Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/vmx/vmx.c
29524 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine driver for Linux
4
*
5
* This module enables machines with Intel VT-x extensions to run virtual
6
* machines without emulation or binary translation.
7
*
8
* Copyright (C) 2006 Qumranet, Inc.
9
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
10
*
11
* Authors:
12
* Avi Kivity <[email protected]>
13
* Yaniv Kamay <[email protected]>
14
*/
15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17
#include <linux/highmem.h>
18
#include <linux/hrtimer.h>
19
#include <linux/kernel.h>
20
#include <linux/kvm_host.h>
21
#include <linux/module.h>
22
#include <linux/moduleparam.h>
23
#include <linux/mod_devicetable.h>
24
#include <linux/mm.h>
25
#include <linux/objtool.h>
26
#include <linux/sched.h>
27
#include <linux/sched/smt.h>
28
#include <linux/slab.h>
29
#include <linux/tboot.h>
30
#include <linux/trace_events.h>
31
#include <linux/entry-kvm.h>
32
33
#include <asm/apic.h>
34
#include <asm/asm.h>
35
#include <asm/cpu.h>
36
#include <asm/cpu_device_id.h>
37
#include <asm/debugreg.h>
38
#include <asm/desc.h>
39
#include <asm/fpu/api.h>
40
#include <asm/fpu/xstate.h>
41
#include <asm/fred.h>
42
#include <asm/idtentry.h>
43
#include <asm/io.h>
44
#include <asm/irq_remapping.h>
45
#include <asm/reboot.h>
46
#include <asm/perf_event.h>
47
#include <asm/mmu_context.h>
48
#include <asm/mshyperv.h>
49
#include <asm/msr.h>
50
#include <asm/mwait.h>
51
#include <asm/spec-ctrl.h>
52
#include <asm/vmx.h>
53
54
#include <trace/events/ipi.h>
55
56
#include "capabilities.h"
57
#include "common.h"
58
#include "cpuid.h"
59
#include "hyperv.h"
60
#include "kvm_onhyperv.h"
61
#include "irq.h"
62
#include "kvm_cache_regs.h"
63
#include "lapic.h"
64
#include "mmu.h"
65
#include "nested.h"
66
#include "pmu.h"
67
#include "sgx.h"
68
#include "trace.h"
69
#include "vmcs.h"
70
#include "vmcs12.h"
71
#include "vmx.h"
72
#include "x86.h"
73
#include "x86_ops.h"
74
#include "smm.h"
75
#include "vmx_onhyperv.h"
76
#include "posted_intr.h"
77
78
#include "mmu/spte.h"
79
80
MODULE_AUTHOR("Qumranet");
81
MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
82
MODULE_LICENSE("GPL");
83
84
#ifdef MODULE
85
static const struct x86_cpu_id vmx_cpu_id[] = {
86
X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
87
{}
88
};
89
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
90
#endif
91
92
bool __read_mostly enable_vpid = 1;
93
module_param_named(vpid, enable_vpid, bool, 0444);
94
95
static bool __read_mostly enable_vnmi = 1;
96
module_param_named(vnmi, enable_vnmi, bool, 0444);
97
98
bool __read_mostly flexpriority_enabled = 1;
99
module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
100
101
bool __read_mostly enable_ept = 1;
102
module_param_named(ept, enable_ept, bool, 0444);
103
104
bool __read_mostly enable_unrestricted_guest = 1;
105
module_param_named(unrestricted_guest,
106
enable_unrestricted_guest, bool, 0444);
107
108
bool __read_mostly enable_ept_ad_bits = 1;
109
module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
110
111
static bool __read_mostly emulate_invalid_guest_state = true;
112
module_param(emulate_invalid_guest_state, bool, 0444);
113
114
static bool __read_mostly fasteoi = 1;
115
module_param(fasteoi, bool, 0444);
116
117
module_param(enable_apicv, bool, 0444);
118
module_param(enable_ipiv, bool, 0444);
119
120
module_param(enable_device_posted_irqs, bool, 0444);
121
122
/*
123
* If nested=1, nested virtualization is supported, i.e., guests may use
124
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
125
* use VMX instructions.
126
*/
127
static bool __read_mostly nested = 1;
128
module_param(nested, bool, 0444);
129
130
bool __read_mostly enable_pml = 1;
131
module_param_named(pml, enable_pml, bool, 0444);
132
133
static bool __read_mostly error_on_inconsistent_vmcs_config = true;
134
module_param(error_on_inconsistent_vmcs_config, bool, 0444);
135
136
static bool __read_mostly dump_invalid_vmcs = 0;
137
module_param(dump_invalid_vmcs, bool, 0644);
138
139
#define MSR_BITMAP_MODE_X2APIC 1
140
#define MSR_BITMAP_MODE_X2APIC_APICV 2
141
142
#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
143
144
/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
145
static int __read_mostly cpu_preemption_timer_multi;
146
static bool __read_mostly enable_preemption_timer = 1;
147
#ifdef CONFIG_X86_64
148
module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
149
#endif
150
151
extern bool __read_mostly allow_smaller_maxphyaddr;
152
module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
153
154
#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
155
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
156
#define KVM_VM_CR0_ALWAYS_ON \
157
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
158
159
#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
160
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
161
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
162
163
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
164
165
#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
166
RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
167
RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
168
RTIT_STATUS_BYTECNT))
169
170
/*
171
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
172
* ple_gap: upper bound on the amount of time between two successive
173
* executions of PAUSE in a loop. Also indicate if ple enabled.
174
* According to test, this time is usually smaller than 128 cycles.
175
* ple_window: upper bound on the amount of time a guest is allowed to execute
176
* in a PAUSE loop. Tests indicate that most spinlocks are held for
177
* less than 2^12 cycles
178
* Time is measured based on a counter that runs at the same rate as the TSC,
179
* refer SDM volume 3b section 21.6.13 & 22.1.3.
180
*/
181
static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
182
module_param(ple_gap, uint, 0444);
183
184
static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
185
module_param(ple_window, uint, 0444);
186
187
/* Default doubles per-vcpu window every exit. */
188
static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
189
module_param(ple_window_grow, uint, 0444);
190
191
/* Default resets per-vcpu window every exit to ple_window. */
192
static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
193
module_param(ple_window_shrink, uint, 0444);
194
195
/* Default is to compute the maximum so we can never overflow. */
196
static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
197
module_param(ple_window_max, uint, 0444);
198
199
/* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
200
int __read_mostly pt_mode = PT_MODE_SYSTEM;
201
#ifdef CONFIG_BROKEN
202
module_param(pt_mode, int, S_IRUGO);
203
#endif
204
205
struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
206
207
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209
static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211
/* Storage for pre module init parameter parsing */
212
static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214
static const struct {
215
const char *option;
216
bool for_parse;
217
} vmentry_l1d_param[] = {
218
[VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219
[VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220
[VMENTER_L1D_FLUSH_COND] = {"cond", true},
221
[VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222
[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223
[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224
};
225
226
#define L1D_CACHE_ORDER 4
227
static void *vmx_l1d_flush_pages;
228
229
static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230
{
231
struct page *page;
232
unsigned int i;
233
234
if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236
return 0;
237
}
238
239
if (!enable_ept) {
240
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241
return 0;
242
}
243
244
if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
245
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
246
return 0;
247
}
248
249
/* If set to auto use the default l1tf mitigation method */
250
if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
251
switch (l1tf_mitigation) {
252
case L1TF_MITIGATION_OFF:
253
l1tf = VMENTER_L1D_FLUSH_NEVER;
254
break;
255
case L1TF_MITIGATION_AUTO:
256
case L1TF_MITIGATION_FLUSH_NOWARN:
257
case L1TF_MITIGATION_FLUSH:
258
case L1TF_MITIGATION_FLUSH_NOSMT:
259
l1tf = VMENTER_L1D_FLUSH_COND;
260
break;
261
case L1TF_MITIGATION_FULL:
262
case L1TF_MITIGATION_FULL_FORCE:
263
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
264
break;
265
}
266
} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
267
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268
}
269
270
if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
271
!boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
272
/*
273
* This allocation for vmx_l1d_flush_pages is not tied to a VM
274
* lifetime and so should not be charged to a memcg.
275
*/
276
page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
277
if (!page)
278
return -ENOMEM;
279
vmx_l1d_flush_pages = page_address(page);
280
281
/*
282
* Initialize each page with a different pattern in
283
* order to protect against KSM in the nested
284
* virtualization case.
285
*/
286
for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
287
memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
288
PAGE_SIZE);
289
}
290
}
291
292
l1tf_vmx_mitigation = l1tf;
293
294
if (l1tf != VMENTER_L1D_FLUSH_NEVER)
295
static_branch_enable(&vmx_l1d_should_flush);
296
else
297
static_branch_disable(&vmx_l1d_should_flush);
298
299
if (l1tf == VMENTER_L1D_FLUSH_COND)
300
static_branch_enable(&vmx_l1d_flush_cond);
301
else
302
static_branch_disable(&vmx_l1d_flush_cond);
303
return 0;
304
}
305
306
static int vmentry_l1d_flush_parse(const char *s)
307
{
308
unsigned int i;
309
310
if (s) {
311
for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
312
if (vmentry_l1d_param[i].for_parse &&
313
sysfs_streq(s, vmentry_l1d_param[i].option))
314
return i;
315
}
316
}
317
return -EINVAL;
318
}
319
320
static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
321
{
322
int l1tf, ret;
323
324
l1tf = vmentry_l1d_flush_parse(s);
325
if (l1tf < 0)
326
return l1tf;
327
328
if (!boot_cpu_has(X86_BUG_L1TF))
329
return 0;
330
331
/*
332
* Has vmx_init() run already? If not then this is the pre init
333
* parameter parsing. In that case just store the value and let
334
* vmx_init() do the proper setup after enable_ept has been
335
* established.
336
*/
337
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
338
vmentry_l1d_flush_param = l1tf;
339
return 0;
340
}
341
342
mutex_lock(&vmx_l1d_flush_mutex);
343
ret = vmx_setup_l1d_flush(l1tf);
344
mutex_unlock(&vmx_l1d_flush_mutex);
345
return ret;
346
}
347
348
static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
349
{
350
if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
351
return sysfs_emit(s, "???\n");
352
353
return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
354
}
355
356
static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
357
{
358
u64 msr;
359
360
if (!vmx->disable_fb_clear)
361
return;
362
363
msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
364
msr |= FB_CLEAR_DIS;
365
native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
366
/* Cache the MSR value to avoid reading it later */
367
vmx->msr_ia32_mcu_opt_ctrl = msr;
368
}
369
370
static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
371
{
372
if (!vmx->disable_fb_clear)
373
return;
374
375
vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
376
native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
377
}
378
379
static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
380
{
381
/*
382
* Disable VERW's behavior of clearing CPU buffers for the guest if the
383
* CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
384
* the mitigation. Disabling the clearing behavior provides a
385
* performance boost for guests that aren't aware that manually clearing
386
* CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
387
* and VM-Exit.
388
*/
389
vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
390
(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
391
!boot_cpu_has_bug(X86_BUG_MDS) &&
392
!boot_cpu_has_bug(X86_BUG_TAA);
393
394
/*
395
* If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
396
* at VMEntry. Skip the MSR read/write when a guest has no use case to
397
* execute VERW.
398
*/
399
if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
400
((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
401
(vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
402
(vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
403
(vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
404
(vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
405
vmx->disable_fb_clear = false;
406
}
407
408
static const struct kernel_param_ops vmentry_l1d_flush_ops = {
409
.set = vmentry_l1d_flush_set,
410
.get = vmentry_l1d_flush_get,
411
};
412
module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
413
414
static u32 vmx_segment_access_rights(struct kvm_segment *var);
415
416
void vmx_vmexit(void);
417
418
#define vmx_insn_failed(fmt...) \
419
do { \
420
WARN_ONCE(1, fmt); \
421
pr_warn_ratelimited(fmt); \
422
} while (0)
423
424
noinline void vmread_error(unsigned long field)
425
{
426
vmx_insn_failed("vmread failed: field=%lx\n", field);
427
}
428
429
#ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
430
noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
431
{
432
if (fault) {
433
kvm_spurious_fault();
434
} else {
435
instrumentation_begin();
436
vmread_error(field);
437
instrumentation_end();
438
}
439
}
440
#endif
441
442
noinline void vmwrite_error(unsigned long field, unsigned long value)
443
{
444
vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
445
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
446
}
447
448
noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
449
{
450
vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
451
vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
452
}
453
454
noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455
{
456
vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
457
vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
458
}
459
460
noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
461
{
462
vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
463
ext, vpid, gva);
464
}
465
466
noinline void invept_error(unsigned long ext, u64 eptp)
467
{
468
vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
469
}
470
471
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472
DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473
/*
474
* We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475
* when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476
*/
477
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478
479
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480
static DEFINE_SPINLOCK(vmx_vpid_lock);
481
482
struct vmcs_config vmcs_config __ro_after_init;
483
struct vmx_capability vmx_capability __ro_after_init;
484
485
#define VMX_SEGMENT_FIELD(seg) \
486
[VCPU_SREG_##seg] = { \
487
.selector = GUEST_##seg##_SELECTOR, \
488
.base = GUEST_##seg##_BASE, \
489
.limit = GUEST_##seg##_LIMIT, \
490
.ar_bytes = GUEST_##seg##_AR_BYTES, \
491
}
492
493
static const struct kvm_vmx_segment_field {
494
unsigned selector;
495
unsigned base;
496
unsigned limit;
497
unsigned ar_bytes;
498
} kvm_vmx_segment_fields[] = {
499
VMX_SEGMENT_FIELD(CS),
500
VMX_SEGMENT_FIELD(DS),
501
VMX_SEGMENT_FIELD(ES),
502
VMX_SEGMENT_FIELD(FS),
503
VMX_SEGMENT_FIELD(GS),
504
VMX_SEGMENT_FIELD(SS),
505
VMX_SEGMENT_FIELD(TR),
506
VMX_SEGMENT_FIELD(LDTR),
507
};
508
509
510
static unsigned long host_idt_base;
511
512
#if IS_ENABLED(CONFIG_HYPERV)
513
static bool __read_mostly enlightened_vmcs = true;
514
module_param(enlightened_vmcs, bool, 0444);
515
516
static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
517
{
518
struct hv_enlightened_vmcs *evmcs;
519
hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
520
521
if (partition_assist_page == INVALID_PAGE)
522
return -ENOMEM;
523
524
evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
525
526
evmcs->partition_assist_page = partition_assist_page;
527
evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
528
evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
529
530
return 0;
531
}
532
533
static __init void hv_init_evmcs(void)
534
{
535
int cpu;
536
537
if (!enlightened_vmcs)
538
return;
539
540
/*
541
* Enlightened VMCS usage should be recommended and the host needs
542
* to support eVMCS v1 or above.
543
*/
544
if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
545
(ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
546
KVM_EVMCS_VERSION) {
547
548
/* Check that we have assist pages on all online CPUs */
549
for_each_online_cpu(cpu) {
550
if (!hv_get_vp_assist_page(cpu)) {
551
enlightened_vmcs = false;
552
break;
553
}
554
}
555
556
if (enlightened_vmcs) {
557
pr_info("Using Hyper-V Enlightened VMCS\n");
558
static_branch_enable(&__kvm_is_using_evmcs);
559
}
560
561
if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
562
vt_x86_ops.enable_l2_tlb_flush
563
= hv_enable_l2_tlb_flush;
564
} else {
565
enlightened_vmcs = false;
566
}
567
}
568
569
static void hv_reset_evmcs(void)
570
{
571
struct hv_vp_assist_page *vp_ap;
572
573
if (!kvm_is_using_evmcs())
574
return;
575
576
/*
577
* KVM should enable eVMCS if and only if all CPUs have a VP assist
578
* page, and should reject CPU onlining if eVMCS is enabled the CPU
579
* doesn't have a VP assist page allocated.
