Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/cpu/amd.c
29547 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include <linux/export.h>
3
#include <linux/bitops.h>
4
#include <linux/elf.h>
5
#include <linux/mm.h>
6
7
#include <linux/io.h>
8
#include <linux/sched.h>
9
#include <linux/sched/clock.h>
10
#include <linux/random.h>
11
#include <linux/topology.h>
12
#include <linux/platform_data/x86/amd-fch.h>
13
#include <asm/processor.h>
14
#include <asm/apic.h>
15
#include <asm/cacheinfo.h>
16
#include <asm/cpu.h>
17
#include <asm/cpu_device_id.h>
18
#include <asm/spec-ctrl.h>
19
#include <asm/smp.h>
20
#include <asm/numa.h>
21
#include <asm/pci-direct.h>
22
#include <asm/delay.h>
23
#include <asm/debugreg.h>
24
#include <asm/resctrl.h>
25
#include <asm/msr.h>
26
#include <asm/sev.h>
27
28
#ifdef CONFIG_X86_64
29
# include <asm/mmconfig.h>
30
#endif
31
32
#include "cpu.h"
33
34
u16 invlpgb_count_max __ro_after_init = 1;
35
36
static inline int rdmsrq_amd_safe(unsigned msr, u64 *p)
37
{
38
u32 gprs[8] = { 0 };
39
int err;
40
41
WARN_ONCE((boot_cpu_data.x86 != 0xf),
42
"%s should only be used on K8!\n", __func__);
43
44
gprs[1] = msr;
45
gprs[7] = 0x9c5a203a;
46
47
err = rdmsr_safe_regs(gprs);
48
49
*p = gprs[0] | ((u64)gprs[2] << 32);
50
51
return err;
52
}
53
54
static inline int wrmsrq_amd_safe(unsigned msr, u64 val)
55
{
56
u32 gprs[8] = { 0 };
57
58
WARN_ONCE((boot_cpu_data.x86 != 0xf),
59
"%s should only be used on K8!\n", __func__);
60
61
gprs[0] = (u32)val;
62
gprs[1] = msr;
63
gprs[2] = val >> 32;
64
gprs[7] = 0x9c5a203a;
65
66
return wrmsr_safe_regs(gprs);
67
}
68
69
/*
70
* B step AMD K6 before B 9730xxxx have hardware bugs that can cause
71
* misexecution of code under Linux. Owners of such processors should
72
* contact AMD for precise details and a CPU swap.
73
*
74
* See http://www.multimania.com/poulot/k6bug.html
75
* and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
76
* (Publication # 21266 Issue Date: August 1998)
77
*
78
* The following test is erm.. interesting. AMD neglected to up
79
* the chip setting when fixing the bug but they also tweaked some
80
* performance at the same time..
81
*/
82
83
#ifdef CONFIG_X86_32
84
extern __visible void vide(void);
85
__asm__(".text\n"
86
".globl vide\n"
87
".type vide, @function\n"
88
".align 4\n"
89
"vide: ret\n");
90
#endif
91
92
static void init_amd_k5(struct cpuinfo_x86 *c)
93
{
94
#ifdef CONFIG_X86_32
95
/*
96
* General Systems BIOSen alias the cpu frequency registers
97
* of the Elan at 0x000df000. Unfortunately, one of the Linux
98
* drivers subsequently pokes it, and changes the CPU speed.
99
* Workaround : Remove the unneeded alias.
100
*/
101
#define CBAR (0xfffc) /* Configuration Base Address (32-bit) */
102
#define CBAR_ENB (0x80000000)
103
#define CBAR_KEY (0X000000CB)
104
if (c->x86_model == 9 || c->x86_model == 10) {
105
if (inl(CBAR) & CBAR_ENB)
106
outl(0 | CBAR_KEY, CBAR);
107
}
108
#endif
109
}
110
111
static void init_amd_k6(struct cpuinfo_x86 *c)
112
{
113
#ifdef CONFIG_X86_32
114
u32 l, h;
115
int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
116
117
if (c->x86_model < 6) {
118
/* Based on AMD doc 20734R - June 2000 */
119
if (c->x86_model == 0) {
120
clear_cpu_cap(c, X86_FEATURE_APIC);
121
set_cpu_cap(c, X86_FEATURE_PGE);
122
}
123
return;
124
}
125
126
if (c->x86_model == 6 && c->x86_stepping == 1) {
127
const int K6_BUG_LOOP = 1000000;
128
int n;
129
void (*f_vide)(void);
130
u64 d, d2;
131
132
pr_info("AMD K6 stepping B detected - ");
133
134
/*
135
* It looks like AMD fixed the 2.6.2 bug and improved indirect
136
* calls at the same time.
137
*/
138
139
n = K6_BUG_LOOP;
140
f_vide = vide;
141
OPTIMIZER_HIDE_VAR(f_vide);
142
d = rdtsc();
143
while (n--)
144
f_vide();
145
d2 = rdtsc();
146
d = d2-d;
147
148
if (d > 20*K6_BUG_LOOP)
149
pr_cont("system stability may be impaired when more than 32 MB are used.\n");
150
else
151
pr_cont("probably OK (after B9730xxxx).\n");
152
}
153
154
/* K6 with old style WHCR */
155
if (c->x86_model < 8 ||
156
(c->x86_model == 8 && c->x86_stepping < 8)) {
157
/* We can only write allocate on the low 508Mb */
158
if (mbytes > 508)
159
mbytes = 508;
160
161
rdmsr(MSR_K6_WHCR, l, h);
162
if ((l&0x0000FFFF) == 0) {
163
unsigned long flags;
164
l = (1<<0)|((mbytes/4)<<1);
165
local_irq_save(flags);
166
wbinvd();
167
wrmsr(MSR_K6_WHCR, l, h);
168
local_irq_restore(flags);
169
pr_info("Enabling old style K6 write allocation for %d Mb\n",
170
mbytes);
171
}
172
return;
173
}
174
175
if ((c->x86_model == 8 && c->x86_stepping > 7) ||
176
c->x86_model == 9 || c->x86_model == 13) {
177
/* The more serious chips .. */
178
179
if (mbytes > 4092)
180
mbytes = 4092;
181
182
rdmsr(MSR_K6_WHCR, l, h);
183
if ((l&0xFFFF0000) == 0) {
184
unsigned long flags;
185
l = ((mbytes>>2)<<22)|(1<<16);
186
local_irq_save(flags);
187
wbinvd();
188
wrmsr(MSR_K6_WHCR, l, h);
189
local_irq_restore(flags);
190
pr_info("Enabling new style K6 write allocation for %d Mb\n",
191
mbytes);
192
}
193
194
return;
195
}
196
197
if (c->x86_model == 10) {
198
/* AMD Geode LX is model 10 */
199
/* placeholder for any needed mods */
200
return;
201
}
202
#endif
203
}
204
205
static void init_amd_k7(struct cpuinfo_x86 *c)
206
{
207
#ifdef CONFIG_X86_32
208
u32 l, h;
209
210
/*
211
* Bit 15 of Athlon specific MSR 15, needs to be 0
212
* to enable SSE on Palomino/Morgan/Barton CPU's.
