = 0;
3181
spin_lock_init(&gi->alert.ref_lock);
3182
gi->expires = 50 * 1000; /* 50 usec */
3183
hrtimer_setup(&gi->timer, gisa_vcpu_kicker, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3184
memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3185
gi->origin->next_alert = (u32)virt_to_phys(gi->origin);
3186
VM_EVENT(kvm, 3, "gisa 0x%p initialized", gi->origin);
3187
}
3188
3189
void kvm_s390_gisa_enable(struct kvm *kvm)
3190
{
3191
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3192
struct kvm_vcpu *vcpu;
3193
unsigned long i;
3194
u32 gisa_desc;
3195
3196
if (gi->origin)
3197
return;
3198
kvm_s390_gisa_init(kvm);
3199
gisa_desc = kvm_s390_get_gisa_desc(kvm);
3200
if (!gisa_desc)
3201
return;
3202
kvm_for_each_vcpu(i, vcpu, kvm) {
3203
mutex_lock(&vcpu->mutex);
3204
vcpu->arch.sie_block->gd = gisa_desc;
3205
vcpu->arch.sie_block->eca |= ECA_AIV;
3206
VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3207
vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3208
mutex_unlock(&vcpu->mutex);
3209
}
3210
}
3211
3212
void kvm_s390_gisa_destroy(struct kvm *kvm)
3213
{
3214
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3215
struct kvm_s390_gisa *gisa = gi->origin;
3216
3217
if (!gi->origin)
3218
return;
3219
WARN(gi->alert.mask != 0x00,
3220
"unexpected non zero alert.mask 0x%02x",
3221
gi->alert.mask);
3222
gi->alert.mask = 0x00;
3223
if (gisa_set_iam(gi->origin, gi->alert.mask))
3224
process_gib_alert_list();
3225
hrtimer_cancel(&gi->timer);
3226
gi->origin = NULL;
3227
VM_EVENT(kvm, 3, "gisa 0x%p destroyed", gisa);
3228
}
3229
3230
void kvm_s390_gisa_disable(struct kvm *kvm)
3231
{
3232
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3233
struct kvm_vcpu *vcpu;
3234
unsigned long i;
3235
3236
if (!gi->origin)
3237
return;
3238
kvm_for_each_vcpu(i, vcpu, kvm) {
3239
mutex_lock(&vcpu->mutex);
3240
vcpu->arch.sie_block->eca &= ~ECA_AIV;
3241
vcpu->arch.sie_block->gd = 0U;
3242
mutex_unlock(&vcpu->mutex);
3243
VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id);
3244
}
3245
kvm_s390_gisa_destroy(kvm);
3246
}
3247
3248
/**
3249
* kvm_s390_gisc_register - register a guest ISC
3250
*
3251
* @kvm: the kernel vm to work with
3252
* @gisc: the guest interruption sub class to register
3253
*
3254
* The function extends the vm specific alert mask to use.
3255
* The effective IAM mask in the GISA is updated as well
3256
* in case the GISA is not part of the GIB alert list.
3257
* It will be updated latest when the IAM gets restored
3258
* by gisa_get_ipm_or_restore_iam().
3259
*
3260
* Returns: the nonspecific ISC (NISC) the gib alert mechanism
3261
* has registered with the channel subsystem.
3262
* -ENODEV in case the vm uses no GISA
3263
* -ERANGE in case the guest ISC is invalid
3264
*/
3265
int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3266
{
3267
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3268
3269
if (!gi->origin)
3270
return -ENODEV;
3271
if (gisc > MAX_ISC)
3272
return -ERANGE;
3273
3274
spin_lock(&gi->alert.ref_lock);
3275
gi->alert.ref_count[gisc]++;
3276
if (gi->alert.ref_count[gisc] == 1) {
3277
gi->alert.mask |= 0x80 >> gisc;
3278
gisa_set_iam(gi->origin, gi->alert.mask);
3279
}
3280
spin_unlock(&gi->alert.ref_lock);
3281
3282
return gib->nisc;
3283
}
3284
EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3285
3286
/**
3287
* kvm_s390_gisc_unregister - unregister a guest ISC
3288
*
3289
* @kvm: the kernel vm to work with
3290
* @gisc: the guest interruption sub class to register
3291
*
3292
* The function reduces the vm specific alert mask to use.
3293
* The effective IAM mask in the GISA is updated as well
3294
* in case the GISA is not part of the GIB alert list.
3295
* It will be updated latest when the IAM gets restored
3296
* by gisa_get_ipm_or_restore_iam().
3297
*
3298
* Returns: the nonspecific ISC (NISC) the gib alert mechanism
3299
* has registered with the channel subsystem.