580
*/
581
vp_ap = hv_get_vp_assist_page(smp_processor_id());
582
if (WARN_ON_ONCE(!vp_ap))
583
return;
584
585
/*
586
* Reset everything to support using non-enlightened VMCS access later
587
* (e.g. when we reload the module with enlightened_vmcs=0)
588
*/
589
vp_ap->nested_control.features.directhypercall = 0;
590
vp_ap->current_nested_vmcs = 0;
591
vp_ap->enlighten_vmentry = 0;
592
}
593
594
#else /* IS_ENABLED(CONFIG_HYPERV) */
595
static void hv_init_evmcs(void) {}
596
static void hv_reset_evmcs(void) {}
597
#endif /* IS_ENABLED(CONFIG_HYPERV) */
598
599
/*
600
* Comment's format: document - errata name - stepping - processor name.
601
* Refer from
602
* https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
603
*/
604
static u32 vmx_preemption_cpu_tfms[] = {
605
/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
606
0x000206E6,
607
/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
608
/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
609
/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
610
0x00020652,
611
/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
612
0x00020655,
613
/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
614
/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
615
/*
616
* 320767.pdf - AAP86 - B1 -
617
* i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
618
*/
619
0x000106E5,
620
/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
621
0x000106A0,
622
/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
623
0x000106A1,
624
/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
625
0x000106A4,
626
/* 321333.pdf - AAM126 - D0 - Xeon 3500 */
627
/* 321324.pdf - AAK139 - D0 - Xeon 5500 */
628
/* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
629
0x000106A5,
630
/* Xeon E3-1220 V2 */
631
0x000306A8,
632
};
633
634
static inline bool cpu_has_broken_vmx_preemption_timer(void)
635
{
636
u32 eax = cpuid_eax(0x00000001), i;
637
638
/* Clear the reserved bits */
639
eax &= ~(0x3U << 14 | 0xfU << 28);
640
for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
641
if (eax == vmx_preemption_cpu_tfms[i])
642
return true;
643
644
return false;
645
}
646
647
static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
648
{
649
return flexpriority_enabled && lapic_in_kernel(vcpu);
650
}
651
652
struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653
{
654
int i;
655
656
i = kvm_find_user_return_msr(msr);
657
if (i >= 0)
658
return &vmx->guest_uret_msrs[i];
659
return NULL;
660
}
661
662
static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663
struct vmx_uret_msr *msr, u64 data)
664
{
665
unsigned int slot = msr - vmx->guest_uret_msrs;
666
int ret = 0;
667
668
if (msr->load_into_hardware) {
669
preempt_disable();
670
ret = kvm_set_user_return_msr(slot, data, msr->mask);
671
preempt_enable();
672
}
673
if (!ret)
674
msr->data = data;
675
return ret;
676
}
677
678
/*
679
* Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
680
*
681
* Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
682
* atomically track post-VMXON state, e.g. this may be called in NMI context.
683
* Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
684
* faults are guaranteed to be due to the !post-VMXON check unless the CPU is
685
* magically in RM, VM86, compat mode, or at CPL>0.
686
*/
687
static int kvm_cpu_vmxoff(void)
688
{
689
asm goto("1: vmxoff\n\t"
690
_ASM_EXTABLE(1b, %l[fault])
691
::: "cc", "memory" : fault);
692
693
cr4_clear_bits(X86_CR4_VMXE);
694
return 0;
695
696
fault:
697
cr4_clear_bits(X86_CR4_VMXE);
698
return -EIO;
699
}
700
701
void vmx_emergency_disable_virtualization_cpu(void)
702
{
703
int cpu = raw_smp_processor_id();
704
struct loaded_vmcs *v;
705
706
kvm_rebooting = true;
707
708
/*
709
* Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
710
* set in task context. If this races with VMX is disabled by an NMI,
711
* VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
712
* kvm_rebooting set.
713
*/
714
if (!(__read_cr4() & X86_CR4_VMXE))
715
return;
716
717
list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
718
loaded_vmcss_on_cpu_link) {
719
vmcs_clear(v->vmcs);
720
if (v->shadow_vmcs)
721
vmcs_clear(v->shadow_vmcs);
722
}
723
724
kvm_cpu_vmxoff();
725
}
726
727
static void __loaded_vmcs_clear(void *arg)
728
{
729
struct loaded_vmcs *loaded_vmcs = arg;
730
int cpu = raw_smp_processor_id();
731
732
if (loaded_vmcs->cpu != cpu)
733
return; /* vcpu migration can race with cpu offline */
734
if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
735
per_cpu(current_vmcs, cpu) = NULL;
736
737
vmcs_clear(loaded_vmcs->vmcs);
738
if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
739
vmcs_clear(loaded_vmcs->shadow_vmcs);
740
741
list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
742
743
/*
744
* Ensure all writes to loaded_vmcs, including deleting it from its
745
* current percpu list, complete before setting loaded_vmcs->cpu to
746
* -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
747
* and add loaded_vmcs to its percpu list before it's deleted from this
748
* cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
749
*/
750
smp_wmb();
751
752
loaded_vmcs->cpu = -1;
753
loaded_vmcs->launched = 0;
754
}
755
756
void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
757
{
758
int cpu = loaded_vmcs->cpu;
759
760
if (cpu != -1)
761
smp_call_function_single(cpu,
762
__loaded_vmcs_clear, loaded_vmcs, 1);
763
}
764
765
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
766
unsigned field)
767
{
768
bool ret;
769
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
770
771
if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
772
kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
773
vmx->segment_cache.bitmask = 0;
774
}
775
ret = vmx->segment_cache.bitmask & mask;
776
vmx->segment_cache.bitmask |= mask;
777
return ret;
778
}
779
780
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
781
{
782
u16 *p = &vmx->segment_cache.seg[seg].selector;
783
784
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
785
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
786
return *p;
787
}
788
789
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
790
{
791
ulong *p = &vmx->segment_cache.seg[seg].base;
792
793
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
794
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
795
return *p;
796
}
797
798
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
799
{
800
u32 *p = &vmx->segment_cache.seg[seg].limit;
801
802
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
803
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
804
return *p;
805
}
806
807
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
808
{
809
u32 *p = &vmx->segment_cache.seg[seg].ar;
810
811
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
812
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
813
return *p;
814
}
815
816
void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
817
{
818
u32 eb;
819
820
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
821
(1u << DB_VECTOR) | (1u << AC_VECTOR);
822
/*
823
* #VE isn't used for VMX. To test against unexpected changes
824
* related to #VE for VMX, intercept unexpected #VE and warn on it.
825
*/
826
if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
827
eb |= 1u << VE_VECTOR;
828
/*
829
* Guest access to VMware backdoor ports could legitimately
830
* trigger #GP because of TSS I/O permission bitmap.
831
* We intercept those #GP and allow access to them anyway
832
* as VMware does.
833
*/
834
if (enable_vmware_backdoor)
835
eb |= (1u << GP_VECTOR);
836
if ((vcpu->guest_debug &
837
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
838
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
839
eb |= 1u << BP_VECTOR;
840
if (to_vmx(vcpu)->rmode.vm86_active)
841
eb = ~0;
842
if (!vmx_need_pf_intercept(vcpu))
843
eb &= ~(1u << PF_VECTOR);
844
845
/* When we are running a nested L2 guest and L1 specified for it a
846
* certain exception bitmap, we must trap the same exceptions and pass
847
* them to L1. When running L2, we will only handle the exceptions
848
* specified above if L1 did not want them.
849
*/
850
if (is_guest_mode(vcpu))
851
eb |= get_vmcs12(vcpu)->exception_bitmap;
852
else {
853
int mask = 0, match = 0;
854
855
if (enable_ept && (eb & (1u << PF_VECTOR))) {
856
/*
857
* If EPT is enabled, #PF is currently only intercepted
858
* if MAXPHYADDR is smaller on the guest than on the
859
* host. In that case we only care about present,
860
* non-reserved faults. For vmcs02, however, PFEC_MASK
861
* and PFEC_MATCH are set in prepare_vmcs02_rare.
862
*/
863
mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
864
match = PFERR_PRESENT_MASK;
865
}
866
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
867
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
868
}
869
870
/*
871
* Disabling xfd interception indicates that dynamic xfeatures
872
* might be used in the guest. Always trap #NM in this case
873
* to save guest xfd_err timely.
874
*/
875
if (vcpu->arch.xfd_no_write_intercept)
876
eb |= (1u << NM_VECTOR);
877
878
vmcs_write32(EXCEPTION_BITMAP, eb);
879
}
880
881
/*
882
* Check if MSR is intercepted for currently loaded MSR bitmap.
883
*/
884
static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
885
{
886
if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
887
return true;
888
889
return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
890
}
891
892
unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
893
{
894
unsigned int flags = 0;
895
896
if (vmx->loaded_vmcs->launched)
897
flags |= VMX_RUN_VMRESUME;
898
899
/*
900
* If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
901
* to change it directly without causing a vmexit. In that case read
902
* it after vmexit and store it in vmx->spec_ctrl.
903
*/
904
if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
905
flags |= VMX_RUN_SAVE_SPEC_CTRL;
906
907
if (static_branch_unlikely(&cpu_buf_vm_clear) &&
908
kvm_vcpu_can_access_host_mmio(&vmx->vcpu))
909
flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO;
910
911
return flags;
912
}
913
914
static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
915
unsigned long entry, unsigned long exit)
916
{
917
vm_entry_controls_clearbit(vmx, entry);
918
vm_exit_controls_clearbit(vmx, exit);
919
}
920
921
int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
922
{
923
unsigned int i;
924
925
for (i = 0; i < m->nr; ++i) {
926
if (m->val[i].index == msr)
927
return i;
928
}
929
return -ENOENT;
930
}
931
932
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
933
{
934
int i;
935
struct msr_autoload *m = &vmx->msr_autoload;
936
937
switch (msr) {
938
case MSR_EFER:
939
if (cpu_has_load_ia32_efer()) {
940
clear_atomic_switch_msr_special(vmx,
941
VM_ENTRY_LOAD_IA32_EFER,
942
VM_EXIT_LOAD_IA32_EFER);
943
return;
944
}
945
break;
946
case MSR_CORE_PERF_GLOBAL_CTRL:
947
if (cpu_has_load_perf_global_ctrl()) {
948
clear_atomic_switch_msr_special(vmx,
949
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
950
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
951
return;
952
}
953
break;
954
}
955
i = vmx_find_loadstore_msr_slot(&m->guest, msr);
956
if (i < 0)
957
goto skip_guest;
958
--m->guest.nr;
959
m->guest.val[i] = m->guest.val[m->guest.nr];
960
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
961
962
skip_guest:
963
i = vmx_find_loadstore_msr_slot(&m->host, msr);
964
if (i < 0)
965
return;
966
967
--m->host.nr;
968
m->host.val[i] = m->host.val[m->host.nr];
969
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
970
}
971
972
static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
973
unsigned long entry, unsigned long exit,
974
unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
975
u64 guest_val, u64 host_val)
976
{
977
vmcs_write64(guest_val_vmcs, guest_val);
978
if (host_val_vmcs != HOST_IA32_EFER)
979
vmcs_write64(host_val_vmcs, host_val);
980
vm_entry_controls_setbit(vmx, entry);
981
vm_exit_controls_setbit(vmx, exit);
982
}
983
984
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
985
u64 guest_val, u64 host_val, bool entry_only)
986
{
987
int i, j = 0;
988
struct msr_autoload *m = &vmx->msr_autoload;
989
990
switch (msr) {
991
case MSR_EFER:
992
if (cpu_has_load_ia32_efer()) {
993
add_atomic_switch_msr_special(vmx,
994
VM_ENTRY_LOAD_IA32_EFER,
995
VM_EXIT_LOAD_IA32_EFER,
996
GUEST_IA32_EFER,
997
HOST_IA32_EFER,
998
guest_val, host_val);
999
return;
1000
}
1001
break;
1002
case MSR_CORE_PERF_GLOBAL_CTRL:
1003
if (cpu_has_load_perf_global_ctrl()) {
1004
add_atomic_switch_msr_special(vmx,
1005
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1006
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1007
GUEST_IA32_PERF_GLOBAL_CTRL,
1008
HOST_IA32_PERF_GLOBAL_CTRL,
1009
guest_val, host_val);
1010
return;
1011
}
1012
break;
1013
case MSR_IA32_PEBS_ENABLE:
1014
/* PEBS needs a quiescent period after being disabled (to write
1015
* a record). Disabling PEBS through VMX MSR swapping doesn't
1016
* provide that period, so a CPU could write host's record into
1017
* guest's memory.
1018
*/
1019
wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1020
}
1021
1022
i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1023
if (!entry_only)
1024
j = vmx_find_loadstore_msr_slot(&m->host, msr);
1025
1026
if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1027
(j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1028
printk_once(KERN_WARNING "Not enough msr switch entries. "
1029
"Can't add msr %x\n", msr);
1030
return;
1031
}
1032
if (i < 0) {
1033
i = m->guest.nr++;
1034
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1035
}
1036
m->guest.val[i].index = msr;
1037
m->guest.val[i].value = guest_val;
1038
1039
if (entry_only)
1040
return;
1041
1042
if (j < 0) {
1043
j = m->host.nr++;
1044
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1045
}
1046
m->host.val[j].index = msr;
1047
m->host.val[j].value = host_val;
1048
}
1049
1050
static bool update_transition_efer(struct vcpu_vmx *vmx)
1051
{
1052
u64 guest_efer = vmx->vcpu.arch.efer;
1053
u64 ignore_bits = 0;
1054
int i;
1055
1056
/* Shadow paging assumes NX to be available. */
1057
if (!enable_ept)
1058
guest_efer |= EFER_NX;
1059
1060
/*
1061
* LMA and LME handled by hardware; SCE meaningless outside long mode.
1062
*/
1063
ignore_bits |= EFER_SCE;
1064
#ifdef CONFIG_X86_64
1065
ignore_bits |= EFER_LMA | EFER_LME;
1066
/* SCE is meaningful only in long mode on Intel */
1067
if (guest_efer & EFER_LMA)
1068
ignore_bits &= ~(u64)EFER_SCE;
1069
#endif
1070
1071
/*
1072
* On EPT, we can't emulate NX, so we must switch EFER atomically.
1073
* On CPUs that support "load IA32_EFER", always switch EFER
1074
* atomically, since it's faster than switching it manually.
1075
*/
1076
if (cpu_has_load_ia32_efer() ||
1077
(enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1078
if (!(guest_efer & EFER_LMA))
1079
guest_efer &= ~EFER_LME;
1080
if (guest_efer != kvm_host.efer)
1081
add_atomic_switch_msr(vmx, MSR_EFER,
1082
guest_efer, kvm_host.efer, false);
1083
else
1084
clear_atomic_switch_msr(vmx, MSR_EFER);
1085
return false;
1086
}
1087
1088
i = kvm_find_user_return_msr(MSR_EFER);
1089
if (i < 0)
1090
return false;
1091
1092
clear_atomic_switch_msr(vmx, MSR_EFER);
1093
1094
guest_efer &= ~ignore_bits;
1095
guest_efer |= kvm_host.efer & ignore_bits;
1096
1097
vmx->guest_uret_msrs[i].data = guest_efer;
1098
vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1099
1100
return true;
1101
}
1102
1103
#ifdef CONFIG_X86_32
1104
/*
1105
* On 32-bit kernels, VM exits still load the FS and GS bases from the
1106
* VMCS rather than the segment table. KVM uses this helper to figure
1107
* out the current bases to poke them into the VMCS before entry.
1108
*/
1109
static unsigned long segment_base(u16 selector)
1110
{
1111
struct desc_struct *table;
1112
unsigned long v;
1113
1114
if (!(selector & ~SEGMENT_RPL_MASK))
1115
return 0;
1116
1117
table = get_current_gdt_ro();
1118
1119
if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1120
u16 ldt_selector = kvm_read_ldt();
1121
1122
if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1123
return 0;
1124
1125
table = (struct desc_struct *)segment_base(ldt_selector);
1126
}
1127
v = get_desc_base(&table[selector >> 3]);
1128
return v;
1129
}
1130
#endif
1131
1132
static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1133
{
1134
return vmx_pt_mode_is_host_guest() &&
1135
!(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1136
}
1137
1138
static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1139
{
1140
/* The base must be 128-byte aligned and a legal physical address. */
1141
return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1142
}
1143
1144
static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1145
{
1146
u32 i;
1147
1148
wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1149
wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1150
wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1151
wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1152
for (i = 0; i < addr_range; i++) {
1153
wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1154
wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1155
}
1156
}
1157
1158
static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1159
{
1160
u32 i;
1161
1162
rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1163
rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1164
rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1165
rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1166
for (i = 0; i < addr_range; i++) {
1167
rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1168
rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1169
}
1170
}
1171
1172
static void pt_guest_enter(struct vcpu_vmx *vmx)
1173
{
1174
if (vmx_pt_mode_is_system())
1175
return;
1176
1177
/*
1178
* GUEST_IA32_RTIT_CTL is already set in the VMCS.