213
* If the BIOS didn't enable it already, enable it here.
214
*/
215
if (c->x86_model >= 6 && c->x86_model <= 10) {
216
if (!cpu_has(c, X86_FEATURE_XMM)) {
217
pr_info("Enabling disabled K7/SSE Support.\n");
218
msr_clear_bit(MSR_K7_HWCR, 15);
219
set_cpu_cap(c, X86_FEATURE_XMM);
220
}
221
}
222
223
/*
224
* It's been determined by AMD that Athlons since model 8 stepping 1
225
* are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
226
* As per AMD technical note 27212 0.2
227
*/
228
if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
229
rdmsr(MSR_K7_CLK_CTL, l, h);
230
if ((l & 0xfff00000) != 0x20000000) {
231
pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
232
l, ((l & 0x000fffff)|0x20000000));
233
wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
234
}
235
}
236
237
/* calling is from identify_secondary_cpu() ? */
238
if (!c->cpu_index)
239
return;
240
241
/*
242
* Certain Athlons might work (for various values of 'work') in SMP
243
* but they are not certified as MP capable.
244
*/
245
/* Athlon 660/661 is valid. */
246
if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
247
(c->x86_stepping == 1)))
248
return;
249
250
/* Duron 670 is valid */
251
if ((c->x86_model == 7) && (c->x86_stepping == 0))
252
return;
253
254
/*
255
* Athlon 662, Duron 671, and Athlon >model 7 have capability
256
* bit. It's worth noting that the A5 stepping (662) of some
257
* Athlon XP's have the MP bit set.
258
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
259
* more.
260
*/
261
if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
262
((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
263
(c->x86_model > 7))
264
if (cpu_has(c, X86_FEATURE_MP))
265
return;
266
267
/* If we get here, not a certified SMP capable AMD system. */
268
269
/*
270
* Don't taint if we are running SMP kernel on a single non-MP
271
* approved Athlon
272
*/
273
WARN_ONCE(1, "WARNING: This combination of AMD"
274
" processors is not suitable for SMP.\n");
275
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
276
#endif
277
}
278
279
#ifdef CONFIG_NUMA
280
/*
281
* To workaround broken NUMA config. Read the comment in
282
* srat_detect_node().
283
*/
284
static int nearby_node(int apicid)
285
{
286
int i, node;
287
288
for (i = apicid - 1; i >= 0; i--) {
289
node = __apicid_to_node[i];
290
if (node != NUMA_NO_NODE && node_online(node))
291
return node;
292
}
293
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
294
node = __apicid_to_node[i];
295
if (node != NUMA_NO_NODE && node_online(node))
296
return node;
297
}
298
return first_node(node_online_map); /* Shouldn't happen */
299
}
300
#endif
301
302
static void srat_detect_node(struct cpuinfo_x86 *c)
303
{
304
#ifdef CONFIG_NUMA
305
int cpu = smp_processor_id();
306
int node;
307
unsigned apicid = c->topo.apicid;
308
309
node = numa_cpu_node(cpu);
310
if (node == NUMA_NO_NODE)
311
node = per_cpu_llc_id(cpu);
312
313
/*
314
* On multi-fabric platform (e.g. Numascale NumaChip) a
315
* platform-specific handler needs to be called to fixup some
316
* IDs of the CPU.
317
*/
318
if (x86_cpuinit.fixup_cpu_id)
319
x86_cpuinit.fixup_cpu_id(c, node);
320
321
if (!node_online(node)) {
322
/*
323
* Two possibilities here:
324
*
325
* - The CPU is missing memory and no node was created. In
326
* that case try picking one from a nearby CPU.
327
*
328
* - The APIC IDs differ from the HyperTransport node IDs
329
* which the K8 northbridge parsing fills in. Assume
330
* they are all increased by a constant offset, but in
331
* the same order as the HT nodeids. If that doesn't
332
* result in a usable node fall back to the path for the
333
* previous case.
334
*
335
* This workaround operates directly on the mapping between
336
* APIC ID and NUMA node, assuming certain relationship
337
* between APIC ID, HT node ID and NUMA topology. As going
338
* through CPU mapping may alter the outcome, directly
339
* access __apicid_to_node[].
340
*/
341
int ht_nodeid = c->topo.initial_apicid;
342
343
if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
344
node = __apicid_to_node[ht_nodeid];
345
/* Pick a nearby node */
346
if (!node_online(node))
347
node = nearby_node(apicid);
348
}
349
numa_set_node(cpu, node);
350
#endif
351
}
352
353
static void bsp_determine_snp(struct cpuinfo_x86 *c)
354
{
355
#ifdef CONFIG_ARCH_HAS_CC_PLATFORM
356
cc_vendor = CC_VENDOR_AMD;
357
358
if (cpu_has(c, X86_FEATURE_SEV_SNP)) {
359
/*
360
* RMP table entry format is not architectural and is defined by the
361
* per-processor PPR. Restrict SNP support on the known CPU models
362
* for which the RMP table entry format is currently defined or for
363
* processors which support the architecturally defined RMPREAD
364
* instruction.
