Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/reverse_cpuid.h
29521 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3
#define ARCH_X86_KVM_REVERSE_CPUID_H
4
5
#include <uapi/asm/kvm.h>
6
#include <asm/cpufeature.h>
7
#include <asm/cpufeatures.h>
8
9
/*
10
* Define a KVM-only feature flag.
11
*
12
* For features that are scattered by cpufeatures.h, __feature_translate() also
13
* needs to be updated to translate the kernel-defined feature into the
14
* KVM-defined feature.
15
*
16
* For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
17
* forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
18
* that X86_FEATURE_* can be used in KVM. No __feature_translate() handling is
19
* needed in this case.
20
*/
21
#define KVM_X86_FEATURE(w, f) ((w)*32 + (f))
22
23
/* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
24
#define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0)
25
#define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1)
26
#define KVM_X86_FEATURE_SGX_EDECCSSA KVM_X86_FEATURE(CPUID_12_EAX, 11)
27
28
/* Intel-defined sub-features, CPUID level 0x00000007:1 (ECX) */
29
#define KVM_X86_FEATURE_MSR_IMM KVM_X86_FEATURE(CPUID_7_1_ECX, 5)
30
31
/* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
32
#define X86_FEATURE_AVX_VNNI_INT8 KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
33
#define X86_FEATURE_AVX_NE_CONVERT KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
34
#define X86_FEATURE_AMX_COMPLEX KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
35
#define X86_FEATURE_AVX_VNNI_INT16 KVM_X86_FEATURE(CPUID_7_1_EDX, 10)
36
#define X86_FEATURE_PREFETCHITI KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
37
#define X86_FEATURE_AVX10 KVM_X86_FEATURE(CPUID_7_1_EDX, 19)
38
39
/* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
40
#define X86_FEATURE_INTEL_PSFD KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
41
#define X86_FEATURE_IPRED_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
42
#define KVM_X86_FEATURE_RRSBA_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
43
#define X86_FEATURE_DDPD_U KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
44
#define KVM_X86_FEATURE_BHI_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
45
#define X86_FEATURE_MCDT_NO KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
46
47
/* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */
48
#define X86_FEATURE_AVX10_128 KVM_X86_FEATURE(CPUID_24_0_EBX, 16)
49
#define X86_FEATURE_AVX10_256 KVM_X86_FEATURE(CPUID_24_0_EBX, 17)
50
#define X86_FEATURE_AVX10_512 KVM_X86_FEATURE(CPUID_24_0_EBX, 18)
51
52
/* CPUID level 0x80000007 (EDX). */
53
#define KVM_X86_FEATURE_CONSTANT_TSC KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
54
55
/* CPUID level 0x80000022 (EAX) */
56
#define KVM_X86_FEATURE_PERFMON_V2 KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
57
58
/* CPUID level 0x80000021 (ECX) */
59
#define KVM_X86_FEATURE_TSA_SQ_NO KVM_X86_FEATURE(CPUID_8000_0021_ECX, 1)
60
#define KVM_X86_FEATURE_TSA_L1_NO KVM_X86_FEATURE(CPUID_8000_0021_ECX, 2)
61
62
struct cpuid_reg {
63
u32 function;
64
u32 index;
65
int reg;
66
};
67
68
static const struct cpuid_reg reverse_cpuid[] = {
69
[CPUID_1_EDX] = { 1, 0, CPUID_EDX},
70
[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
71
[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
72
[CPUID_1_ECX] = { 1, 0, CPUID_ECX},
73
[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
74
[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
75
[CPUID_7_0_EBX] = { 7, 0, CPUID_EBX},
76
[CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX},
77
[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
78
[CPUID_6_EAX] = { 6, 0, CPUID_EAX},
79
[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
80
[CPUID_7_ECX] = { 7, 0, CPUID_ECX},
81
[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
82
[CPUID_7_EDX] = { 7, 0, CPUID_EDX},
83
[CPUID_7_1_EAX] = { 7, 1, CPUID_EAX},
84
[CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX},
85
[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
86
[CPUID_7_1_EDX] = { 7, 1, CPUID_EDX},
87
[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
88
[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
89
[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
90
[CPUID_7_2_EDX] = { 7, 2, CPUID_EDX},
91
[CPUID_24_0_EBX] = { 0x24, 0, CPUID_EBX},
92
[CPUID_8000_0021_ECX] = {0x80000021, 0, CPUID_ECX},
93
[CPUID_7_1_ECX] = { 7, 1, CPUID_ECX},
94
};
95
96
/*
97
* Reverse CPUID and its derivatives can only be used for hardware-defined
98
* feature words, i.e. words whose bits directly correspond to a CPUID leaf.