1179
* Save host state before VM entry.
1180
*/
1181
rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1182
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1183
wrmsrq(MSR_IA32_RTIT_CTL, 0);
1184
pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1185
pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1186
}
1187
}
1188
1189
static void pt_guest_exit(struct vcpu_vmx *vmx)
1190
{
1191
if (vmx_pt_mode_is_system())
1192
return;
1193
1194
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1195
pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1196
pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1197
}
1198
1199
/*
1200
* KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1201
* i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1202
*/
1203
if (vmx->pt_desc.host.ctl)
1204
wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1205
}
1206
1207
void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1208
unsigned long fs_base, unsigned long gs_base)
1209
{
1210
if (unlikely(fs_sel != host->fs_sel)) {
1211
if (!(fs_sel & 7))
1212
vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1213
else
1214
vmcs_write16(HOST_FS_SELECTOR, 0);
1215
host->fs_sel = fs_sel;
1216
}
1217
if (unlikely(gs_sel != host->gs_sel)) {
1218
if (!(gs_sel & 7))
1219
vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1220
else
1221
vmcs_write16(HOST_GS_SELECTOR, 0);
1222
host->gs_sel = gs_sel;
1223
}
1224
if (unlikely(fs_base != host->fs_base)) {
1225
vmcs_writel(HOST_FS_BASE, fs_base);
1226
host->fs_base = fs_base;
1227
}
1228
if (unlikely(gs_base != host->gs_base)) {
1229
vmcs_writel(HOST_GS_BASE, gs_base);
1230
host->gs_base = gs_base;
1231
}
1232
}
1233
1234
void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1235
{
1236
struct vcpu_vmx *vmx = to_vmx(vcpu);
1237
struct vcpu_vt *vt = to_vt(vcpu);
1238
struct vmcs_host_state *host_state;
1239
#ifdef CONFIG_X86_64
1240
int cpu = raw_smp_processor_id();
1241
#endif
1242
unsigned long fs_base, gs_base;
1243
u16 fs_sel, gs_sel;
1244
int i;
1245
1246
/*
1247
* Note that guest MSRs to be saved/restored can also be changed
1248
* when guest state is loaded. This happens when guest transitions
1249
* to/from long-mode by setting MSR_EFER.LMA.
1250
*/
1251
if (!vmx->guest_uret_msrs_loaded) {
1252
vmx->guest_uret_msrs_loaded = true;
1253
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1254
if (!vmx->guest_uret_msrs[i].load_into_hardware)
1255
continue;
1256
1257
kvm_set_user_return_msr(i,
1258
vmx->guest_uret_msrs[i].data,
1259
vmx->guest_uret_msrs[i].mask);
1260
}
1261
}
1262
1263
if (vmx->nested.need_vmcs12_to_shadow_sync)
1264
nested_sync_vmcs12_to_shadow(vcpu);
1265
1266
if (vt->guest_state_loaded)
1267
return;
1268
1269
host_state = &vmx->loaded_vmcs->host_state;
1270
1271
/*
1272
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1273
* allow segment selectors with cpl > 0 or ti == 1.
1274
*/
1275
host_state->ldt_sel = kvm_read_ldt();
1276
1277
#ifdef CONFIG_X86_64
1278
savesegment(ds, host_state->ds_sel);
1279
savesegment(es, host_state->es_sel);
1280
1281
gs_base = cpu_kernelmode_gs_base(cpu);
1282
if (likely(is_64bit_mm(current->mm))) {
1283
current_save_fsgs();
1284
fs_sel = current->thread.fsindex;
1285
gs_sel = current->thread.gsindex;
1286
fs_base = current->thread.fsbase;
1287
vt->msr_host_kernel_gs_base = current->thread.gsbase;
1288
} else {
1289
savesegment(fs, fs_sel);
1290
savesegment(gs, gs_sel);
1291
fs_base = read_msr(MSR_FS_BASE);
1292
vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1293
}
1294
1295
wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1296
#else
1297
savesegment(fs, fs_sel);
1298
savesegment(gs, gs_sel);
1299
fs_base = segment_base(fs_sel);
1300
gs_base = segment_base(gs_sel);
1301
#endif
1302
1303
vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1304
vt->guest_state_loaded = true;
1305
}
1306
1307
static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1308
{
1309
struct vmcs_host_state *host_state;
1310
1311
if (!vmx->vt.guest_state_loaded)
1312
return;
1313
1314
host_state = &vmx->loaded_vmcs->host_state;
1315
1316
++vmx->vcpu.stat.host_state_reload;
1317
1318
#ifdef CONFIG_X86_64
1319
rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1320
#endif
1321
if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1322
kvm_load_ldt(host_state->ldt_sel);
1323
#ifdef CONFIG_X86_64
1324
load_gs_index(host_state->gs_sel);
1325
#else
1326
loadsegment(gs, host_state->gs_sel);
1327
#endif
1328
}
1329
if (host_state->fs_sel & 7)
1330
loadsegment(fs, host_state->fs_sel);
1331
#ifdef CONFIG_X86_64
1332
if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1333
loadsegment(ds, host_state->ds_sel);
1334
loadsegment(es, host_state->es_sel);
1335
}
1336
#endif
1337
invalidate_tss_limit();
1338
#ifdef CONFIG_X86_64
1339
wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1340
#endif
1341
load_fixmap_gdt(raw_smp_processor_id());
1342
vmx->vt.guest_state_loaded = false;
1343
vmx->guest_uret_msrs_loaded = false;
1344
}
1345
1346
#ifdef CONFIG_X86_64
1347
static u64 vmx_read_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 *cache)
1348
{
1349
preempt_disable();
1350
if (vmx->vt.guest_state_loaded)
1351
*cache = read_msr(msr);
1352
preempt_enable();
1353
return *cache;
1354
}
1355
1356
static void vmx_write_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 data,
1357
u64 *cache)
1358
{
1359
preempt_disable();
1360
if (vmx->vt.guest_state_loaded)
1361
wrmsrns(msr, data);
1362
preempt_enable();
1363
*cache = data;
1364
}
1365
1366
static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1367
{
1368
return vmx_read_guest_host_msr(vmx, MSR_KERNEL_GS_BASE,
1369
&vmx->msr_guest_kernel_gs_base);
1370
}
1371
1372
static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1373
{
1374
vmx_write_guest_host_msr(vmx, MSR_KERNEL_GS_BASE, data,
1375
&vmx->msr_guest_kernel_gs_base);
1376
}
1377
#endif
1378
1379
static void grow_ple_window(struct kvm_vcpu *vcpu)
1380
{
1381
struct vcpu_vmx *vmx = to_vmx(vcpu);
1382
unsigned int old = vmx->ple_window;
1383
1384
vmx->ple_window = __grow_ple_window(old, ple_window,
1385
ple_window_grow,
1386
ple_window_max);
1387
1388
if (vmx->ple_window != old) {
1389
vmx->ple_window_dirty = true;
1390
trace_kvm_ple_window_update(vcpu->vcpu_id,
1391
vmx->ple_window, old);
1392
}
1393
}
1394
1395
static void shrink_ple_window(struct kvm_vcpu *vcpu)
1396
{
1397
struct vcpu_vmx *vmx = to_vmx(vcpu);
1398
unsigned int old = vmx->ple_window;
1399
1400
vmx->ple_window = __shrink_ple_window(old, ple_window,
1401
ple_window_shrink,
1402
ple_window);
1403
1404
if (vmx->ple_window != old) {
1405
vmx->ple_window_dirty = true;
1406
trace_kvm_ple_window_update(vcpu->vcpu_id,
1407
vmx->ple_window, old);
1408
}
1409
}
1410
1411
void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1412
{
1413
struct vcpu_vmx *vmx = to_vmx(vcpu);
1414
bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1415
struct vmcs *prev;
1416
1417
if (!already_loaded) {
1418
loaded_vmcs_clear(vmx->loaded_vmcs);
1419
local_irq_disable();
1420
1421
/*
1422
* Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1423
* this cpu's percpu list, otherwise it may not yet be deleted
1424
* from its previous cpu's percpu list. Pairs with the
1425
* smb_wmb() in __loaded_vmcs_clear().
1426
*/
1427
smp_rmb();
1428
1429
list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1430
&per_cpu(loaded_vmcss_on_cpu, cpu));
1431
local_irq_enable();
1432
}
1433
1434
prev = per_cpu(current_vmcs, cpu);
1435
if (prev != vmx->loaded_vmcs->vmcs) {
1436
per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1437
vmcs_load(vmx->loaded_vmcs->vmcs);
1438
}
1439
1440
if (!already_loaded) {
1441
void *gdt = get_current_gdt_ro();
1442
1443
/*
1444
* Flush all EPTP/VPID contexts, the new pCPU may have stale
1445
* TLB entries from its previous association with the vCPU.
1446
*/
1447
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1448
1449
/*
1450
* Linux uses per-cpu TSS and GDT, so set these when switching
1451
* processors. See 22.2.4.
1452
*/
1453
vmcs_writel(HOST_TR_BASE,
1454
(unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1455
vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1456
1457
if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1458
/* 22.2.3 */
1459
vmcs_writel(HOST_IA32_SYSENTER_ESP,
1460
(unsigned long)(cpu_entry_stack(cpu) + 1));
1461
}
1462
1463
vmx->loaded_vmcs->cpu = cpu;
1464
}
1465
}
1466
1467
/*
1468
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
1469
* vcpu mutex is already taken.
1470
*/
1471
void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1472
{
1473
if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1474
shrink_ple_window(vcpu);
1475
1476
vmx_vcpu_load_vmcs(vcpu, cpu);
1477
1478
vmx_vcpu_pi_load(vcpu, cpu);
1479
}
1480
1481
void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1482
{
1483
vmx_vcpu_pi_put(vcpu);
1484
1485
vmx_prepare_switch_to_host(to_vmx(vcpu));
1486
}
1487
1488
bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1489
{
1490
return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1491
}
1492
1493
unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1494
{
1495
struct vcpu_vmx *vmx = to_vmx(vcpu);
1496
unsigned long rflags, save_rflags;
1497
1498
if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1499
kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1500
rflags = vmcs_readl(GUEST_RFLAGS);
1501
if (vmx->rmode.vm86_active) {
1502
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1503
save_rflags = vmx->rmode.save_rflags;
1504
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1505
}
1506
vmx->rflags = rflags;
1507
}
1508
return vmx->rflags;
1509
}
1510
1511
void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1512
{
1513
struct vcpu_vmx *vmx = to_vmx(vcpu);
1514
unsigned long old_rflags;
1515
1516
/*
1517
* Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1518
* is an unrestricted guest in order to mark L2 as needing emulation
1519
* if L1 runs L2 as a restricted guest.
1520
*/
1521
if (is_unrestricted_guest(vcpu)) {
1522
kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1523
vmx->rflags = rflags;
1524
vmcs_writel(GUEST_RFLAGS, rflags);
1525
return;
1526
}
1527
1528
old_rflags = vmx_get_rflags(vcpu);
1529
vmx->rflags = rflags;
1530
if (vmx->rmode.vm86_active) {
1531
vmx->rmode.save_rflags = rflags;
1532
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1533
}
1534
vmcs_writel(GUEST_RFLAGS, rflags);
1535
1536
if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1537
vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1538
}
1539
1540
bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1541
{
1542
return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1543
}
1544
1545
u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1546
{
1547
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1548
int ret = 0;
1549
1550
if (interruptibility & GUEST_INTR_STATE_STI)
1551
ret |= KVM_X86_SHADOW_INT_STI;
1552
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1553
ret |= KVM_X86_SHADOW_INT_MOV_SS;
1554
1555
return ret;
1556
}
1557
1558
void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1559
{
1560
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1561
u32 interruptibility = interruptibility_old;
1562
1563
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1564
1565
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1566
interruptibility |= GUEST_INTR_STATE_MOV_SS;
1567
else if (mask & KVM_X86_SHADOW_INT_STI)
1568
interruptibility |= GUEST_INTR_STATE_STI;
1569
1570
if ((interruptibility != interruptibility_old))
1571
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1572
}
1573
1574
static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1575
{
1576
struct vcpu_vmx *vmx = to_vmx(vcpu);
1577
unsigned long value;
1578
1579
/*
1580
* Any MSR write that attempts to change bits marked reserved will
1581
* case a #GP fault.
1582
*/
1583
if (data & vmx->pt_desc.ctl_bitmask)
1584
return 1;
1585
1586
/*
1587
* Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1588
* result in a #GP unless the same write also clears TraceEn.
1589
*/
1590
if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1591
(data & RTIT_CTL_TRACEEN) &&
1592
data != vmx->pt_desc.guest.ctl)
1593
return 1;
1594
1595
/*
1596
* WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1597
* and FabricEn would cause #GP, if
1598
* CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1599
*/
1600
if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1601
!(data & RTIT_CTL_FABRIC_EN) &&
1602
!intel_pt_validate_cap(vmx->pt_desc.caps,
1603
PT_CAP_single_range_output))
1604
return 1;
1605
1606
/*
1607
* MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1608
* utilize encodings marked reserved will cause a #GP fault.
1609
*/
1610
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1611
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1612
!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1613
RTIT_CTL_MTC_RANGE_OFFSET, &value))
1614
return 1;
1615
value = intel_pt_validate_cap(vmx->pt_desc.caps,
1616
PT_CAP_cycle_thresholds);
1617
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1618
!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1619
RTIT_CTL_CYC_THRESH_OFFSET, &value))
1620
return 1;
1621
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1622
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1623
!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1624
RTIT_CTL_PSB_FREQ_OFFSET, &value))
1625
return 1;
1626
1627
/*
1628
* If ADDRx_CFG is reserved or the encodings is >2 will
1629
* cause a #GP fault.
1630
*/
1631
value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1632
if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1633
return 1;
1634
value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1635
if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1636
return 1;
1637
value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1638
if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1639
return 1;
1640
value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1641
if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1642
return 1;
1643
1644
return 0;
1645
}
1646
1647
int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1648
void *insn, int insn_len)
1649
{
1650
/*
1651
* Emulation of instructions in SGX enclaves is impossible as RIP does
1652
* not point at the failing instruction, and even if it did, the code
1653
* stream is inaccessible. Inject #UD instead of exiting to userspace
1654
* so that guest userspace can't DoS the guest simply by triggering
1655
* emulation (enclaves are CPL3 only).
1656
*/
1657
if (vmx_get_exit_reason(vcpu).enclave_mode) {
1658
kvm_queue_exception(vcpu, UD_VECTOR);
1659
return X86EMUL_PROPAGATE_FAULT;
1660
}
1661
1662
/* Check that emulation is possible during event vectoring */
1663
if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1664
!kvm_can_emulate_event_vectoring(emul_type))
1665
return X86EMUL_UNHANDLEABLE_VECTORING;
1666
1667
return X86EMUL_CONTINUE;
1668
}
1669
1670
static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1671
{
1672
union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1673
unsigned long rip, orig_rip;
1674
u32 instr_len;
1675
1676
/*
1677
* Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1678
* undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1679
* set when EPT misconfig occurs. In practice, real hardware updates
1680
* VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1681
* (namely Hyper-V) don't set it due to it being undefined behavior,
1682
* i.e. we end up advancing IP with some random value.
1683
*/
1684
if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1685
exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1686
instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1687
1688
/*
1689
* Emulating an enclave's instructions isn't supported as KVM
1690
* cannot access the enclave's memory or its true RIP, e.g. the
1691
* vmcs.GUEST_RIP points at the exit point of the enclave, not
1692
* the RIP that actually triggered the VM-Exit. But, because
1693
* most instructions that cause VM-Exit will #UD in an enclave,
1694
* most instruction-based VM-Exits simply do not occur.
1695
*
1696
* There are a few exceptions, notably the debug instructions
1697
* INT1ICEBRK and INT3, as they are allowed in debug enclaves
1698
* and generate #DB/#BP as expected, which KVM might intercept.
1699
* But again, the CPU does the dirty work and saves an instr
1700
* length of zero so VMMs don't shoot themselves in the foot.