365
*/
366
if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
367
(cpu_feature_enabled(X86_FEATURE_ZEN3) ||
368
cpu_feature_enabled(X86_FEATURE_ZEN4) ||
369
cpu_feature_enabled(X86_FEATURE_RMPREAD)) &&
370
snp_probe_rmptable_info()) {
371
cc_platform_set(CC_ATTR_HOST_SEV_SNP);
372
} else {
373
setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
374
cc_platform_clear(CC_ATTR_HOST_SEV_SNP);
375
}
376
}
377
#endif
378
}
379
380
#define ZEN_MODEL_STEP_UCODE(fam, model, step, ucode) \
381
X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, fam, model), \
382
step, step, ucode)
383
384
static const struct x86_cpu_id amd_tsa_microcode[] = {
385
ZEN_MODEL_STEP_UCODE(0x19, 0x01, 0x1, 0x0a0011d7),
386
ZEN_MODEL_STEP_UCODE(0x19, 0x01, 0x2, 0x0a00123b),
387
ZEN_MODEL_STEP_UCODE(0x19, 0x08, 0x2, 0x0a00820d),
388
ZEN_MODEL_STEP_UCODE(0x19, 0x11, 0x1, 0x0a10114c),
389
ZEN_MODEL_STEP_UCODE(0x19, 0x11, 0x2, 0x0a10124c),
390
ZEN_MODEL_STEP_UCODE(0x19, 0x18, 0x1, 0x0a108109),
391
ZEN_MODEL_STEP_UCODE(0x19, 0x21, 0x0, 0x0a20102e),
392
ZEN_MODEL_STEP_UCODE(0x19, 0x21, 0x2, 0x0a201211),
393
ZEN_MODEL_STEP_UCODE(0x19, 0x44, 0x1, 0x0a404108),
394
ZEN_MODEL_STEP_UCODE(0x19, 0x50, 0x0, 0x0a500012),
395
ZEN_MODEL_STEP_UCODE(0x19, 0x61, 0x2, 0x0a60120a),
396
ZEN_MODEL_STEP_UCODE(0x19, 0x74, 0x1, 0x0a704108),
397
ZEN_MODEL_STEP_UCODE(0x19, 0x75, 0x2, 0x0a705208),
398
ZEN_MODEL_STEP_UCODE(0x19, 0x78, 0x0, 0x0a708008),
399
ZEN_MODEL_STEP_UCODE(0x19, 0x7c, 0x0, 0x0a70c008),
400
ZEN_MODEL_STEP_UCODE(0x19, 0xa0, 0x2, 0x0aa00216),
401
{},
402
};
403
404
static void tsa_init(struct cpuinfo_x86 *c)
405
{
406
if (cpu_has(c, X86_FEATURE_HYPERVISOR))
407
return;
408
409
if (cpu_has(c, X86_FEATURE_ZEN3) ||
410
cpu_has(c, X86_FEATURE_ZEN4)) {
411
if (x86_match_min_microcode_rev(amd_tsa_microcode))
412
setup_force_cpu_cap(X86_FEATURE_VERW_CLEAR);
413
else
414
pr_debug("%s: current revision: 0x%x\n", __func__, c->microcode);
415
} else {
416
setup_force_cpu_cap(X86_FEATURE_TSA_SQ_NO);
417
setup_force_cpu_cap(X86_FEATURE_TSA_L1_NO);
418
}
419
}
420
421
static void bsp_init_amd(struct cpuinfo_x86 *c)
422
{
423
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
424
425
if (c->x86 > 0x10 ||
426
(c->x86 == 0x10 && c->x86_model >= 0x2)) {
427
u64 val;
428
429
rdmsrq(MSR_K7_HWCR, val);
430
if (!(val & BIT(24)))
431
pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
432
}
433
}
434
435
if (c->x86 == 0x15) {
436
unsigned long upperbit;
437
u32 cpuid, assoc;
438
439
cpuid = cpuid_edx(0x80000005);
440
assoc = cpuid >> 16 & 0xff;
441
upperbit = ((cpuid >> 24) << 10) / assoc;
442
443
va_align.mask = (upperbit - 1) & PAGE_MASK;
444
va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
445
446
/* A random value per boot for bit slice [12:upper_bit) */
447
va_align.bits = get_random_u32() & va_align.mask;
448
}
449
450
if (cpu_has(c, X86_FEATURE_MWAITX))
451
use_mwaitx_delay();
452
453
if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
454
!boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
455
c->x86 >= 0x15 && c->x86 <= 0x17) {
456
unsigned int bit;
457
458
switch (c->x86) {
459
case 0x15: bit = 54; break;
460
case 0x16: bit = 33; break;
461
case 0x17: bit = 10; break;
462
default: return;
463
}
464
/*
465
* Try to cache the base value so further operations can
466
* avoid RMW. If that faults, do not enable SSBD.