99
* Retrieving a feature bit or masking guest CPUID from a Linux-defined word
100
* is nonsensical as the bit number/mask is an arbitrary software-defined value
101
* and can't be used by KVM to query/control guest capabilities. And obviously
102
* the leaf being queried must have an entry in the lookup table.
103
*/
104
static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
105
{
106
BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
107
BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
108
BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
109
BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
110
BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
111
BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
112
BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
113
BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
114
}
115
116
/*
117
* Translate feature bits that are scattered in the kernel's cpufeatures word
118
* into KVM feature words that align with hardware's definitions.
119
*/
120
static __always_inline u32 __feature_translate(int x86_feature)
121
{
122
#define KVM_X86_TRANSLATE_FEATURE(f) \
123
case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
124
125
switch (x86_feature) {
126
KVM_X86_TRANSLATE_FEATURE(SGX1);
127
KVM_X86_TRANSLATE_FEATURE(SGX2);
128
KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
129
KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
130
KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
131
KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
132
KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
133
KVM_X86_TRANSLATE_FEATURE(TSA_SQ_NO);
134
KVM_X86_TRANSLATE_FEATURE(TSA_L1_NO);
135
KVM_X86_TRANSLATE_FEATURE(MSR_IMM);
136
default:
137
return x86_feature;
138
}
139
}
140
141
static __always_inline u32 __feature_leaf(int x86_feature)
142
{
143
u32 x86_leaf = __feature_translate(x86_feature) / 32;
144
145
reverse_cpuid_check(x86_leaf);
146
return x86_leaf;
147
}
148
149
/*
150
* Retrieve the bit mask from an X86_FEATURE_* definition. Features contain
151
* the hardware defined bit number (stored in bits 4:0) and a software defined
152
* "word" (stored in bits 31:5). The word is used to index into arrays of
153
* bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
154
*/
155
static __always_inline u32 __feature_bit(int x86_feature)
156
{
157
x86_feature = __feature_translate(x86_feature);
158
159
reverse_cpuid_check(x86_feature / 32);
160
return 1 << (x86_feature & 31);
161
}
162
163
#define feature_bit(name) __feature_bit(X86_FEATURE_##name)
164
165
static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
166
{
167
unsigned int x86_leaf = __feature_leaf(x86_feature);
168
169
return reverse_cpuid[x86_leaf];
170
}
171
172
static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
173
u32 reg)
174
{
175
switch (reg) {
176
case CPUID_EAX:
177
return &entry->eax;
178
case CPUID_EBX:
179
return &entry->ebx;
180
case CPUID_ECX:
181
return &entry->ecx;
182
case CPUID_EDX:
183
return &entry->edx;
184
default:
185
BUILD_BUG();
186
return NULL;
187
}
188
}
189
190
static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
191
unsigned int x86_feature)
192
{
193
const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
194
195
return __cpuid_entry_get_reg(entry, cpuid.reg);
196
}
197
198
static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
199
unsigned int x86_feature)
200
{
201
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
202
203
return *reg & __feature_bit(x86_feature);
204
}
205
206
static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
207
unsigned int x86_feature)
208
{
209
return cpuid_entry_get(entry, x86_feature);
210
}
211
212
static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
213
unsigned int x86_feature)
214
{
215
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
216
217
*reg &= ~__feature_bit(x86_feature);
218
}
219
220
static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
221
unsigned int x86_feature)
222
{
223
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
224
225
*reg |= __feature_bit(x86_feature);
226
}
227
228
static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
229
unsigned int x86_feature,
230
bool set)
231
{
232
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
233
234
/*
235
* Open coded instead of using cpuid_entry_{clear,set}() to coerce the
236
* compiler into using CMOV instead of Jcc when possible.
237
*/
238
if (set)
239
*reg |= __feature_bit(x86_feature);
240
else
241
*reg &= ~__feature_bit(x86_feature);
242
}
243
244
#endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
245
246