1701
* WARN if KVM tries to skip a non-zero length instruction on
1702
* a VM-Exit from an enclave.
1703
*/
1704
if (!instr_len)
1705
goto rip_updated;
1706
1707
WARN_ONCE(exit_reason.enclave_mode,
1708
"skipping instruction after SGX enclave VM-Exit");
1709
1710
orig_rip = kvm_rip_read(vcpu);
1711
rip = orig_rip + instr_len;
1712
#ifdef CONFIG_X86_64
1713
/*
1714
* We need to mask out the high 32 bits of RIP if not in 64-bit
1715
* mode, but just finding out that we are in 64-bit mode is
1716
* quite expensive. Only do it if there was a carry.
1717
*/
1718
if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1719
rip = (u32)rip;
1720
#endif
1721
kvm_rip_write(vcpu, rip);
1722
} else {
1723
if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1724
return 0;
1725
}
1726
1727
rip_updated:
1728
/* skipping an emulated instruction also counts */
1729
vmx_set_interrupt_shadow(vcpu, 0);
1730
1731
return 1;
1732
}
1733
1734
/*
1735
* Recognizes a pending MTF VM-exit and records the nested state for later
1736
* delivery.
1737
*/
1738
void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1739
{
1740
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1741
struct vcpu_vmx *vmx = to_vmx(vcpu);
1742
1743
if (!is_guest_mode(vcpu))
1744
return;
1745
1746
/*
1747
* Per the SDM, MTF takes priority over debug-trap exceptions besides
1748
* TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1749
* or ICEBP (in the emulator proper), and skipping of ICEBP after an
1750
* intercepted #DB deliberately avoids single-step #DB and MTF updates
1751
* as ICEBP is higher priority than both. As instruction emulation is
1752
* completed at this point (i.e. KVM is at the instruction boundary),
1753
* any #DB exception pending delivery must be a debug-trap of lower
1754
* priority than MTF. Record the pending MTF state to be delivered in
1755
* vmx_check_nested_events().
1756
*/
1757
if (nested_cpu_has_mtf(vmcs12) &&
1758
(!vcpu->arch.exception.pending ||
1759
vcpu->arch.exception.vector == DB_VECTOR) &&
1760
(!vcpu->arch.exception_vmexit.pending ||
1761
vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1762
vmx->nested.mtf_pending = true;
1763
kvm_make_request(KVM_REQ_EVENT, vcpu);
1764
} else {
1765
vmx->nested.mtf_pending = false;
1766
}
1767
}
1768
1769
int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1770
{
1771
vmx_update_emulated_instruction(vcpu);
1772
return skip_emulated_instruction(vcpu);
1773
}
1774
1775
static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1776
{
1777
/*
1778
* Ensure that we clear the HLT state in the VMCS. We don't need to
1779
* explicitly skip the instruction because if the HLT state is set,
1780
* then the instruction is already executing and RIP has already been
1781
* advanced.
1782
*/
1783
if (kvm_hlt_in_guest(vcpu->kvm) &&
1784
vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1785
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1786
}
1787
1788
void vmx_inject_exception(struct kvm_vcpu *vcpu)
1789
{
1790
struct kvm_queued_exception *ex = &vcpu->arch.exception;
1791
u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1792
struct vcpu_vmx *vmx = to_vmx(vcpu);
1793
1794
kvm_deliver_exception_payload(vcpu, ex);
1795
1796
if (ex->has_error_code) {
1797
/*
1798
* Despite the error code being architecturally defined as 32
1799
* bits, and the VMCS field being 32 bits, Intel CPUs and thus
1800
* VMX don't actually supporting setting bits 31:16. Hardware
1801
* will (should) never provide a bogus error code, but AMD CPUs
1802
* do generate error codes with bits 31:16 set, and so KVM's
1803
* ABI lets userspace shove in arbitrary 32-bit values. Drop
1804
* the upper bits to avoid VM-Fail, losing information that
1805
* doesn't really exist is preferable to killing the VM.
1806
*/
1807
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1808
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1809
}
1810
1811
if (vmx->rmode.vm86_active) {
1812
int inc_eip = 0;
1813
if (kvm_exception_is_soft(ex->vector))
1814
inc_eip = vcpu->arch.event_exit_inst_len;
1815
kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1816
return;
1817
}
1818
1819
WARN_ON_ONCE(vmx->vt.emulation_required);
1820
1821
if (kvm_exception_is_soft(ex->vector)) {
1822
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1823
vmx->vcpu.arch.event_exit_inst_len);
1824
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1825
} else
1826
intr_info |= INTR_TYPE_HARD_EXCEPTION;
1827
1828
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1829
1830
vmx_clear_hlt(vcpu);
1831
}
1832
1833
static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1834
bool load_into_hardware)
1835
{
1836
struct vmx_uret_msr *uret_msr;
1837
1838
uret_msr = vmx_find_uret_msr(vmx, msr);
1839
if (!uret_msr)
1840
return;
1841
1842
uret_msr->load_into_hardware = load_into_hardware;
1843
}
1844
1845
/*
1846
* Configuring user return MSRs to automatically save, load, and restore MSRs
1847
* that need to be shoved into hardware when running the guest. Note, omitting
1848
* an MSR here does _NOT_ mean it's not emulated, only that it will not be
1849
* loaded into hardware when running the guest.
1850
*/
1851
static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1852
{
1853
#ifdef CONFIG_X86_64
1854
bool load_syscall_msrs;
1855
1856
/*
1857
* The SYSCALL MSRs are only needed on long mode guests, and only
1858
* when EFER.SCE is set.
1859
*/
1860
load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1861
(vmx->vcpu.arch.efer & EFER_SCE);
1862
1863
vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1864
vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1865
vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1866
#endif
1867
vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1868
1869
vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1870
guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1871
guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1872
1873
/*
1874
* hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1875
* kernel and old userspace. If those guests run on a tsx=off host, do
1876
* allow guests to use TSX_CTRL, but don't change the value in hardware
1877
* so that TSX remains always disabled.
1878
*/
1879
vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1880
1881
/*
1882
* The set of MSRs to load may have changed, reload MSRs before the
1883
* next VM-Enter.
1884
*/
1885
vmx->guest_uret_msrs_loaded = false;
1886
}
1887
1888
u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1889
{
1890
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1891
1892
if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1893
return vmcs12->tsc_offset;
1894
1895
return 0;
1896
}
1897
1898
u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1899
{
1900
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1901
1902
if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1903
nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1904
return vmcs12->tsc_multiplier;
1905
1906
return kvm_caps.default_tsc_scaling_ratio;
1907
}
1908
1909
void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1910
{
1911
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1912
}
1913
1914
void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1915
{
1916
vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1917
}
1918
1919
/*
1920
* Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1921
* guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1922
* backwards compatibility even though KVM doesn't support emulating SMX. And
1923
* because userspace set "VMX in SMX", the guest must also be allowed to set it,
1924
* e.g. if the MSR is left unlocked and the guest does a RMW operation.
1925
*/
1926
#define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1927
FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1928
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1929
FEAT_CTL_SGX_LC_ENABLED | \
1930
FEAT_CTL_SGX_ENABLED | \
1931
FEAT_CTL_LMCE_ENABLED)
1932
1933
static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1934
struct msr_data *msr)
1935
{
1936
uint64_t valid_bits;
1937
1938
/*
1939
* Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1940
* exposed to the guest.
1941
*/
1942
WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1943
~KVM_SUPPORTED_FEATURE_CONTROL);
1944
1945
if (!msr->host_initiated &&
1946
(vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1947
return false;
1948
1949
if (msr->host_initiated)
1950
valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1951
else
1952
valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1953
1954
return !(msr->data & ~valid_bits);
1955
}
1956
1957
int vmx_get_feature_msr(u32 msr, u64 *data)
1958
{
1959
switch (msr) {
1960
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1961
if (!nested)
1962
return 1;
1963
return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
1964
default:
1965
return KVM_MSR_RET_UNSUPPORTED;
1966
}
1967
}
1968
1969
/*
1970
* Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1971
* Returns 0 on success, non-0 otherwise.
1972
* Assumes vcpu_load() was already called.
1973
*/
1974
int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1975
{
1976
struct vcpu_vmx *vmx = to_vmx(vcpu);
1977
struct vmx_uret_msr *msr;
1978
u32 index;
1979
1980
switch (msr_info->index) {
1981
#ifdef CONFIG_X86_64
1982
case MSR_FS_BASE:
1983
msr_info->data = vmcs_readl(GUEST_FS_BASE);
1984
break;
1985
case MSR_GS_BASE:
1986
msr_info->data = vmcs_readl(GUEST_GS_BASE);
1987
break;
1988
case MSR_KERNEL_GS_BASE:
1989
msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1990
break;
1991
#endif
1992
case MSR_EFER:
1993
return kvm_get_msr_common(vcpu, msr_info);
1994
case MSR_IA32_TSX_CTRL:
1995
if (!msr_info->host_initiated &&
1996
!(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1997
return 1;
1998
goto find_uret_msr;
1999
case MSR_IA32_UMWAIT_CONTROL:
2000
if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2001
return 1;
2002
2003
msr_info->data = vmx->msr_ia32_umwait_control;
2004
break;
2005
case MSR_IA32_SPEC_CTRL:
2006
if (!msr_info->host_initiated &&
2007
!guest_has_spec_ctrl_msr(vcpu))
2008
return 1;
2009
2010
msr_info->data = to_vmx(vcpu)->spec_ctrl;
2011
break;
2012
case MSR_IA32_SYSENTER_CS:
2013
msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2014
break;
2015
case MSR_IA32_SYSENTER_EIP:
2016
msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2017
break;
2018
case MSR_IA32_SYSENTER_ESP:
2019
msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2020
break;
2021
case MSR_IA32_BNDCFGS:
2022
if (!kvm_mpx_supported() ||
2023
(!msr_info->host_initiated &&
2024
!guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2025
return 1;
2026
msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2027
break;
2028
case MSR_IA32_MCG_EXT_CTL:
2029
if (!msr_info->host_initiated &&
2030
!(vmx->msr_ia32_feature_control &
2031
FEAT_CTL_LMCE_ENABLED))
2032
return 1;
2033
msr_info->data = vcpu->arch.mcg_ext_ctl;
2034
break;
2035
case MSR_IA32_FEAT_CTL:
2036
msr_info->data = vmx->msr_ia32_feature_control;
2037
break;
2038
case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2039
if (!msr_info->host_initiated &&
2040
!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2041
return 1;
2042
msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2043
[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2044
break;
2045
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2046
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2047
return 1;
2048
if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2049
&msr_info->data))
2050
return 1;
2051
#ifdef CONFIG_KVM_HYPERV
2052
/*
2053
* Enlightened VMCS v1 doesn't have certain VMCS fields but
2054
* instead of just ignoring the features, different Hyper-V
2055
* versions are either trying to use them and fail or do some
2056
* sanity checking and refuse to boot. Filter all unsupported
2057
* features out.
2058
*/
2059
if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2060
nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2061
&msr_info->data);
2062
#endif
2063
break;
2064
case MSR_IA32_RTIT_CTL:
2065
if (!vmx_pt_mode_is_host_guest())
2066
return 1;
2067
msr_info->data = vmx->pt_desc.guest.ctl;
2068
break;
2069
case MSR_IA32_RTIT_STATUS:
2070
if (!vmx_pt_mode_is_host_guest())
2071
return 1;
2072
msr_info->data = vmx->pt_desc.guest.status;
2073
break;
2074
case MSR_IA32_RTIT_CR3_MATCH:
2075
if (!vmx_pt_mode_is_host_guest() ||
2076
!intel_pt_validate_cap(vmx->pt_desc.caps,
2077
PT_CAP_cr3_filtering))
2078
return 1;
2079
msr_info->data = vmx->pt_desc.guest.cr3_match;
2080
break;
2081
case MSR_IA32_RTIT_OUTPUT_BASE:
2082
if (!vmx_pt_mode_is_host_guest() ||
2083
(!intel_pt_validate_cap(vmx->pt_desc.caps,
2084
PT_CAP_topa_output) &&
2085
!intel_pt_validate_cap(vmx->pt_desc.caps,
2086
PT_CAP_single_range_output)))
2087
return 1;
2088
msr_info->data = vmx->pt_desc.guest.output_base;
2089
break;
2090
case MSR_IA32_RTIT_OUTPUT_MASK:
2091
if (!vmx_pt_mode_is_host_guest() ||
2092
(!intel_pt_validate_cap(vmx->pt_desc.caps,
2093
PT_CAP_topa_output) &&
2094
!intel_pt_validate_cap(vmx->pt_desc.caps,
2095
PT_CAP_single_range_output)))
2096
return 1;
2097
msr_info->data = vmx->pt_desc.guest.output_mask;
2098
break;
2099
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2100
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2101
if (!vmx_pt_mode_is_host_guest() ||
2102
(index >= 2 * vmx->pt_desc.num_address_ranges))
2103
return 1;
2104
if (index % 2)
2105
msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2106
else
2107
msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2108
break;
2109
case MSR_IA32_S_CET:
2110
msr_info->data = vmcs_readl(GUEST_S_CET);
2111
break;
2112
case MSR_KVM_INTERNAL_GUEST_SSP:
2113
msr_info->data = vmcs_readl(GUEST_SSP);
2114
break;
2115
case MSR_IA32_INT_SSP_TAB:
2116
msr_info->data = vmcs_readl(GUEST_INTR_SSP_TABLE);
2117
break;
2118
case MSR_IA32_DEBUGCTLMSR:
2119
msr_info->data = vmx_guest_debugctl_read();
2120
break;
2121
default:
2122
find_uret_msr:
2123
msr = vmx_find_uret_msr(vmx, msr_info->index);
2124
if (msr) {
2125
msr_info->data = msr->data;
2126
break;
2127
}
2128
return kvm_get_msr_common(vcpu, msr_info);
2129
}
2130
2131
return 0;
2132
}
2133
2134
static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2135
u64 data)
2136
{
2137
#ifdef CONFIG_X86_64
2138
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2139
return (u32)data;
2140
#endif
2141
return (unsigned long)data;
2142
}
2143
2144
u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2145
{
2146
u64 debugctl = 0;
2147
2148
if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2149
(host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2150
debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2151
2152
if ((kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT) &&
2153
(host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2154
debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2155
2156
if (boot_cpu_has(X86_FEATURE_RTM) &&
2157
(host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)))
2158
debugctl |= DEBUGCTLMSR_RTM_DEBUG;
2159
2160
return debugctl;
2161
}
2162
2163
bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated)
2164
{
2165
u64 invalid;
2166
2167
invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated);
2168
if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) {
2169
kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2170
invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR);
2171
}
2172
return !invalid;
2173
}
2174
2175
/*
2176
* Writes msr value into the appropriate "register".
2177
* Returns 0 on success, non-0 otherwise.
2178
* Assumes vcpu_load() was already called.
2179
*/
2180
int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2181
{
2182
struct vcpu_vmx *vmx = to_vmx(vcpu);
2183
struct vmx_uret_msr *msr;
2184
int ret = 0;
2185
u32 msr_index = msr_info->index;
2186
u64 data = msr_info->data;
2187
u32 index;
2188
2189
switch (msr_index) {
2190
case MSR_EFER:
2191
ret = kvm_set_msr_common(vcpu, msr_info);
2192
break;
2193
#ifdef CONFIG_X86_64
2194
case MSR_FS_BASE:
2195
vmx_segment_cache_clear(vmx);
2196
vmcs_writel(GUEST_FS_BASE, data);
2197
break;
2198
case MSR_GS_BASE:
2199
vmx_segment_cache_clear(vmx);
2200
vmcs_writel(GUEST_GS_BASE, data);
2201
break;
2202
case MSR_KERNEL_GS_BASE:
2203
vmx_write_guest_kernel_gs_base(vmx, data);
2204
break;
2205
case MSR_IA32_XFD:
2206
ret = kvm_set_msr_common(vcpu, msr_info);
2207
/*
2208
* Always intercepting WRMSR could incur non-negligible
2209
* overhead given xfd might be changed frequently in
2210
* guest context switch. Disable write interception
2211
* upon the first write with a non-zero value (indicating
2212
* potential usage on dynamic xfeatures). Also update
2213
* exception bitmap to trap #NM for proper virtualization
2214
* of guest xfd_err.