467
*/
468
if (!rdmsrq_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
469
setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
470
setup_force_cpu_cap(X86_FEATURE_SSBD);
471
x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
472
}
473
}
474
475
resctrl_cpu_detect(c);
476
477
/* Figure out Zen generations: */
478
switch (c->x86) {
479
case 0x17:
480
switch (c->x86_model) {
481
case 0x00 ... 0x2f:
482
case 0x50 ... 0x5f:
483
setup_force_cpu_cap(X86_FEATURE_ZEN1);
484
break;
485
case 0x30 ... 0x4f:
486
case 0x60 ... 0x7f:
487
case 0x90 ... 0x91:
488
case 0xa0 ... 0xaf:
489
setup_force_cpu_cap(X86_FEATURE_ZEN2);
490
break;
491
default:
492
goto warn;
493
}
494
break;
495
496
case 0x19:
497
switch (c->x86_model) {
498
case 0x00 ... 0x0f:
499
case 0x20 ... 0x5f:
500
setup_force_cpu_cap(X86_FEATURE_ZEN3);
501
break;
502
case 0x10 ... 0x1f:
503
case 0x60 ... 0xaf:
504
setup_force_cpu_cap(X86_FEATURE_ZEN4);
505
break;
506
default:
507
goto warn;
508
}
509
break;
510
511
case 0x1a:
512
switch (c->x86_model) {
513
case 0x00 ... 0x2f:
514
case 0x40 ... 0x4f:
515
case 0x60 ... 0x7f:
516
setup_force_cpu_cap(X86_FEATURE_ZEN5);
517
break;
518
case 0x50 ... 0x5f:
519
case 0x90 ... 0xaf:
520
case 0xc0 ... 0xcf:
521
setup_force_cpu_cap(X86_FEATURE_ZEN6);
522
break;
523
default:
524
goto warn;
525
}
526
break;
527
528
default:
529
break;
530
}
531
532
bsp_determine_snp(c);
533
tsa_init(c);
534
535
if (cpu_has(c, X86_FEATURE_GP_ON_USER_CPUID))
536
setup_force_cpu_cap(X86_FEATURE_CPUID_FAULT);
537
538
return;
539
540
warn:
541
WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model);
542
}
543
544
static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
545
{
546
u64 msr;
547
548
/*
549
* Mark using WBINVD is needed during kexec on processors that
550
* support SME. This provides support for performing a successful
551
* kexec when going from SME inactive to SME active (or vice-versa).
552
*
553
* The cache must be cleared so that if there are entries with the
554
* same physical address, both with and without the encryption bit,
555
* they don't race each other when flushed and potentially end up
556
* with the wrong entry being committed to memory.
557
*
558
* Test the CPUID bit directly because with mem_encrypt=off the
559
* BSP will clear the X86_FEATURE_SME bit and the APs will not
560
* see it set after that.
561
*/
562
if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
563
__this_cpu_write(cache_state_incoherent, true);
564
565
/*
566
* BIOS support is required for SME and SEV.
567
* For SME: If BIOS has enabled SME then adjust x86_phys_bits by
568
* the SME physical address space reduction value.
569
* If BIOS has not enabled SME then don't advertise the
570
* SME feature (set in scattered.c).
571
* If the kernel has not enabled SME via any means then
572
* don't advertise the SME feature.
573
* For SEV: If BIOS has not enabled SEV then don't advertise SEV and
574
* any additional functionality based on it.
575
*
576
* In all cases, since support for SME and SEV requires long mode,
577
* don't advertise the feature under CONFIG_X86_32.
578
*/
579
if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
580
/* Check if memory encryption is enabled */
581
rdmsrq(MSR_AMD64_SYSCFG, msr);
582
if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
583
goto clear_all;
584
585
/*
586
* Always adjust physical address bits. Even though this
587
* will be a value above 32-bits this is still done for
588
* CONFIG_X86_32 so that accurate values are reported.
589
*/
590
c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
591
592
if (IS_ENABLED(CONFIG_X86_32))
593
goto clear_all;
594
595
if (!sme_me_mask)
596
setup_clear_cpu_cap(X86_FEATURE_SME);
597
598
rdmsrq(MSR_K7_HWCR, msr);
599
if (!(msr & MSR_K7_HWCR_SMMLOCK))
600
goto clear_sev;
601
602
return;
603
604
clear_all:
605
setup_clear_cpu_cap(X86_FEATURE_SME);
606
clear_sev:
607
setup_clear_cpu_cap(X86_FEATURE_SEV);
608
setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
609
setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
610
}
611
}
612
613
static void early_init_amd(struct cpuinfo_x86 *c)
614
{
615
u32 dummy;
616
617
if (c->x86 >= 0xf)
618
set_cpu_cap(c, X86_FEATURE_K8);
619
620
rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
621
622
/*
623
* c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
624
* with P/T states and does not stop in deep C-states
625
*/
626
if (c->x86_power & (1 << 8)) {
627
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
628
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
629
}
630
631
/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
632
if (c->x86_power & BIT(12))
633
set_cpu_cap(c, X86_FEATURE_ACC_POWER);
634
635
/* Bit 14 indicates the Runtime Average Power Limit interface. */
636
if (c->x86_power & BIT(14))
637
set_cpu_cap(c, X86_FEATURE_RAPL);
638
639
#ifdef CONFIG_X86_64
640
set_cpu_cap(c, X86_FEATURE_SYSCALL32);
641
#else
642
/* Set MTRR capability flag if appropriate */
643
if (c->x86 == 5)
644
if (c->x86_model == 13 || c->x86_model == 9 ||
645
(c->x86_model == 8 && c->x86_stepping >= 8))
646
set_cpu_cap(c, X86_FEATURE_K6_MTRR);
647
#endif
648
#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
649
/*
650
* ApicID can always be treated as an 8-bit value for AMD APIC versions
651
* >= 0x10, but even old K8s came out of reset with version 0x10. So, we
652
* can safely set X86_FEATURE_EXTD_APICID unconditionally for families
653
* after 16h.
654
*/
655
if (boot_cpu_has(X86_FEATURE_APIC)) {
656
if (c->x86 > 0x16)
657
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
658
else if (c->x86 >= 0xf) {
659
/* check CPU config space for extended APIC ID */
660
unsigned int val;
661
662
val = read_pci_config(0, 24, 0, 0x68);
663
if ((val >> 17 & 0x3) == 0x3)
664
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
665
}
666
}
667
#endif
668
669
/*
670
* This is only needed to tell the kernel whether to use VMCALL
671
* and VMMCALL. VMMCALL is never executed except under virt, so
672
* we can set it unconditionally.