3300
* -ENODEV in case the vm uses no GISA
3301
* -ERANGE in case the guest ISC is invalid
3302
* -EINVAL in case the guest ISC is not registered
3303
*/
3304
int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3305
{
3306
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3307
int rc = 0;
3308
3309
if (!gi->origin)
3310
return -ENODEV;
3311
if (gisc > MAX_ISC)
3312
return -ERANGE;
3313
3314
spin_lock(&gi->alert.ref_lock);
3315
if (gi->alert.ref_count[gisc] == 0) {
3316
rc = -EINVAL;
3317
goto out;
3318
}
3319
gi->alert.ref_count[gisc]--;
3320
if (gi->alert.ref_count[gisc] == 0) {
3321
gi->alert.mask &= ~(0x80 >> gisc);
3322
gisa_set_iam(gi->origin, gi->alert.mask);
3323
}
3324
out:
3325
spin_unlock(&gi->alert.ref_lock);
3326
3327
return rc;
3328
}
3329
EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3330
3331
static void aen_host_forward(unsigned long si)
3332
{
3333
struct kvm_s390_gisa_interrupt *gi;
3334
struct zpci_gaite *gaite;
3335
struct kvm *kvm;
3336
3337
gaite = (struct zpci_gaite *)aift->gait +
3338
(si * sizeof(struct zpci_gaite));
3339
if (gaite->count == 0)
3340
return;
3341
if (gaite->aisb != 0)
3342
set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb));
3343
3344
kvm = kvm_s390_pci_si_to_kvm(aift, si);
3345
if (!kvm)
3346
return;
3347
gi = &kvm->arch.gisa_int;
3348
3349
if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) ||
3350
!(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) {
3351
gisa_set_ipm_gisc(gi->origin, gaite->gisc);
3352
if (hrtimer_active(&gi->timer))
3353
hrtimer_cancel(&gi->timer);
3354
hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3355
kvm->stat.aen_forward++;
3356
}
3357
}
3358
3359
static void aen_process_gait(u8 isc)
3360
{
3361
bool found = false, first = true;
3362
union zpci_sic_iib iib = {{0}};
3363
unsigned long si, flags;
3364
3365
spin_lock_irqsave(&aift->gait_lock, flags);
3366
3367
if (!aift->gait) {
3368
spin_unlock_irqrestore(&aift->gait_lock, flags);
3369
return;
3370
}
3371
3372
for (si = 0;;) {
3373
/* Scan adapter summary indicator bit vector */
3374
si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv));
3375
if (si == -1UL) {
3376
if (first || found) {
3377
/* Re-enable interrupts. */
3378
zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc,
3379
&iib);
3380
first = found = false;
3381
} else {
3382
/* Interrupts on and all bits processed */
3383
break;
3384
}
3385
found = false;
3386
si = 0;
3387
/* Scan again after re-enabling interrupts */
3388
continue;
3389
}
3390
found = true;
3391
aen_host_forward(si);
3392
}
3393
3394
spin_unlock_irqrestore(&aift->gait_lock, flags);
3395
}
3396
3397
static void gib_alert_irq_handler(struct airq_struct *airq,
3398
struct tpi_info *tpi_info)
3399
{
3400
struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info;
3401
3402
inc_irq_stat(IRQIO_GAL);
3403
3404
if ((info->forward || info->error) &&
3405
IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3406
aen_process_gait(info->isc);
3407
if (info->aism != 0)
3408
process_gib_alert_list();
3409
} else {
3410
process_gib_alert_list();
3411
}
3412
}
3413
3414
static struct airq_struct gib_alert_irq = {
3415
.handler = gib_alert_irq_handler,
3416
};
3417
3418
void kvm_s390_gib_destroy(void)
3419
{
3420
if (!gib)
3421
return;
3422
if (kvm_s390_pci_interp_allowed() && aift) {
3423
mutex_lock(&aift->aift_lock);
3424
kvm_s390_pci_aen_exit();
3425
mutex_unlock(&aift->aift_lock);
3426
}
3427
chsc_sgib(0);
3428
unregister_adapter_interrupt(&gib_alert_irq);
3429
free_page((unsigned long)gib);
3430
gib = NULL;
3431
}
3432
3433
int __init kvm_s390_gib_init(u8 nisc)
3434
{
3435
u32 gib_origin;
3436
int rc = 0;
3437
3438
if (!css_general_characteristics.aiv) {
3439
KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3440
goto out;
3441
}
3442
3443
gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3444
if (!gib) {
3445
rc = -ENOMEM;
3446
goto out;
3447
}
3448
3449
gib_alert_irq.isc = nisc;
3450
if (register_adapter_interrupt(&gib_alert_irq)) {
3451
pr_err("Registering the GIB alert interruption handler failed\n");
3452
rc = -EIO;
3453
goto out_free_gib;
3454
}
3455
/* adapter interrupts used for AP (applicable here) don't use the LSI */
3456
*gib_alert_irq.lsi_ptr = 0xff;
3457
3458
gib->nisc = nisc;
3459
gib_origin = virt_to_phys(gib);
3460
if (chsc_sgib(gib_origin)) {
3461
pr_err("Associating the GIB with the AIV facility failed\n");
3462
free_page((unsigned long)gib);
3463
gib = NULL;
3464
rc = -EIO;
3465
goto out_unreg_gal;
3466
}
3467
3468
if (kvm_s390_pci_interp_allowed()) {
3469
if (kvm_s390_pci_aen_init(nisc)) {
3470
pr_err("Initializing AEN for PCI failed\n");
3471
rc = -EIO;
3472
goto out_unreg_gal;
3473
}
3474
}
3475
3476
KVM_EVENT(3, "gib 0x%p (nisc=%d) initialized", gib, gib->nisc);
3477
goto out;
3478
3479
out_unreg_gal:
3480
unregister_adapter_interrupt(&gib_alert_irq);
3481
out_free_gib:
3482
free_page((unsigned long)gib);
3483
gib = NULL;
3484
out:
3485
return rc;
3486
}
3487
3488