2215
*/
2216
if (!ret && data) {
2217
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2218
MSR_TYPE_RW);
2219
vcpu->arch.xfd_no_write_intercept = true;
2220
vmx_update_exception_bitmap(vcpu);
2221
}
2222
break;
2223
#endif
2224
case MSR_IA32_SYSENTER_CS:
2225
if (is_guest_mode(vcpu))
2226
get_vmcs12(vcpu)->guest_sysenter_cs = data;
2227
vmcs_write32(GUEST_SYSENTER_CS, data);
2228
break;
2229
case MSR_IA32_SYSENTER_EIP:
2230
if (is_guest_mode(vcpu)) {
2231
data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2232
get_vmcs12(vcpu)->guest_sysenter_eip = data;
2233
}
2234
vmcs_writel(GUEST_SYSENTER_EIP, data);
2235
break;
2236
case MSR_IA32_SYSENTER_ESP:
2237
if (is_guest_mode(vcpu)) {
2238
data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2239
get_vmcs12(vcpu)->guest_sysenter_esp = data;
2240
}
2241
vmcs_writel(GUEST_SYSENTER_ESP, data);
2242
break;
2243
case MSR_IA32_DEBUGCTLMSR:
2244
if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated))
2245
return 1;
2246
2247
data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2248
2249
if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2250
VM_EXIT_SAVE_DEBUG_CONTROLS)
2251
get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2252
2253
vmx_guest_debugctl_write(vcpu, data);
2254
2255
if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2256
(data & DEBUGCTLMSR_LBR))
2257
intel_pmu_create_guest_lbr_event(vcpu);
2258
return 0;
2259
case MSR_IA32_BNDCFGS:
2260
if (!kvm_mpx_supported() ||
2261
(!msr_info->host_initiated &&
2262
!guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2263
return 1;
2264
if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2265
(data & MSR_IA32_BNDCFGS_RSVD))
2266
return 1;
2267
2268
if (is_guest_mode(vcpu) &&
2269
((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2270
(vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2271
get_vmcs12(vcpu)->guest_bndcfgs = data;
2272
2273
vmcs_write64(GUEST_BNDCFGS, data);
2274
break;
2275
case MSR_IA32_UMWAIT_CONTROL:
2276
if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2277
return 1;
2278
2279
/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2280
if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2281
return 1;
2282
2283
vmx->msr_ia32_umwait_control = data;
2284
break;
2285
case MSR_IA32_SPEC_CTRL:
2286
if (!msr_info->host_initiated &&
2287
!guest_has_spec_ctrl_msr(vcpu))
2288
return 1;
2289
2290
if (kvm_spec_ctrl_test_value(data))
2291
return 1;
2292
2293
vmx->spec_ctrl = data;
2294
if (!data)
2295
break;
2296
2297
/*
2298
* For non-nested:
2299
* When it's written (to non-zero) for the first time, pass
2300
* it through.
2301
*
2302
* For nested:
2303
* The handling of the MSR bitmap for L2 guests is done in
2304
* nested_vmx_prepare_msr_bitmap. We should not touch the
2305
* vmcs02.msr_bitmap here since it gets completely overwritten
2306
* in the merging. We update the vmcs01 here for L1 as well
2307
* since it will end up touching the MSR anyway now.
2308
*/
2309
vmx_disable_intercept_for_msr(vcpu,
2310
MSR_IA32_SPEC_CTRL,
2311
MSR_TYPE_RW);
2312
break;
2313
case MSR_IA32_TSX_CTRL:
2314
if (!msr_info->host_initiated &&
2315
!(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2316
return 1;
2317
if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2318
return 1;
2319
goto find_uret_msr;
2320
case MSR_IA32_CR_PAT:
2321
ret = kvm_set_msr_common(vcpu, msr_info);
2322
if (ret)
2323
break;
2324
2325
if (is_guest_mode(vcpu) &&
2326
get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2327
get_vmcs12(vcpu)->guest_ia32_pat = data;
2328
2329
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2330
vmcs_write64(GUEST_IA32_PAT, data);
2331
break;
2332
case MSR_IA32_MCG_EXT_CTL:
2333
if ((!msr_info->host_initiated &&
2334
!(to_vmx(vcpu)->msr_ia32_feature_control &
2335
FEAT_CTL_LMCE_ENABLED)) ||
2336
(data & ~MCG_EXT_CTL_LMCE_EN))
2337
return 1;
2338
vcpu->arch.mcg_ext_ctl = data;
2339
break;
2340
case MSR_IA32_FEAT_CTL:
2341
if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2342
return 1;
2343
2344
vmx->msr_ia32_feature_control = data;
2345
if (msr_info->host_initiated && data == 0)
2346
vmx_leave_nested(vcpu);
2347
2348
/* SGX may be enabled/disabled by guest's firmware */
2349
vmx_write_encls_bitmap(vcpu, NULL);
2350
break;
2351
case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2352
/*
2353
* On real hardware, the LE hash MSRs are writable before
2354
* the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2355
* at which point SGX related bits in IA32_FEATURE_CONTROL
2356
* become writable.
2357
*
2358
* KVM does not emulate SGX activation for simplicity, so
2359
* allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2360
* is unlocked. This is technically not architectural
2361
* behavior, but it's close enough.
2362
*/
2363
if (!msr_info->host_initiated &&
2364
(!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2365
((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2366
!(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2367
return 1;
2368
vmx->msr_ia32_sgxlepubkeyhash
2369
[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2370
break;
2371
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2372
if (!msr_info->host_initiated)
2373
return 1; /* they are read-only */
2374
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2375
return 1;
2376
return vmx_set_vmx_msr(vcpu, msr_index, data);
2377
case MSR_IA32_RTIT_CTL:
2378
if (!vmx_pt_mode_is_host_guest() ||
2379
vmx_rtit_ctl_check(vcpu, data) ||
2380
vmx->nested.vmxon)
2381
return 1;
2382
vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2383
vmx->pt_desc.guest.ctl = data;
2384
pt_update_intercept_for_msr(vcpu);
2385
break;
2386
case MSR_IA32_RTIT_STATUS:
2387
if (!pt_can_write_msr(vmx))
2388
return 1;
2389
if (data & MSR_IA32_RTIT_STATUS_MASK)
2390
return 1;
2391
vmx->pt_desc.guest.status = data;
2392
break;
2393
case MSR_IA32_RTIT_CR3_MATCH:
2394
if (!pt_can_write_msr(vmx))
2395
return 1;
2396
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2397
PT_CAP_cr3_filtering))
2398
return 1;
2399
vmx->pt_desc.guest.cr3_match = data;
2400
break;
2401
case MSR_IA32_RTIT_OUTPUT_BASE:
2402
if (!pt_can_write_msr(vmx))
2403
return 1;
2404
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2405
PT_CAP_topa_output) &&
2406
!intel_pt_validate_cap(vmx->pt_desc.caps,
2407
PT_CAP_single_range_output))
2408
return 1;
2409
if (!pt_output_base_valid(vcpu, data))
2410
return 1;
2411
vmx->pt_desc.guest.output_base = data;
2412
break;
2413
case MSR_IA32_RTIT_OUTPUT_MASK:
2414
if (!pt_can_write_msr(vmx))
2415
return 1;
2416
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2417
PT_CAP_topa_output) &&
2418
!intel_pt_validate_cap(vmx->pt_desc.caps,
2419
PT_CAP_single_range_output))
2420
return 1;
2421
vmx->pt_desc.guest.output_mask = data;
2422
break;
2423
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2424
if (!pt_can_write_msr(vmx))
2425
return 1;
2426
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2427
if (index >= 2 * vmx->pt_desc.num_address_ranges)
2428
return 1;
2429
if (is_noncanonical_msr_address(data, vcpu))
2430
return 1;
2431
if (index % 2)
2432
vmx->pt_desc.guest.addr_b[index / 2] = data;
2433
else
2434
vmx->pt_desc.guest.addr_a[index / 2] = data;
2435
break;
2436
case MSR_IA32_S_CET:
2437
vmcs_writel(GUEST_S_CET, data);
2438
break;
2439
case MSR_KVM_INTERNAL_GUEST_SSP:
2440
vmcs_writel(GUEST_SSP, data);
2441
break;
2442
case MSR_IA32_INT_SSP_TAB:
2443
vmcs_writel(GUEST_INTR_SSP_TABLE, data);
2444
break;
2445
case MSR_IA32_PERF_CAPABILITIES:
2446
if (data & PERF_CAP_LBR_FMT) {
2447
if ((data & PERF_CAP_LBR_FMT) !=
2448
(kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT))
2449
return 1;
2450
if (!cpuid_model_is_consistent(vcpu))
2451
return 1;
2452
}
2453
if (data & PERF_CAP_PEBS_FORMAT) {
2454
if ((data & PERF_CAP_PEBS_MASK) !=
2455
(kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2456
return 1;
2457
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2458
return 1;
2459
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2460
return 1;
2461
if (!cpuid_model_is_consistent(vcpu))
2462
return 1;
2463
}
2464
ret = kvm_set_msr_common(vcpu, msr_info);
2465
break;
2466
2467
default:
2468
find_uret_msr:
2469
msr = vmx_find_uret_msr(vmx, msr_index);
2470
if (msr)
2471
ret = vmx_set_guest_uret_msr(vmx, msr, data);
2472
else
2473
ret = kvm_set_msr_common(vcpu, msr_info);
2474
}
2475
2476
/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2477
if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2478
vmx_update_fb_clear_dis(vcpu, vmx);
2479
2480
return ret;
2481
}
2482
2483
void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2484
{
2485
unsigned long guest_owned_bits;
2486
2487
kvm_register_mark_available(vcpu, reg);
2488
2489
switch (reg) {
2490
case VCPU_REGS_RSP:
2491
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2492
break;
2493
case VCPU_REGS_RIP:
2494
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2495
break;
2496
case VCPU_EXREG_PDPTR:
2497
if (enable_ept)
2498
ept_save_pdptrs(vcpu);
2499
break;
2500
case VCPU_EXREG_CR0:
2501
guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2502
2503
vcpu->arch.cr0 &= ~guest_owned_bits;
2504
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2505
break;
2506
case VCPU_EXREG_CR3:
2507
/*
2508
* When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2509
* CR3 is loaded into hardware, not the guest's CR3.
2510
*/
2511
if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2512
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2513
break;
2514
case VCPU_EXREG_CR4:
2515
guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2516
2517
vcpu->arch.cr4 &= ~guest_owned_bits;
2518
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2519
break;
2520
default:
2521
KVM_BUG_ON(1, vcpu->kvm);
2522
break;
2523
}
2524
}
2525
2526
/*
2527
* There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2528
* directly instead of going through cpu_has(), to ensure KVM is trapping
2529
* ENCLS whenever it's supported in hardware. It does not matter whether
2530
* the host OS supports or has enabled SGX.
2531
*/
2532
static bool cpu_has_sgx(void)
2533
{
2534
return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2535
}
2536
2537
static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2538
{
2539
u32 vmx_msr_low, vmx_msr_high;
2540
u32 ctl = ctl_min | ctl_opt;
2541
2542
rdmsr(msr, vmx_msr_low, vmx_msr_high);
2543
2544
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2545
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2546
2547
/* Ensure minimum (required) set of control bits are supported. */
2548
if (ctl_min & ~ctl)
2549
return -EIO;
2550
2551
*result = ctl;
2552
return 0;
2553
}
2554
2555
static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2556
{
2557
u64 allowed;
2558
2559
rdmsrq(msr, allowed);
2560
2561
return ctl_opt & allowed;
2562
}
2563
2564
#define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls) \
2565
({ \
2566
int i, r = 0; \
2567
\
2568
BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls)); \
2569
BUILD_BUG_ON(sizeof(pairs[0].exit_control) != sizeof(exit_controls)); \
2570
\
2571
for (i = 0; i < ARRAY_SIZE(pairs); i++) { \
2572
typeof(entry_controls) n_ctrl = pairs[i].entry_control; \
2573
typeof(exit_controls) x_ctrl = pairs[i].exit_control; \
2574
\
2575
if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl)) \
2576
continue; \
2577
\
2578
pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, " \
2579
"entry = %llx (%llx), exit = %llx (%llx)\n", \
2580
(u64)(entry_controls & n_ctrl), (u64)n_ctrl, \
2581
(u64)(exit_controls & x_ctrl), (u64)x_ctrl); \
2582
\
2583
if (error_on_inconsistent_vmcs_config) \
2584
r = -EIO; \
2585
\
2586
entry_controls &= ~n_ctrl; \
2587
exit_controls &= ~x_ctrl; \
2588
} \
2589
r; \
2590
})
2591
2592
static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2593
struct vmx_capability *vmx_cap)
2594
{
2595
u32 _pin_based_exec_control = 0;
2596
u32 _cpu_based_exec_control = 0;
2597
u32 _cpu_based_2nd_exec_control = 0;
2598
u64 _cpu_based_3rd_exec_control = 0;
2599
u32 _vmexit_control = 0;
2600
u32 _vmentry_control = 0;
2601
u64 basic_msr;
2602
u64 misc_msr;
2603
2604
/*
2605
* LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2606
* SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2607
* intercepts writes to PAT and EFER, i.e. never enables those controls.
2608
*/
2609
struct {
2610
u32 entry_control;
2611
u32 exit_control;
2612
} const vmcs_entry_exit_pairs[] = {
2613
{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2614
{ VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2615
{ VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2616
{ VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2617
{ VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2618
{ VM_ENTRY_LOAD_CET_STATE, VM_EXIT_LOAD_CET_STATE },
2619
};
2620
2621
memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2622
2623
if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2624
KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2625
MSR_IA32_VMX_PROCBASED_CTLS,
2626
&_cpu_based_exec_control))
2627
return -EIO;
2628
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2629
if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2630
KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2631
MSR_IA32_VMX_PROCBASED_CTLS2,
2632
&_cpu_based_2nd_exec_control))
2633
return -EIO;
2634
}
2635
if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2636
_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2637
2638
#ifndef CONFIG_X86_64
2639
if (!(_cpu_based_2nd_exec_control &
2640
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2641
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2642
#endif
2643
2644
if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2645
_cpu_based_2nd_exec_control &= ~(
2646
SECONDARY_EXEC_APIC_REGISTER_VIRT |
2647
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2648
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2649
2650
rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2651
&vmx_cap->ept, &vmx_cap->vpid);
2652
2653
if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2654
vmx_cap->ept) {
2655
pr_warn_once("EPT CAP should not exist if not support "
2656
"1-setting enable EPT VM-execution control\n");
2657
2658
if (error_on_inconsistent_vmcs_config)
2659
return -EIO;
2660
2661
vmx_cap->ept = 0;
2662
_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2663
}
2664
if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2665
vmx_cap->vpid) {
2666
pr_warn_once("VPID CAP should not exist if not support "
2667
"1-setting enable VPID VM-execution control\n");
2668
2669
if (error_on_inconsistent_vmcs_config)
2670
return -EIO;
2671
2672
vmx_cap->vpid = 0;
2673
}
2674
2675
if (!cpu_has_sgx())
2676
_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2677
2678
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2679
_cpu_based_3rd_exec_control =
2680
adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2681
MSR_IA32_VMX_PROCBASED_CTLS3);
2682
2683
if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2684
KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2685
MSR_IA32_VMX_EXIT_CTLS,
2686
&_vmexit_control))
2687
return -EIO;
2688
2689
if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2690
KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2691
MSR_IA32_VMX_PINBASED_CTLS,
2692
&_pin_based_exec_control))
2693
return -EIO;
2694
2695
if (cpu_has_broken_vmx_preemption_timer())
2696
_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2697
if (!(_cpu_based_2nd_exec_control &
2698
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2699
_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2700
2701
if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2702
KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2703
MSR_IA32_VMX_ENTRY_CTLS,
2704
&_vmentry_control))
2705
return -EIO;
2706
2707
if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2708
_vmentry_control, _vmexit_control))
2709
return -EIO;
2710
2711
/*
2712
* Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2713
* can't be used due to an errata where VM Exit may incorrectly clear
2714
* IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2715
* MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2716
*/
2717
switch (boot_cpu_data.x86_vfm) {
2718
case INTEL_NEHALEM_EP: /* AAK155 */
2719
case INTEL_NEHALEM: /* AAP115 */
2720
case INTEL_WESTMERE: /* AAT100 */
2721
case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */
2722
case INTEL_NEHALEM_EX: /* BA97 */
2723
_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2724
_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2725
pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2726
"does not work properly. Using workaround\n");
2727
break;
2728
default:
2729
break;
2730
}
2731
2732
rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2733
2734
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2735
if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2736
return -EIO;
2737
2738
#ifdef CONFIG_X86_64
2739
/*
2740
* KVM expects to be able to shove all legal physical addresses into
2741
* VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2742
* 0 for processors that support Intel 64 architecture".