673
*/
674
set_cpu_cap(c, X86_FEATURE_VMMCALL);
675
676
/* F16h erratum 793, CVE-2013-6885 */
677
if (c->x86 == 0x16 && c->x86_model <= 0xf)
678
msr_set_bit(MSR_AMD64_LS_CFG, 15);
679
680
early_detect_mem_encrypt(c);
681
682
if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) {
683
if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB))
684
setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
685
else if (c->x86 >= 0x19 && !wrmsrq_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) {
686
setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
687
setup_force_cpu_cap(X86_FEATURE_SBPB);
688
}
689
}
690
}
691
692
static void init_amd_k8(struct cpuinfo_x86 *c)
693
{
694
u32 level;
695
u64 value;
696
697
/* On C+ stepping K8 rep microcode works well for copy/memset */
698
level = cpuid_eax(1);
699
if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
700
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
701
702
/*
703
* Some BIOSes incorrectly force this feature, but only K8 revision D
704
* (model = 0x14) and later actually support it.
705
* (AMD Erratum #110, docId: 25759).
706
*/
707
if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM) && !cpu_has(c, X86_FEATURE_HYPERVISOR)) {
708
clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
709
if (!rdmsrq_amd_safe(0xc001100d, &value)) {
710
value &= ~BIT_64(32);
711
wrmsrq_amd_safe(0xc001100d, value);
712
}
713
}
714
715
if (!c->x86_model_id[0])
716
strscpy(c->x86_model_id, "Hammer");
717
718
#ifdef CONFIG_SMP
719
/*
720
* Disable TLB flush filter by setting HWCR.FFDIS on K8
721
* bit 6 of msr C001_0015
722
*
723
* Errata 63 for SH-B3 steppings
724
* Errata 122 for all steppings (F+ have it disabled by default)
725
*/
726
msr_set_bit(MSR_K7_HWCR, 6);
727
#endif
728
set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
729
730
/*
731
* Check models and steppings affected by erratum 400. This is
732
* used to select the proper idle routine and to enable the
733
* check whether the machine is affected in arch_post_acpi_subsys_init()
734
* which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
735
*/
736
if (c->x86_model > 0x41 ||
737
(c->x86_model == 0x41 && c->x86_stepping >= 0x2))
738
setup_force_cpu_bug(X86_BUG_AMD_E400);
739
}
740
741
static void init_amd_gh(struct cpuinfo_x86 *c)
742
{
743
#ifdef CONFIG_MMCONF_FAM10H
744
/* do this for boot cpu */
745
if (c == &boot_cpu_data)
746
check_enable_amd_mmconf_dmi();
747
748
fam10h_check_enable_mmcfg();
749
#endif
750
751
/*
752
* Disable GART TLB Walk Errors on Fam10h. We do this here because this
753
* is always needed when GART is enabled, even in a kernel which has no
754
* MCE support built in. BIOS should disable GartTlbWlk Errors already.
755
* If it doesn't, we do it here as suggested by the BKDG.
756
*
757
* Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
758
*/
759
msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
760
761
/*
762
* On family 10h BIOS may not have properly enabled WC+ support, causing
763
* it to be converted to CD memtype. This may result in performance
764
* degradation for certain nested-paging guests. Prevent this conversion
765
* by clearing bit 24 in MSR_AMD64_BU_CFG2.
766
*
767
* NOTE: we want to use the _safe accessors so as not to #GP kvm
768
* guests on older kvm hosts.
769
*/
770
msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
771
772
set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
773
774
/*
775
* Check models and steppings affected by erratum 400. This is
776
* used to select the proper idle routine and to enable the
777
* check whether the machine is affected in arch_post_acpi_subsys_init()
778
* which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
779
*/
780
if (c->x86_model > 0x2 ||
781
(c->x86_model == 0x2 && c->x86_stepping >= 0x1))
782
setup_force_cpu_bug(X86_BUG_AMD_E400);
783
}
784
785
static void init_amd_ln(struct cpuinfo_x86 *c)
786
{
787
/*
788
* Apply erratum 665 fix unconditionally so machines without a BIOS
789
* fix work.
790
*/
791
msr_set_bit(MSR_AMD64_DE_CFG, 31);
792
}
793
794
static bool rdrand_force;
795
796
static int __init rdrand_cmdline(char *str)
797
{
798
if (!str)
799
return -EINVAL;
800
801
if (!strcmp(str, "force"))
802
rdrand_force = true;
803
else
804
return -EINVAL;
805
806
return 0;
807
}
808
early_param("rdrand", rdrand_cmdline);
809
810
static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
811
{
812
/*
813
* Saving of the MSR used to hide the RDRAND support during
814
* suspend/resume is done by arch/x86/power/cpu.c, which is
815
* dependent on CONFIG_PM_SLEEP.
816
*/
817
if (!IS_ENABLED(CONFIG_PM_SLEEP))
818
return;
819
820
/*
821
* The self-test can clear X86_FEATURE_RDRAND, so check for
822
* RDRAND support using the CPUID function directly.
823
*/
824
if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
825
return;
826
827
msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
828
829
/*
830
* Verify that the CPUID change has occurred in case the kernel is
831
* running virtualized and the hypervisor doesn't support the MSR.
832
*/
833
if (cpuid_ecx(1) & BIT(30)) {
834
pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
835
return;
836
}
837
838
clear_cpu_cap(c, X86_FEATURE_RDRAND);
839
pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
840
}
841
842
static void init_amd_jg(struct cpuinfo_x86 *c)
843
{
844
/*
845
* Some BIOS implementations do not restore proper RDRAND support
846
* across suspend and resume. Check on whether to hide the RDRAND
847
* instruction support via CPUID.
848
*/
849
clear_rdrand_cpuid_bit(c);
850
}
851
852
static void init_amd_bd(struct cpuinfo_x86 *c)
853
{
854
u64 value;
855
856
/*
857
* The way access filter has a performance penalty on some workloads.
858
* Disable it on the affected CPUs.