2743
*/
2744
if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2745
return -EIO;
2746
#endif
2747
2748
/* Require Write-Back (WB) memory type for VMCS accesses. */
2749
if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2750
return -EIO;
2751
2752
rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2753
2754
vmcs_conf->basic = basic_msr;
2755
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2756
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2757
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2758
vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2759
vmcs_conf->vmexit_ctrl = _vmexit_control;
2760
vmcs_conf->vmentry_ctrl = _vmentry_control;
2761
vmcs_conf->misc = misc_msr;
2762
2763
#if IS_ENABLED(CONFIG_HYPERV)
2764
if (enlightened_vmcs)
2765
evmcs_sanitize_exec_ctrls(vmcs_conf);
2766
#endif
2767
2768
return 0;
2769
}
2770
2771
static bool __kvm_is_vmx_supported(void)
2772
{
2773
int cpu = smp_processor_id();
2774
2775
if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2776
pr_err("VMX not supported by CPU %d\n", cpu);
2777
return false;
2778
}
2779
2780
if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2781
!this_cpu_has(X86_FEATURE_VMX)) {
2782
pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2783
return false;
2784
}
2785
2786
return true;
2787
}
2788
2789
static bool kvm_is_vmx_supported(void)
2790
{
2791
bool supported;
2792
2793
migrate_disable();
2794
supported = __kvm_is_vmx_supported();
2795
migrate_enable();
2796
2797
return supported;
2798
}
2799
2800
int vmx_check_processor_compat(void)
2801
{
2802
int cpu = raw_smp_processor_id();
2803
struct vmcs_config vmcs_conf;
2804
struct vmx_capability vmx_cap;
2805
2806
if (!__kvm_is_vmx_supported())
2807
return -EIO;
2808
2809
if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2810
pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2811
return -EIO;
2812
}
2813
if (nested)
2814
nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2815
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2816
pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2817
return -EIO;
2818
}
2819
return 0;
2820
}
2821
2822
static int kvm_cpu_vmxon(u64 vmxon_pointer)
2823
{
2824
u64 msr;
2825
2826
cr4_set_bits(X86_CR4_VMXE);
2827
2828
asm goto("1: vmxon %[vmxon_pointer]\n\t"
2829
_ASM_EXTABLE(1b, %l[fault])
2830
: : [vmxon_pointer] "m"(vmxon_pointer)
2831
: : fault);
2832
return 0;
2833
2834
fault:
2835
WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2836
rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2837
cr4_clear_bits(X86_CR4_VMXE);
2838
2839
return -EFAULT;
2840
}
2841
2842
int vmx_enable_virtualization_cpu(void)
2843
{
2844
int cpu = raw_smp_processor_id();
2845
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2846
int r;
2847
2848
if (cr4_read_shadow() & X86_CR4_VMXE)
2849
return -EBUSY;
2850
2851
/*
2852
* This can happen if we hot-added a CPU but failed to allocate
2853
* VP assist page for it.
2854
*/
2855
if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2856
return -EFAULT;
2857
2858
intel_pt_handle_vmx(1);
2859
2860
r = kvm_cpu_vmxon(phys_addr);
2861
if (r) {
2862
intel_pt_handle_vmx(0);
2863
return r;
2864
}
2865
2866
return 0;
2867
}
2868
2869
static void vmclear_local_loaded_vmcss(void)
2870
{
2871
int cpu = raw_smp_processor_id();
2872
struct loaded_vmcs *v, *n;
2873
2874
list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2875
loaded_vmcss_on_cpu_link)
2876
__loaded_vmcs_clear(v);
2877
}
2878
2879
void vmx_disable_virtualization_cpu(void)
2880
{
2881
vmclear_local_loaded_vmcss();
2882
2883
if (kvm_cpu_vmxoff())
2884
kvm_spurious_fault();
2885
2886
hv_reset_evmcs();
2887
2888
intel_pt_handle_vmx(0);
2889
}
2890
2891
struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2892
{
2893
int node = cpu_to_node(cpu);
2894
struct page *pages;
2895
struct vmcs *vmcs;
2896
2897
pages = __alloc_pages_node(node, flags, 0);
2898
if (!pages)
2899
return NULL;
2900
vmcs = page_address(pages);
2901
memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2902
2903
/* KVM supports Enlightened VMCS v1 only */
2904
if (kvm_is_using_evmcs())
2905
vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2906
else
2907
vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2908
2909
if (shadow)
2910
vmcs->hdr.shadow_vmcs = 1;
2911
return vmcs;
2912
}
2913
2914
void free_vmcs(struct vmcs *vmcs)
2915
{
2916
free_page((unsigned long)vmcs);
2917
}
2918
2919
/*
2920
* Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2921
*/
2922
void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2923
{
2924
if (!loaded_vmcs->vmcs)
2925
return;
2926
loaded_vmcs_clear(loaded_vmcs);
2927
free_vmcs(loaded_vmcs->vmcs);
2928
loaded_vmcs->vmcs = NULL;
2929
if (loaded_vmcs->msr_bitmap)
2930
free_page((unsigned long)loaded_vmcs->msr_bitmap);
2931
WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2932
}
2933
2934
int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2935
{
2936
loaded_vmcs->vmcs = alloc_vmcs(false);
2937
if (!loaded_vmcs->vmcs)
2938
return -ENOMEM;
2939
2940
vmcs_clear(loaded_vmcs->vmcs);
2941
2942
loaded_vmcs->shadow_vmcs = NULL;
2943
loaded_vmcs->hv_timer_soft_disabled = false;
2944
loaded_vmcs->cpu = -1;
2945
loaded_vmcs->launched = 0;
2946
2947
if (cpu_has_vmx_msr_bitmap()) {
2948
loaded_vmcs->msr_bitmap = (unsigned long *)
2949
__get_free_page(GFP_KERNEL_ACCOUNT);
2950
if (!loaded_vmcs->msr_bitmap)
2951
goto out_vmcs;
2952
memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2953
}
2954
2955
memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2956
memset(&loaded_vmcs->controls_shadow, 0,
2957
sizeof(struct vmcs_controls_shadow));
2958
2959
return 0;
2960
2961
out_vmcs:
2962
free_loaded_vmcs(loaded_vmcs);
2963
return -ENOMEM;
2964
}
2965
2966
static void free_kvm_area(void)
2967
{
2968
int cpu;
2969
2970
for_each_possible_cpu(cpu) {
2971
free_vmcs(per_cpu(vmxarea, cpu));
2972
per_cpu(vmxarea, cpu) = NULL;
2973
}
2974
}
2975
2976
static __init int alloc_kvm_area(void)
2977
{
2978
int cpu;
2979
2980
for_each_possible_cpu(cpu) {
2981
struct vmcs *vmcs;
2982
2983
vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2984
if (!vmcs) {
2985
free_kvm_area();
2986
return -ENOMEM;
2987
}
2988
2989
/*
2990
* When eVMCS is enabled, alloc_vmcs_cpu() sets
2991
* vmcs->revision_id to KVM_EVMCS_VERSION instead of
2992
* revision_id reported by MSR_IA32_VMX_BASIC.
2993
*
2994
* However, even though not explicitly documented by
2995
* TLFS, VMXArea passed as VMXON argument should
2996
* still be marked with revision_id reported by
2997
* physical CPU.
2998
*/
2999
if (kvm_is_using_evmcs())
3000
vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3001
3002
per_cpu(vmxarea, cpu) = vmcs;
3003
}
3004
return 0;
3005
}
3006
3007
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3008
struct kvm_segment *save)
3009
{
3010
if (!emulate_invalid_guest_state) {
3011
/*
3012
* CS and SS RPL should be equal during guest entry according
3013
* to VMX spec, but in reality it is not always so. Since vcpu
3014
* is in the middle of the transition from real mode to
3015
* protected mode it is safe to assume that RPL 0 is a good
3016
* default value.
3017
*/
3018
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3019
save->selector &= ~SEGMENT_RPL_MASK;
3020
save->dpl = save->selector & SEGMENT_RPL_MASK;
3021
save->s = 1;
3022
}
3023
__vmx_set_segment(vcpu, save, seg);
3024
}
3025
3026
static void enter_pmode(struct kvm_vcpu *vcpu)
3027
{
3028
unsigned long flags;
3029
struct vcpu_vmx *vmx = to_vmx(vcpu);
3030
3031
/*
3032
* Update real mode segment cache. It may be not up-to-date if segment
3033
* register was written while vcpu was in a guest mode.
3034
*/
3035
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3036
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3037
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3038
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3039
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3040
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3041
3042
vmx->rmode.vm86_active = 0;
3043
3044
__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3045
3046
flags = vmcs_readl(GUEST_RFLAGS);
3047
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3048
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3049
vmcs_writel(GUEST_RFLAGS, flags);
3050
3051
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3052
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3053
3054
vmx_update_exception_bitmap(vcpu);
3055
3056
fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3057
fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3058
fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3059
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3060
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3061
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3062
}
3063
3064
static void fix_rmode_seg(int seg, struct kvm_segment *save)
3065
{
3066
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3067
struct kvm_segment var = *save;
3068
3069
var.dpl = 0x3;
3070
if (seg == VCPU_SREG_CS)
3071
var.type = 0x3;
3072
3073
if (!emulate_invalid_guest_state) {
3074
var.selector = var.base >> 4;
3075
var.base = var.base & 0xffff0;
3076
var.limit = 0xffff;
3077
var.g = 0;
3078
var.db = 0;
3079
var.present = 1;
3080
var.s = 1;
3081
var.l = 0;
3082
var.unusable = 0;
3083
var.type = 0x3;
3084
var.avl = 0;
3085
if (save->base & 0xf)
3086
pr_warn_once("segment base is not paragraph aligned "
3087
"when entering protected mode (seg=%d)", seg);
3088
}
3089
3090
vmcs_write16(sf->selector, var.selector);
3091
vmcs_writel(sf->base, var.base);
3092
vmcs_write32(sf->limit, var.limit);
3093
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3094
}
3095
3096
static void enter_rmode(struct kvm_vcpu *vcpu)
3097
{
3098
unsigned long flags;
3099
struct vcpu_vmx *vmx = to_vmx(vcpu);
3100
struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3101
3102
/*
3103
* KVM should never use VM86 to virtualize Real Mode when L2 is active,
3104
* as using VM86 is unnecessary if unrestricted guest is enabled, and
3105
* if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3106
* should VM-Fail and KVM should reject userspace attempts to stuff
3107
* CR0.PG=0 when L2 is active.
3108
*/
3109
WARN_ON_ONCE(is_guest_mode(vcpu));
3110
3111
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3112
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3113
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3114
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3115
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3116
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3117
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3118
3119
vmx->rmode.vm86_active = 1;
3120
3121
vmx_segment_cache_clear(vmx);
3122
3123
vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3124
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3125
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3126
3127
flags = vmcs_readl(GUEST_RFLAGS);
3128
vmx->rmode.save_rflags = flags;
3129
3130
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3131
3132
vmcs_writel(GUEST_RFLAGS, flags);
3133
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3134
vmx_update_exception_bitmap(vcpu);
3135
3136
fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3137
fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3138
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3139
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3140
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3141
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3142
}
3143
3144
int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3145
{
3146
struct vcpu_vmx *vmx = to_vmx(vcpu);
3147
3148
/* Nothing to do if hardware doesn't support EFER. */
3149
if (!vmx_find_uret_msr(vmx, MSR_EFER))
3150
return 0;
3151
3152
vcpu->arch.efer = efer;
3153
#ifdef CONFIG_X86_64
3154
if (efer & EFER_LMA)
3155
vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3156
else
3157
vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3158
#else
3159
if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3160
return 1;
3161
#endif
3162
3163
vmx_setup_uret_msrs(vmx);
3164
return 0;
3165
}
3166
3167
#ifdef CONFIG_X86_64
3168
3169
static void enter_lmode(struct kvm_vcpu *vcpu)
3170
{
3171
u32 guest_tr_ar;
3172
3173
vmx_segment_cache_clear(to_vmx(vcpu));
3174
3175
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3176
if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3177
pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3178
__func__);
3179
vmcs_write32(GUEST_TR_AR_BYTES,
3180
(guest_tr_ar & ~VMX_AR_TYPE_MASK)
3181
| VMX_AR_TYPE_BUSY_64_TSS);
3182
}
3183
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3184
}
3185
3186
static void exit_lmode(struct kvm_vcpu *vcpu)
3187
{
3188
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3189
}
3190
3191
#endif
3192
3193
void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3194
{
3195
struct vcpu_vmx *vmx = to_vmx(vcpu);
3196
3197
/*
3198
* INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3199
* the CPU is not required to invalidate guest-physical mappings on
3200
* VM-Entry, even if VPID is disabled. Guest-physical mappings are
3201
* associated with the root EPT structure and not any particular VPID
3202
* (INVVPID also isn't required to invalidate guest-physical mappings).
3203
*/
3204
if (enable_ept) {
3205
ept_sync_global();
3206
} else if (enable_vpid) {
3207
if (cpu_has_vmx_invvpid_global()) {
3208
vpid_sync_vcpu_global();
3209
} else {
3210
vpid_sync_vcpu_single(vmx->vpid);
3211
vpid_sync_vcpu_single(vmx->nested.vpid02);
3212
}
3213
}
3214
}
3215
3216
static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3217
{
3218
if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3219
return nested_get_vpid02(vcpu);
3220
return to_vmx(vcpu)->vpid;
3221
}
3222
3223
void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3224
{
3225
struct kvm_mmu *mmu = vcpu->arch.mmu;
3226
u64 root_hpa = mmu->root.hpa;
3227
3228
/* No flush required if the current context is invalid. */
3229
if (!VALID_PAGE(root_hpa))
3230
return;
3231
3232
if (enable_ept)
3233
ept_sync_context(construct_eptp(vcpu, root_hpa,
3234
mmu->root_role.level));
3235
else
3236
vpid_sync_context(vmx_get_current_vpid(vcpu));
3237
}
3238
3239
void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3240
{
3241
/*
3242
* vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3243
* vmx_flush_tlb_guest() for an explanation of why this is ok.
3244
*/
3245
vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3246
}
3247
3248
void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3249
{
3250
/*
3251
* vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3252
* vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3253
* required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3254
* disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3255
* i.e. no explicit INVVPID is necessary.
3256
*/
3257
vpid_sync_context(vmx_get_current_vpid(vcpu));
3258
}
3259
3260
void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3261
{
3262
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3263
3264
if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3265
return;
3266
3267
if (is_pae_paging(vcpu)) {
3268
vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3269
vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3270
vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3271
vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3272
}
3273
}
3274
3275
void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3276
{
3277
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3278
3279
if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3280
return;
3281
3282
mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3283
mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3284
mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3285
mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3286
3287
kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3288
}
3289
3290
#define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3291
CPU_BASED_CR3_STORE_EXITING)
3292
3293
bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3294
{
3295
if (is_guest_mode(vcpu))
3296
return nested_guest_cr0_valid(vcpu, cr0);
3297
3298
if (to_vmx(vcpu)->nested.vmxon)
3299
return nested_host_cr0_valid(vcpu, cr0);
3300
3301
return true;
3302
}
3303
3304
void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3305
{
3306
struct vcpu_vmx *vmx = to_vmx(vcpu);
3307
unsigned long hw_cr0, old_cr0_pg;
3308
u32 tmp;
3309
3310
old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3311
3312
hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3313
if (enable_unrestricted_guest)
3314
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3315
else {
3316
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3317
if (!enable_ept)
3318
hw_cr0 |= X86_CR0_WP;
3319
3320
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3321
enter_pmode(vcpu);
3322
3323
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3324
enter_rmode(vcpu);
3325
}
3326
3327
vmcs_writel(CR0_READ_SHADOW, cr0);
3328
vmcs_writel(GUEST_CR0, hw_cr0);
3329
vcpu->arch.cr0 = cr0;
3330
kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3331
3332
#ifdef CONFIG_X86_64
3333
if (vcpu->arch.efer & EFER_LME) {
3334
if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3335
enter_lmode(vcpu);
3336
else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3337
exit_lmode(vcpu);
3338
}
3339
#endif
3340
3341
if (enable_ept && !enable_unrestricted_guest) {
3342
/*
3343
* Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3344
* the below code _enables_ CR3 exiting, vmx_cache_reg() will
3345
* (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3346
* KVM's CR3 is installed.
3347
*/
3348
if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3349
vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3350
3351
/*
3352
* When running with EPT but not unrestricted guest, KVM must
3353
* intercept CR3 accesses when paging is _disabled_. This is
3354
* necessary because restricted guests can't actually run with
3355
* paging disabled, and so KVM stuffs its own CR3 in order to
3356
* run the guest when identity mapped page tables.
3357
*
3358
* Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3359
* update, it may be stale with respect to CR3 interception,
3360
* e.g. after nested VM-Enter.
3361
*
3362
* Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3363
* stores to forward them to L1, even if KVM does not need to
3364
* intercept them to preserve its identity mapped page tables.
3365
*/
3366
if (!(cr0 & X86_CR0_PG)) {
3367
exec_controls_setbit(vmx, CR3_EXITING_BITS);
3368
} else if (!is_guest_mode(vcpu)) {
3369
exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3370
} else {
3371
tmp = exec_controls_get(vmx);
3372
tmp &= ~CR3_EXITING_BITS;
3373
tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3374
exec_controls_set(vmx, tmp);
3375
}
3376
3377
/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3378
if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3379
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3380
3381
/*
3382
* When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3383
* GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3384
*/
3385
if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3386
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3387
}
3388
3389
/* depends on vcpu->arch.cr0 to be set to a new value */
3390
vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3391
}
3392
3393
static int vmx_get_max_ept_level(void)
3394
{
3395
if (cpu_has_vmx_ept_5levels())
3396
return 5;
3397
return 4;
3398
}
3399
3400
u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3401
{
3402
u64 eptp = VMX_EPTP_MT_WB;
3403
3404
eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3405
3406
if (enable_ept_ad_bits &&
3407
(!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3408
eptp |= VMX_EPTP_AD_ENABLE_BIT;
3409
eptp |= root_hpa;
3410
3411
return eptp;
3412
}
3413
3414
void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3415
{
3416
struct kvm *kvm = vcpu->kvm;
3417
bool update_guest_cr3 = true;
3418
unsigned long guest_cr3;
3419
u64 eptp;
3420
3421
if (enable_ept) {
3422
eptp = construct_eptp(vcpu, root_hpa, root_level);
3423
vmcs_write64(EPT_POINTER, eptp);
3424
3425
hv_track_root_tdp(vcpu, root_hpa);
3426
3427
if (!enable_unrestricted_guest && !is_paging(vcpu))
3428
guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3429
else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3430
guest_cr3 = vcpu->arch.cr3;
3431
else /* vmcs.GUEST_CR3 is already up-to-date. */
3432
update_guest_cr3 = false;
3433
vmx_ept_load_pdptrs(vcpu);
3434
} else {
3435
guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3436
kvm_get_active_cr3_lam_bits(vcpu);
3437
}
3438
3439
if (update_guest_cr3)
3440
vmcs_writel(GUEST_CR3, guest_cr3);
3441
}
3442
3443
bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3444
{
3445
/*
3446
* We operate under the default treatment of SMM, so VMX cannot be
3447
* enabled under SMM. Note, whether or not VMXE is allowed at all,
3448
* i.e. is a reserved bit, is handled by common x86 code.
3449
*/
3450
if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3451
return false;
3452
3453
if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3454
return false;
3455
3456
return true;
3457
}
3458
3459
void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3460
{
3461
unsigned long old_cr4 = kvm_read_cr4(vcpu);
3462
struct vcpu_vmx *vmx = to_vmx(vcpu);
3463
unsigned long hw_cr4;
3464
3465
/*
3466
* Pass through host's Machine Check Enable value to hw_cr4, which
3467
* is in force while we are in guest mode. Do not let guests control
3468
* this bit, even if host CR4.MCE == 0.
3469
*/
3470
hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3471
if (enable_unrestricted_guest)
3472
hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3473
else if (vmx->rmode.vm86_active)
3474
hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3475
else
3476
hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3477
3478
if (vmx_umip_emulated()) {
3479
if (cr4 & X86_CR4_UMIP) {
3480
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3481
hw_cr4 &= ~X86_CR4_UMIP;
3482
} else if (!is_guest_mode(vcpu) ||
3483
!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3484
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3485
}
3486
}
3487
3488
vcpu->arch.cr4 = cr4;
3489
kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3490
3491
if (!enable_unrestricted_guest) {
3492
if (enable_ept) {
3493
if (!is_paging(vcpu)) {
3494
hw_cr4 &= ~X86_CR4_PAE;
3495
hw_cr4 |= X86_CR4_PSE;
3496
} else if (!(cr4 & X86_CR4_PAE)) {
3497
hw_cr4 &= ~X86_CR4_PAE;
3498
}
3499
}
3500
3501
/*
3502
* SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3503
* hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3504
* to be manually disabled when guest switches to non-paging
3505
* mode.
3506
*
3507
* If !enable_unrestricted_guest, the CPU is always running
3508
* with CR0.PG=1 and CR4 needs to be modified.
3509
* If enable_unrestricted_guest, the CPU automatically
3510
* disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3511
*/
3512
if (!is_paging(vcpu))
3513
hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3514
}
3515
3516
vmcs_writel(CR4_READ_SHADOW, cr4);
3517
vmcs_writel(GUEST_CR4, hw_cr4);
3518
3519
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3520
vcpu->arch.cpuid_dynamic_bits_dirty = true;
3521
}
3522
3523
void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3524
{
3525
struct vcpu_vmx *vmx = to_vmx(vcpu);
3526
u32 ar;
3527
3528
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3529
*var = vmx->rmode.segs[seg];
3530
if (seg == VCPU_SREG_TR
3531
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
3532
return;
3533
var->base = vmx_read_guest_seg_base(vmx, seg);
3534
var->selector = vmx_read_guest_seg_selector(vmx, seg);
3535
return;
3536
}
3537
var->base = vmx_read_guest_seg_base(vmx, seg);
3538
var->limit = vmx_read_guest_seg_limit(vmx, seg);
3539
var->selector = vmx_read_guest_seg_selector(vmx, seg);
3540
ar = vmx_read_guest_seg_ar(vmx, seg);
3541
var->unusable = (ar >> 16) & 1;
3542
var->type = ar & 15;
3543
var->s = (ar >> 4) & 1;
3544
var->dpl = (ar >> 5) & 3;
3545
/*
3546
* Some userspaces do not preserve unusable property. Since usable
3547
* segment has to be present according to VMX spec we can use present
3548
* property to amend userspace bug by making unusable segment always
3549
* nonpresent. vmx_segment_access_rights() already marks nonpresent
3550
* segment as unusable.
3551
*/
3552
var->present = !var->unusable;
3553
var->avl = (ar >> 12) & 1;
3554
var->l = (ar >> 13) & 1;
3555
var->db = (ar >> 14) & 1;
3556
var->g = (ar >> 15) & 1;
3557
}
3558
3559
u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3560
{
3561
struct kvm_segment s;
3562
3563
if (to_vmx(vcpu)->rmode.vm86_active) {
3564
vmx_get_segment(vcpu, &s, seg);
3565
return s.base;
3566
}
3567
return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3568
}
3569
3570
static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3571
{
3572
struct vcpu_vmx *vmx = to_vmx(vcpu);
3573
int ar;
3574
3575
if (unlikely(vmx->rmode.vm86_active))
3576
return 0;
3577
3578
if (no_cache)
3579
ar = vmcs_read32(GUEST_SS_AR_BYTES);
3580
else
3581
ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3582
return VMX_AR_DPL(ar);
3583
}
3584
3585
int vmx_get_cpl(struct kvm_vcpu *vcpu)
3586
{
3587
return __vmx_get_cpl(vcpu, false);
3588
}
3589
3590
int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3591
{
3592
return __vmx_get_cpl(vcpu, true);
3593
}
3594
3595
static u32 vmx_segment_access_rights(struct kvm_segment *var)
3596
{
3597
u32 ar;
3598
3599
ar = var->type & 15;
3600
ar |= (var->s & 1) << 4;
3601
ar |= (var->dpl & 3) << 5;
3602
ar |= (var->present & 1) << 7;
3603
ar |= (var->avl & 1) << 12;
3604
ar |= (var->l & 1) << 13;
3605
ar |= (var->db & 1) << 14;
3606
ar |= (var->g & 1) << 15;
3607
ar |= (var->unusable || !var->present) << 16;
3608
3609
return ar;
3610
}
3611
3612
void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3613
{
3614
struct vcpu_vmx *vmx = to_vmx(vcpu);
3615
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3616
3617
vmx_segment_cache_clear(vmx);
3618
3619
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3620
vmx->rmode.segs[seg] = *var;
3621
if (seg == VCPU_SREG_TR)
3622
vmcs_write16(sf->selector, var->selector);
3623
else if (var->s)
3624
fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3625
return;
3626
}
3627
3628
vmcs_writel(sf->base, var->base);
3629
vmcs_write32(sf->limit, var->limit);
3630
vmcs_write16(sf->selector, var->selector);
3631
3632
/*
3633
* Fix the "Accessed" bit in AR field of segment registers for older
3634
* qemu binaries.
3635
* IA32 arch specifies that at the time of processor reset the
3636
* "Accessed" bit in the AR field of segment registers is 1. And qemu
3637
* is setting it to 0 in the userland code. This causes invalid guest
3638
* state vmexit when "unrestricted guest" mode is turned on.
3639
* Fix for this setup issue in cpu_reset is being pushed in the qemu
3640
* tree. Newer qemu binaries with that qemu fix would not need this
3641
* kvm hack.
3642
*/
3643
if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3644
var->type |= 0x1; /* Accessed */
3645
3646
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3647
}
3648
3649
void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3650
{
3651
__vmx_set_segment(vcpu, var, seg);
3652
3653
to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3654
}
3655
3656
void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3657
{
3658
u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3659
3660
*db = (ar >> 14) & 1;
3661
*l = (ar >> 13) & 1;
3662
}
3663
3664
void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3665
{
3666
dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3667
dt->address = vmcs_readl(GUEST_IDTR_BASE);
3668
}
3669
3670
void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3671
{
3672
vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3673
vmcs_writel(GUEST_IDTR_BASE, dt->address);
3674
}
3675
3676
void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3677
{
3678
dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3679
dt->address = vmcs_readl(GUEST_GDTR_BASE);
3680
}
3681
3682
void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3683
{
3684
vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3685
vmcs_writel(GUEST_GDTR_BASE, dt->address);
3686
}
3687
3688
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3689
{
3690
struct kvm_segment var;
3691
u32 ar;
3692
3693
vmx_get_segment(vcpu, &var, seg);
3694
var.dpl = 0x3;
3695
if (seg == VCPU_SREG_CS)
3696
var.type = 0x3;
3697
ar = vmx_segment_access_rights(&var);
3698
3699
if (var.base != (var.selector << 4))
3700
return false;
3701
if (var.limit != 0xffff)
3702
return false;
3703
if (ar != 0xf3)
3704
return false;
3705
3706
return true;
3707
}
3708
3709
static bool code_segment_valid(struct kvm_vcpu *vcpu)
3710
{
3711
struct kvm_segment cs;
3712
unsigned int cs_rpl;
3713
3714
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3715
cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3716
3717
if (cs.unusable)
3718
return false;
3719
if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3720
return false;
3721
if (!cs.s)
3722
return false;
3723
if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3724
if (cs.dpl > cs_rpl)
3725
return false;
3726
} else {
3727
if (cs.dpl != cs_rpl)
3728
return false;
3729
}
3730
if (!cs.present)
3731
return false;
3732
3733
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3734
return true;
3735
}
3736
3737
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3738
{
3739
struct kvm_segment ss;
3740
unsigned int ss_rpl;
3741
3742
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3743
ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3744
3745
if (ss.unusable)
3746
return true;
3747
if (ss.type != 3 && ss.type != 7)
3748
return false;
3749
if (!ss.s)
3750
return false;
3751
if (ss.dpl != ss_rpl) /* DPL != RPL */
3752
return false;
3753
if (!ss.present)
3754
return false;
3755
3756
return true;
3757
}
3758
3759
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3760
{
3761
struct kvm_segment var;
3762
unsigned int rpl;
3763
3764
vmx_get_segment(vcpu, &var, seg);
3765
rpl = var.selector & SEGMENT_RPL_MASK;
3766
3767
if (var.unusable)
3768
return true;
3769
if (!var.s)
3770
return false;
3771
if (!var.present)
3772
return false;
3773
if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3774
if (var.dpl < rpl) /* DPL < RPL */
3775
return false;
3776
}
3777
3778
/* TODO: Add other members to kvm_segment_field to allow checking for other access
3779
* rights flags
3780
*/
3781
return true;
3782
}
3783
3784
static bool tr_valid(struct kvm_vcpu *vcpu)
3785
{
3786
struct kvm_segment tr;
3787
3788
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3789
3790
if (tr.unusable)
3791
return false;
3792
if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3793
return false;
3794
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3795
return false;
3796
if (!tr.present)
3797
return false;
3798
3799
return true;
3800
}
3801
3802
static bool ldtr_valid(struct kvm_vcpu *vcpu)
3803
{
3804
struct kvm_segment ldtr;
3805
3806
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3807
3808
if (ldtr.unusable)
3809
return true;
3810
if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3811
return false;
3812
if (ldtr.type != 2)
3813
return false;
3814
if (!ldtr.present)
3815
return false;
3816
3817
return true;
3818
}
3819
3820
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3821
{
3822
struct kvm_segment cs, ss;
3823
3824
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3825
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3826
3827
return ((cs.selector & SEGMENT_RPL_MASK) ==
3828
(ss.selector & SEGMENT_RPL_MASK));
3829
}
3830
3831
/*
3832
* Check if guest state is valid. Returns true if valid, false if
3833
* not.