859
*/
860
if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
861
if (!rdmsrq_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
862
value |= 0x1E;
863
wrmsrq_safe(MSR_F15H_IC_CFG, value);
864
}
865
}
866
867
/*
868
* Some BIOS implementations do not restore proper RDRAND support
869
* across suspend and resume. Check on whether to hide the RDRAND
870
* instruction support via CPUID.
871
*/
872
clear_rdrand_cpuid_bit(c);
873
}
874
875
static const struct x86_cpu_id erratum_1386_microcode[] = {
876
X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x01), 0x2, 0x2, 0x0800126e),
877
X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x31), 0x0, 0x0, 0x08301052),
878
{}
879
};
880
881
static void fix_erratum_1386(struct cpuinfo_x86 *c)
882
{
883
/*
884
* Work around Erratum 1386. The XSAVES instruction malfunctions in
885
* certain circumstances on Zen1/2 uarch, and not all parts have had
886
* updated microcode at the time of writing (March 2023).
887
*
888
* Affected parts all have no supervisor XSAVE states, meaning that
889
* the XSAVEC instruction (which works fine) is equivalent.
890
*
891
* Clear the feature flag only on microcode revisions which
892
* don't have the fix.
893
*/
894
if (x86_match_min_microcode_rev(erratum_1386_microcode))
895
return;
896
897
clear_cpu_cap(c, X86_FEATURE_XSAVES);
898
}
899
900
void init_spectral_chicken(struct cpuinfo_x86 *c)
901
{
902
#ifdef CONFIG_MITIGATION_UNRET_ENTRY
903
u64 value;
904
905
/*
906
* On Zen2 we offer this chicken (bit) on the altar of Speculation.
907
*
908
* This suppresses speculation from the middle of a basic block, i.e. it
909
* suppresses non-branch predictions.
910
*/
911
if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
912
if (!rdmsrq_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
913
value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
914
wrmsrq_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
915
}
916
}
917
#endif
918
}
919
920
static void init_amd_zen_common(void)
921
{
922
setup_force_cpu_cap(X86_FEATURE_ZEN);
923
#ifdef CONFIG_NUMA
924
node_reclaim_distance = 32;
925
#endif
926
}
927
928
static void init_amd_zen1(struct cpuinfo_x86 *c)
929
{
930
fix_erratum_1386(c);
931
932
/* Fix up CPUID bits, but only if not virtualised. */
933
if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
934
935
/* Erratum 1076: CPB feature bit not being set in CPUID. */
936
if (!cpu_has(c, X86_FEATURE_CPB))
937
set_cpu_cap(c, X86_FEATURE_CPB);
938
}
939
940
pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n");
941
setup_force_cpu_bug(X86_BUG_DIV0);
942
943
/*
944
* Turn off the Instructions Retired free counter on machines that are
945
* susceptible to erratum #1054 "Instructions Retired Performance
946
* Counter May Be Inaccurate".
947
*/
948
if (c->x86_model < 0x30) {
949
msr_clear_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
950
clear_cpu_cap(c, X86_FEATURE_IRPERF);
951
}
952
}
953
954
static bool cpu_has_zenbleed_microcode(void)
955
{
956
u32 good_rev = 0;
957
958
switch (boot_cpu_data.x86_model) {
959
case 0x30 ... 0x3f: good_rev = 0x0830107b; break;
960
case 0x60 ... 0x67: good_rev = 0x0860010c; break;
961
case 0x68 ... 0x6f: good_rev = 0x08608107; break;
962
case 0x70 ... 0x7f: good_rev = 0x08701033; break;
963
case 0xa0 ... 0xaf: good_rev = 0x08a00009; break;
964
965
default:
966
return false;
967
}
968
969
if (boot_cpu_data.microcode < good_rev)
970
return false;
971
972
return true;
973
}
974
975
static void zen2_zenbleed_check(struct cpuinfo_x86 *c)
976
{
977
if (cpu_has(c, X86_FEATURE_HYPERVISOR))
978
return;
979
980
if (!cpu_has(c, X86_FEATURE_AVX))
981
return;
982
983
if (!cpu_has_zenbleed_microcode()) {
984
pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
985
msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
986
} else {
987
msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
988
}
989
}
990
991
static void init_amd_zen2(struct cpuinfo_x86 *c)
992
{
993
init_spectral_chicken(c);
994
fix_erratum_1386(c);
995
zen2_zenbleed_check(c);
996
997
/* Disable RDSEED on AMD Cyan Skillfish because of an error. */
998
if (c->x86_model == 0x47 && c->x86_stepping == 0x0) {
999
clear_cpu_cap(c, X86_FEATURE_RDSEED);
1000
msr_clear_bit(MSR_AMD64_CPUID_FN_7, 18);
1001
pr_emerg("RDSEED is not reliable on this platform; disabling.\n");
1002
}
1003
1004
/* Correct misconfigured CPUID on some clients. */
1005
clear_cpu_cap(c, X86_FEATURE_INVLPGB);
1006
}
1007
1008
static void init_amd_zen3(struct cpuinfo_x86 *c)
1009
{
1010
if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1011
/*
1012
* Zen3 (Fam19 model < 0x10) parts are not susceptible to
1013
* Branch Type Confusion, but predate the allocation of the
1014
* BTC_NO bit.
1015
*/
1016
if (!cpu_has(c, X86_FEATURE_BTC_NO))
1017
set_cpu_cap(c, X86_FEATURE_BTC_NO);
1018
}
1019
}
1020
1021
static void init_amd_zen4(struct cpuinfo_x86 *c)
1022
{
1023
if (!cpu_has(c, X86_FEATURE_HYPERVISOR))
1024
msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT);
1025
1026
/*
1027
* These Zen4 SoCs advertise support for virtualized VMLOAD/VMSAVE
1028
* in some BIOS versions but they can lead to random host reboots.
1029
*/
1030
switch (c->x86_model) {
1031
case 0x18 ... 0x1f:
1032
case 0x60 ... 0x7f:
1033
clear_cpu_cap(c, X86_FEATURE_V_VMSAVE_VMLOAD);
1034
break;
1035
}
1036
}
1037
1038
static void init_amd_zen5(struct cpuinfo_x86 *c)
1039
{
1040
}
1041
1042
static void init_amd(struct cpuinfo_x86 *c)
1043
{
1044
u64 vm_cr;
1045
1046
early_init_amd(c);
1047
1048
/*
1049
* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
1050
* 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
1051
*/
1052
clear_cpu_cap(c, 0*32+31);
1053
1054
if (c->x86 >= 0x10)
1055
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
1056
1057
/* AMD FSRM also implies FSRS */
1058
if (cpu_has(c, X86_FEATURE_FSRM))
1059
set_cpu_cap(c, X86_FEATURE_FSRS);
1060
1061
/* K6s reports MCEs but don't actually have all the MSRs */
1062
if (c->x86 < 6)
1063
clear_cpu_cap(c, X86_FEATURE_MCE);
1064
1065
switch (c->x86) {
1066
case 4: init_amd_k5(c); break;
1067
case 5: init_amd_k6(c); break;
1068
case 6: init_amd_k7(c); break;
1069
case 0xf: init_amd_k8(c); break;
1070
case 0x10: init_amd_gh(c); break;
1071
case 0x12: init_amd_ln(c); break;
1072
case 0x15: init_amd_bd(c); break;
1073
case 0x16: init_amd_jg(c); break;
1074
}
1075
1076
/*
1077
* Save up on some future enablement work and do common Zen
1078
* settings.
1079
*/
1080
if (c->x86 >= 0x17)
1081
init_amd_zen_common();
1082
1083
if (boot_cpu_has(X86_FEATURE_ZEN1))
1084
init_amd_zen1(c);
1085
else if (boot_cpu_has(X86_FEATURE_ZEN2))
1086
init_amd_zen2(c);
1087
else if (boot_cpu_has(X86_FEATURE_ZEN3))
1088
init_amd_zen3(c);
1089
else if (boot_cpu_has(X86_FEATURE_ZEN4))
1090
init_amd_zen4(c);
1091
else if (boot_cpu_has(X86_FEATURE_ZEN5))
1092
init_amd_zen5(c);
1093
1094
/*
1095
* Enable workaround for FXSAVE leak on CPUs
1096
* without a XSaveErPtr feature
1097
*/
1098
if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
1099
set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
1100
1101
cpu_detect_cache_sizes(c);
1102
1103
srat_detect_node(c);
1104
1105
init_amd_cacheinfo(c);
1106
1107
if (cpu_has(c, X86_FEATURE_SVM)) {
1108
rdmsrq(MSR_VM_CR, vm_cr);
1109
if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) {
1110
pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n");
1111
clear_cpu_cap(c, X86_FEATURE_SVM);
1112
}
1113
}
1114
1115
if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) {
1116
/*
1117
* Use LFENCE for execution serialization. On families which
1118
* don't have that MSR, LFENCE is already serializing.
1119
* msr_set_bit() uses the safe accessors, too, even if the MSR
1120
* is not present.
1121
*/
1122
msr_set_bit(MSR_AMD64_DE_CFG,
1123
MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
1124
1125
/* A serializing LFENCE stops RDTSC speculation */
1126
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
1127
}
1128
1129
/*
1130
* Family 0x12 and above processors have APIC timer
1131
* running in deep C states.
1132
*/
1133
if (c->x86 > 0x11)
1134
set_cpu_cap(c, X86_FEATURE_ARAT);
1135
1136
/* 3DNow or LM implies PREFETCHW */
1137
if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
1138
if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
1139
set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
1140
1141
/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
1142
if (!cpu_feature_enabled(X86_FEATURE_XENPV))
1143
set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1144
1145
/* Enable the Instructions Retired free counter */
1146
if (cpu_has(c, X86_FEATURE_IRPERF))
1147
msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
1148
1149
check_null_seg_clears_base(c);
1150
1151
/*
1152
* Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up
1153
* using the trampoline code and as part of it, MSR_EFER gets prepared there in
1154
* order to be replicated onto them. Regardless, set it here again, if not set,
1155
* to protect against any future refactoring/code reorganization which might
1156
* miss setting this important bit.
1157
*/
1158
if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1159
cpu_has(c, X86_FEATURE_AUTOIBRS))
1160
WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS) < 0);
1161
1162
/* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */
1163
clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1164
1165
/* Enable Translation Cache Extension */
1166
if (cpu_has(c, X86_FEATURE_TCE))
1167
msr_set_bit(MSR_EFER, _EFER_TCE);
1168
}
1169
1170
#ifdef CONFIG_X86_32
1171
static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
1172
{
1173
/* AMD errata T13 (order #21922) */
1174
if (c->x86 == 6) {
1175
/* Duron Rev A0 */
1176
if (c->x86_model == 3 && c->x86_stepping == 0)
1177
size = 64;
1178
/* Tbird rev A1/A2 */
1179
if (c->x86_model == 4 &&
1180
(c->x86_stepping == 0 || c->x86_stepping == 1))
1181
size = 256;
1182
}
1183
return size;
1184
}
1185
#endif
1186
1187
static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
1188
{
1189
u32 ebx, eax, ecx, edx;
1190
u16 mask = 0xfff;
1191
1192
if (c->x86 < 0xf)
1193
return;
1194
1195
if (c->extended_cpuid_level < 0x80000006)
1196
return;
1197
1198
cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
1199
1200
tlb_lld_4k = (ebx >> 16) & mask;
1201
tlb_lli_4k = ebx & mask;
1202
1203
/*
1204
* K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
1205
* characteristics from the CPUID function 0x80000005 instead.
1206
*/
1207
if (c->x86 == 0xf) {
1208
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1209
mask = 0xff;
1210
}
1211
1212
/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1213
if (!((eax >> 16) & mask))
1214
tlb_lld_2m = (cpuid_eax(0x80000005) >> 16) & 0xff;
1215
else
1216
tlb_lld_2m = (eax >> 16) & mask;
1217
1218
/* a 4M entry uses two 2M entries */
1219
tlb_lld_4m = tlb_lld_2m >> 1;
1220
1221
/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1222
if (!(eax & mask)) {
1223
/* Erratum 658 */
1224
if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
1225
tlb_lli_2m = 1024;
1226
} else {
1227
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1228
tlb_lli_2m = eax & 0xff;
1229
}
1230
} else
1231
tlb_lli_2m = eax & mask;
1232
1233
tlb_lli_4m = tlb_lli_2m >> 1;
1234
1235
/* Max number of pages INVLPGB can invalidate in one shot */
1236
if (cpu_has(c, X86_FEATURE_INVLPGB))
1237
invlpgb_count_max = (cpuid_edx(0x80000008) & 0xffff) + 1;
1238
}
1239
1240
static const struct cpu_dev amd_cpu_dev = {
1241
.c_vendor = "AMD",
1242
.c_ident = { "AuthenticAMD" },
1243
#ifdef CONFIG_X86_32
1244
.legacy_models = {
1245
{ .family = 4, .model_names =
1246
{
1247
[3] = "486 DX/2",
1248
[7] = "486 DX/2-WB",
1249
[8] = "486 DX/4",
1250
[9] = "486 DX/4-WB",
1251
[14] = "Am5x86-WT",
1252
[15] = "Am5x86-WB"
1253
}
1254
},
1255
},
1256
.legacy_cache_size = amd_size_cache,
1257
#endif
1258
.c_early_init = early_init_amd,
1259
.c_detect_tlb = cpu_detect_tlb_amd,
1260
.c_bsp_init = bsp_init_amd,
1261
.c_init = init_amd,
1262
.c_x86_vendor = X86_VENDOR_AMD,
1263
};
1264
1265
cpu_dev_register(amd_cpu_dev);
1266
1267
static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask);
1268
1269
static unsigned int amd_msr_dr_addr_masks[] = {
1270
MSR_F16H_DR0_ADDR_MASK,
1271
MSR_F16H_DR1_ADDR_MASK,
1272
MSR_F16H_DR1_ADDR_MASK + 1,
1273
MSR_F16H_DR1_ADDR_MASK + 2
1274
};
1275
1276
void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr)
1277
{
1278
int cpu = smp_processor_id();
1279
1280
if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1281
return;
1282
1283
if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1284
return;
1285
1286
if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask)
1287
return;
1288
1289
wrmsrq(amd_msr_dr_addr_masks[dr], mask);
1290
per_cpu(amd_dr_addr_mask, cpu)[dr] = mask;
1291
}
1292
1293
unsigned long amd_get_dr_addr_mask(unsigned int dr)
1294
{
1295
if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1296
return 0;
1297
1298
if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1299
return 0;
1300
1301
return per_cpu(amd_dr_addr_mask[dr], smp_processor_id());
1302
}
1303
EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask);
1304
1305
static void zenbleed_check_cpu(void *unused)
1306
{
1307
struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
1308
1309
zen2_zenbleed_check(c);
1310
}
1311
1312
void amd_check_microcode(void)
1313
{
1314
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1315
return;
1316
1317
if (cpu_feature_enabled(X86_FEATURE_ZEN2))
1318
on_each_cpu(zenbleed_check_cpu, NULL, 1);
1319
}
1320
1321
static const char * const s5_reset_reason_txt[] = {
1322
[0] = "thermal pin BP_THERMTRIP_L was tripped",
1323
[1] = "power button was pressed for 4 seconds",
1324
[2] = "shutdown pin was tripped",
1325
[4] = "remote ASF power off command was received",
1326
[9] = "internal CPU thermal limit was tripped",
1327
[16] = "system reset pin BP_SYS_RST_L was tripped",
1328
[17] = "software issued PCI reset",
1329
[18] = "software wrote 0x4 to reset control register 0xCF9",
1330
[19] = "software wrote 0x6 to reset control register 0xCF9",
1331
[20] = "software wrote 0xE to reset control register 0xCF9",
1332
[21] = "ACPI power state transition occurred",
1333
[22] = "keyboard reset pin KB_RST_L was tripped",
1334
[23] = "internal CPU shutdown event occurred",
1335
[24] = "system failed to boot before failed boot timer expired",
1336
[25] = "hardware watchdog timer expired",
1337
[26] = "remote ASF reset command was received",
1338
[27] = "an uncorrected error caused a data fabric sync flood event",
1339
[29] = "FCH and MP1 failed warm reset handshake",
1340
[30] = "a parity error occurred",
1341
[31] = "a software sync flood event occurred",
1342
};
1343
1344
static __init int print_s5_reset_status_mmio(void)
1345
{
1346
void __iomem *addr;
1347
u32 value;
1348
int i;
1349
1350
if (!cpu_feature_enabled(X86_FEATURE_ZEN))
1351
return 0;
1352
1353
addr = ioremap(FCH_PM_BASE + FCH_PM_S5_RESET_STATUS, sizeof(value));
1354
if (!addr)
1355
return 0;
1356
1357
value = ioread32(addr);
1358
iounmap(addr);
1359
1360
/* Value with "all bits set" is an error response and should be ignored. */
1361
if (value == U32_MAX)
1362
return 0;
1363
1364
for (i = 0; i < ARRAY_SIZE(s5_reset_reason_txt); i++) {
1365
if (!(value & BIT(i)))
1366
continue;
1367
1368
if (s5_reset_reason_txt[i]) {
1369
pr_info("x86/amd: Previous system reset reason [0x%08x]: %s\n",
1370
value, s5_reset_reason_txt[i]);
1371
}
1372
}
1373
1374
return 0;
1375
}
1376
late_initcall(print_s5_reset_status_mmio);
1377
1378