3834
* We assume that registers are always usable
3835
*/
3836
bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3837
{
3838
/* real mode guest state checks */
3839
if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3840
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3841
return false;
3842
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3843
return false;
3844
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3845
return false;
3846
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3847
return false;
3848
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3849
return false;
3850
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3851
return false;
3852
} else {
3853
/* protected mode guest state checks */
3854
if (!cs_ss_rpl_check(vcpu))
3855
return false;
3856
if (!code_segment_valid(vcpu))
3857
return false;
3858
if (!stack_segment_valid(vcpu))
3859
return false;
3860
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3861
return false;
3862
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3863
return false;
3864
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3865
return false;
3866
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3867
return false;
3868
if (!tr_valid(vcpu))
3869
return false;
3870
if (!ldtr_valid(vcpu))
3871
return false;
3872
}
3873
/* TODO:
3874
* - Add checks on RIP
3875
* - Add checks on RFLAGS
3876
*/
3877
3878
return true;
3879
}
3880
3881
static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3882
{
3883
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3884
u16 data;
3885
int i;
3886
3887
for (i = 0; i < 3; i++) {
3888
if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3889
return -EFAULT;
3890
}
3891
3892
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3893
if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3894
return -EFAULT;
3895
3896
data = ~0;
3897
if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3898
return -EFAULT;
3899
3900
return 0;
3901
}
3902
3903
static int init_rmode_identity_map(struct kvm *kvm)
3904
{
3905
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3906
int i, r = 0;
3907
void __user *uaddr;
3908
u32 tmp;
3909
3910
/* Protect kvm_vmx->ept_identity_pagetable_done. */
3911
mutex_lock(&kvm->slots_lock);
3912
3913
if (likely(kvm_vmx->ept_identity_pagetable_done))
3914
goto out;
3915
3916
if (!kvm_vmx->ept_identity_map_addr)
3917
kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3918
3919
uaddr = __x86_set_memory_region(kvm,
3920
IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3921
kvm_vmx->ept_identity_map_addr,
3922
PAGE_SIZE);
3923
if (IS_ERR(uaddr)) {
3924
r = PTR_ERR(uaddr);
3925
goto out;
3926
}
3927
3928
/* Set up identity-mapping pagetable for EPT in real mode */
3929
for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3930
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3931
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3932
if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3933
r = -EFAULT;
3934
goto out;
3935
}
3936
}
3937
kvm_vmx->ept_identity_pagetable_done = true;
3938
3939
out:
3940
mutex_unlock(&kvm->slots_lock);
3941
return r;
3942
}
3943
3944
static void seg_setup(int seg)
3945
{
3946
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3947
unsigned int ar;
3948
3949
vmcs_write16(sf->selector, 0);
3950
vmcs_writel(sf->base, 0);
3951
vmcs_write32(sf->limit, 0xffff);
3952
ar = 0x93;
3953
if (seg == VCPU_SREG_CS)
3954
ar |= 0x08; /* code segment */
3955
3956
vmcs_write32(sf->ar_bytes, ar);
3957
}
3958
3959
int allocate_vpid(void)
3960
{
3961
int vpid;
3962
3963
if (!enable_vpid)
3964
return 0;
3965
spin_lock(&vmx_vpid_lock);
3966
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3967
if (vpid < VMX_NR_VPIDS)
3968
__set_bit(vpid, vmx_vpid_bitmap);
3969
else
3970
vpid = 0;
3971
spin_unlock(&vmx_vpid_lock);
3972
return vpid;
3973
}
3974
3975
void free_vpid(int vpid)
3976
{
3977
if (!enable_vpid || vpid == 0)
3978
return;
3979
spin_lock(&vmx_vpid_lock);
3980
__clear_bit(vpid, vmx_vpid_bitmap);
3981
spin_unlock(&vmx_vpid_lock);
3982
}
3983
3984
static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3985
{
3986
/*
3987
* When KVM is a nested hypervisor on top of Hyper-V and uses
3988
* 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3989
* bitmap has changed.
3990
*/
3991
if (kvm_is_using_evmcs()) {
3992
struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3993
3994
if (evmcs->hv_enlightenments_control.msr_bitmap)
3995
evmcs->hv_clean_fields &=
3996
~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3997
}
3998
3999
vmx->nested.force_msr_bitmap_recalc = true;
4000
}
4001
4002
void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
4003
{
4004
struct vcpu_vmx *vmx = to_vmx(vcpu);
4005
unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4006
4007
if (!cpu_has_vmx_msr_bitmap())
4008
return;
4009
4010
vmx_msr_bitmap_l01_changed(vmx);
4011
4012
if (type & MSR_TYPE_R) {
4013
if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
4014
vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4015
else
4016
vmx_set_msr_bitmap_read(msr_bitmap, msr);
4017
}
4018
4019
if (type & MSR_TYPE_W) {
4020
if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
4021
vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4022
else
4023
vmx_set_msr_bitmap_write(msr_bitmap, msr);
4024
}
4025
}
4026
4027
static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4028
{
4029
/*
4030
* x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4031
* of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4032
* i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4033
*/
4034
const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4035
const int write_idx = read_idx + (0x800 / sizeof(u64));
4036
struct vcpu_vmx *vmx = to_vmx(vcpu);
4037
u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4038
u8 mode;
4039
4040
if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4041
return;
4042
4043
if (cpu_has_secondary_exec_ctrls() &&
4044
(secondary_exec_controls_get(vmx) &
4045
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4046
mode = MSR_BITMAP_MODE_X2APIC;
4047
if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4048
mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4049
} else {
4050
mode = 0;
4051
}
4052
4053
if (mode == vmx->x2apic_msr_bitmap_mode)
4054
return;
4055
4056
vmx->x2apic_msr_bitmap_mode = mode;
4057
4058
/*
4059
* Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4060
* registers (0x840 and above) intercepted, KVM doesn't support them.
4061
* Intercept all writes by default and poke holes as needed. Pass
4062
* through reads for all valid registers by default in x2APIC+APICv
4063
* mode, only the current timer count needs on-demand emulation by KVM.
4064
*/
4065
if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4066
msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4067
else
4068
msr_bitmap[read_idx] = ~0ull;
4069
msr_bitmap[write_idx] = ~0ull;
4070
4071
/*
4072
* TPR reads and writes can be virtualized even if virtual interrupt
4073
* delivery is not in use.
4074
*/
4075
vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4076
!(mode & MSR_BITMAP_MODE_X2APIC));
4077
4078
if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4079
vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4080
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4081
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4082
if (enable_ipiv)
4083
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4084
}
4085
}
4086
4087
void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4088
{
4089
struct vcpu_vmx *vmx = to_vmx(vcpu);
4090
bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4091
u32 i;
4092
4093
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4094
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4095
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4096
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4097
for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4098
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4099
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4100
}
4101
}
4102
4103
static void vmx_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4104
{
4105
bool intercept;
4106
4107
if (!cpu_has_vmx_msr_bitmap())
4108
return;
4109
4110
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
4111
#ifdef CONFIG_X86_64
4112
vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
4113
vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
4114
vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
4115
#endif
4116
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
4117
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
4118
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
4119
if (kvm_cstate_in_guest(vcpu->kvm)) {
4120
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
4121
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
4122
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
4123
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
4124
}
4125
if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
4126
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
4127
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
4128
}
4129
4130
/* PT MSRs can be passed through iff PT is exposed to the guest. */
4131
if (vmx_pt_mode_is_host_guest())
4132
pt_update_intercept_for_msr(vcpu);
4133
4134
if (vcpu->arch.xfd_no_write_intercept)
4135
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW);
4136
4137
vmx_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
4138
!to_vmx(vcpu)->spec_ctrl);
4139
4140
if (kvm_cpu_cap_has(X86_FEATURE_XFD))
4141
vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
4142
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
4143
4144
if (cpu_feature_enabled(X86_FEATURE_IBPB))
4145
vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
4146
!guest_has_pred_cmd_msr(vcpu));
4147
4148
if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
4149
vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
4150
!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4151
4152
if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
4153
intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4154
4155
vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, intercept);
4156
vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, intercept);
4157
vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, intercept);
4158
vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, intercept);
4159
}
4160
4161
if (kvm_cpu_cap_has(X86_FEATURE_SHSTK) || kvm_cpu_cap_has(X86_FEATURE_IBT)) {
4162
intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) &&
4163
!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4164
4165
vmx_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, intercept);
4166
vmx_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, intercept);
4167
}
4168
4169
/*
4170
* x2APIC and LBR MSR intercepts are modified on-demand and cannot be
4171
* filtered by userspace.
4172
*/
4173
}
4174
4175
void vmx_recalc_intercepts(struct kvm_vcpu *vcpu)
4176
{
4177
vmx_recalc_msr_intercepts(vcpu);
4178
}
4179
4180
static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4181
int vector)
4182
{
4183
struct vcpu_vmx *vmx = to_vmx(vcpu);
4184
4185
/*
4186
* DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4187
* and freed, and must not be accessed outside of vcpu->mutex. The
4188
* vCPU's cached PI NV is valid if and only if posted interrupts
4189
* enabled in its vmcs12, i.e. checking the vector also checks that
4190
* L1 has enabled posted interrupts for L2.
4191
*/
4192
if (is_guest_mode(vcpu) &&
4193
vector == vmx->nested.posted_intr_nv) {
4194
/*
4195
* If a posted intr is not recognized by hardware,
4196
* we will accomplish it in the next vmentry.
4197
*/
4198
vmx->nested.pi_pending = true;
4199
kvm_make_request(KVM_REQ_EVENT, vcpu);
4200
4201
/*
4202
* This pairs with the smp_mb_*() after setting vcpu->mode in
4203
* vcpu_enter_guest() to guarantee the vCPU sees the event
4204
* request if triggering a posted interrupt "fails" because
4205
* vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4206
* the smb_wmb() in kvm_make_request() only ensures everything
4207
* done before making the request is visible when the request
4208
* is visible, it doesn't ensure ordering between the store to
4209
* vcpu->requests and the load from vcpu->mode.
4210
*/
4211
smp_mb__after_atomic();
4212
4213
/* the PIR and ON have been set by L1. */
4214
kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4215
return 0;
4216
}
4217
return -1;
4218
}
4219
/*
4220
* Send interrupt to vcpu via posted interrupt way.
4221
* 1. If target vcpu is running(non-root mode), send posted interrupt
4222
* notification to vcpu and hardware will sync PIR to vIRR atomically.
4223
* 2. If target vcpu isn't running(root mode), kick it to pick up the
4224
* interrupt from PIR in next vmentry.
4225
*/
4226
static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4227
{
4228
struct vcpu_vt *vt = to_vt(vcpu);
4229
int r;
4230
4231
r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4232
if (!r)
4233
return 0;
4234
4235
/* Note, this is called iff the local APIC is in-kernel. */
4236
if (!vcpu->arch.apic->apicv_active)
4237
return -1;
4238
4239
__vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4240
return 0;
4241
}
4242
4243
void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4244
int trig_mode, int vector)
4245
{
4246
struct kvm_vcpu *vcpu = apic->vcpu;
4247
4248
if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4249
kvm_lapic_set_irr(vector, apic);
4250
kvm_make_request(KVM_REQ_EVENT, vcpu);
4251
kvm_vcpu_kick(vcpu);
4252
} else {
4253
trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4254
trig_mode, vector);
4255
}
4256
}
4257
4258
/*
4259
* Set up the vmcs's constant host-state fields, i.e., host-state fields that
4260
* will not change in the lifetime of the guest.
4261
* Note that host-state that does change is set elsewhere. E.g., host-state
4262
* that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4263
*/
4264
void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4265
{
4266
u32 low32, high32;
4267
unsigned long tmpl;
4268
unsigned long cr0, cr3, cr4;
4269
4270
cr0 = read_cr0();
4271
WARN_ON(cr0 & X86_CR0_TS);
4272
vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4273
4274
/*
4275
* Save the most likely value for this task's CR3 in the VMCS.
4276
* We can't use __get_current_cr3_fast() because we're not atomic.
4277
*/
4278
cr3 = __read_cr3();
4279
vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4280
vmx->loaded_vmcs->host_state.cr3 = cr3;
4281
4282
/* Save the most likely value for this task's CR4 in the VMCS. */
4283
cr4 = cr4_read_shadow();
4284
vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4285
vmx->loaded_vmcs->host_state.cr4 = cr4;
4286
4287
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4288
#ifdef CONFIG_X86_64
4289
/*
4290
* Load null selectors, so we can avoid reloading them in
4291
* vmx_prepare_switch_to_host(), in case userspace uses
4292
* the null selectors too (the expected case).
4293
*/
4294
vmcs_write16(HOST_DS_SELECTOR, 0);
4295
vmcs_write16(HOST_ES_SELECTOR, 0);
4296
#else
4297
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4298
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4299
#endif
4300
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4301
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4302
4303
vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4304
4305
vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4306
4307
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4308
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4309
4310
/*
4311
* SYSENTER is used for 32-bit system calls on either 32-bit or
4312
* 64-bit kernels. It is always zero If neither is allowed, otherwise
4313
* vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4314
* have already done so!).
4315
*/
4316
if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4317
vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4318
4319
rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4320
vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4321
4322
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4323
rdmsr(MSR_IA32_CR_PAT, low32, high32);
4324
vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4325
}
4326
4327
if (cpu_has_load_ia32_efer())
4328
vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4329
4330
/*
4331
* Supervisor shadow stack is not enabled on host side, i.e.,
4332
* host IA32_S_CET.SHSTK_EN bit is guaranteed to 0 now, per SDM
4333
* description(RDSSP instruction), SSP is not readable in CPL0,
4334
* so resetting the two registers to 0s at VM-Exit does no harm
4335
* to kernel execution. When execution flow exits to userspace,
4336
* SSP is reloaded from IA32_PL3_SSP. Check SDM Vol.2A/B Chapter
4337
* 3 and 4 for details.
4338
*/
4339
if (cpu_has_load_cet_ctrl()) {
4340
vmcs_writel(HOST_S_CET, kvm_host.s_cet);
4341
vmcs_writel(HOST_SSP, 0);
4342
vmcs_writel(HOST_INTR_SSP_TABLE, 0);
4343
}
4344
}
4345
4346
void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4347
{
4348
struct kvm_vcpu *vcpu = &vmx->vcpu;
4349
4350
vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4351
~vcpu->arch.cr4_guest_rsvd_bits;
4352
if (!enable_ept) {
4353
vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4354
vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4355
}
4356
if (is_guest_mode(&vmx->vcpu))
4357
vcpu->arch.cr4_guest_owned_bits &=
4358
~get_vmcs12(vcpu)->cr4_guest_host_mask;
4359
vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4360
}
4361
4362
static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4363
{
4364
u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4365
4366
if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4367
pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4368
4369
if (!enable_vnmi)
4370
pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4371
4372
if (!enable_preemption_timer)
4373
pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4374
4375
return pin_based_exec_ctrl;
4376
}
4377
4378
static u32 vmx_get_initial_vmentry_ctrl(void)
4379
{
4380
u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4381
4382
if (vmx_pt_mode_is_system())
4383
vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4384
VM_ENTRY_LOAD_IA32_RTIT_CTL);
4385
/*
4386
* IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4387
*/
4388
vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4389
VM_ENTRY_LOAD_IA32_EFER |
4390
VM_ENTRY_IA32E_MODE);
4391
4392
return vmentry_ctrl;
4393
}
4394
4395
static u32 vmx_get_initial_vmexit_ctrl(void)
4396
{
4397
u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4398
4399
/*
4400
* Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4401
* nested virtualization and thus allowed to be set in vmcs12.
4402
*/
4403
vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4404
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4405
4406
if (vmx_pt_mode_is_system())
4407
vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4408
VM_EXIT_CLEAR_IA32_RTIT_CTL);
4409
/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4410
return vmexit_ctrl &
4411
~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4412
}
4413
4414
void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4415
{
4416
struct vcpu_vmx *vmx = to_vmx(vcpu);
4417
4418
if (is_guest_mode(vcpu)) {
4419
vmx->nested.update_vmcs01_apicv_status = true;
4420
return;
4421
}
4422
4423
pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4424
4425
secondary_exec_controls_changebit(vmx,
4426
SECONDARY_EXEC_APIC_REGISTER_VIRT |
4427
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY,
4428
kvm_vcpu_apicv_active(vcpu));
4429
if (enable_ipiv)
4430
tertiary_exec_controls_changebit(vmx, TERTIARY_EXEC_IPI_VIRT,
4431
kvm_vcpu_apicv_active(vcpu));
4432
4433
vmx_update_msr_bitmap_x2apic(vcpu);
4434
}
4435
4436
static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4437
{
4438
u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4439
4440
/*
4441
* Not used by KVM, but fully supported for nesting, i.e. are allowed in
4442
* vmcs12 and propagated to vmcs02 when set in vmcs12.
4443
*/
4444
exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4445
CPU_BASED_USE_IO_BITMAPS |
4446
CPU_BASED_MONITOR_TRAP_FLAG |
4447
CPU_BASED_PAUSE_EXITING);
4448
4449
/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4450
exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4451
CPU_BASED_NMI_WINDOW_EXITING);
4452
4453
if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4454
exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4455
4456
if (!cpu_need_tpr_shadow(&vmx->vcpu))
4457
exec_control &= ~CPU_BASED_TPR_SHADOW;
4458
4459
#ifdef CONFIG_X86_64
4460
if (exec_control & CPU_BASED_TPR_SHADOW)
4461
exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4462
CPU_BASED_CR8_STORE_EXITING);
4463
else
4464
exec_control |= CPU_BASED_CR8_STORE_EXITING |
4465
CPU_BASED_CR8_LOAD_EXITING;
4466
#endif
4467
/* No need to intercept CR3 access or INVPLG when using EPT. */
4468
if (enable_ept)
4469
exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4470
CPU_BASED_CR3_STORE_EXITING |
4471
CPU_BASED_INVLPG_EXITING);
4472
if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4473
exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4474
CPU_BASED_MONITOR_EXITING);
4475
if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4476
exec_control &= ~CPU_BASED_HLT_EXITING;
4477
return exec_control;
4478
}
4479
4480
static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4481
{
4482
u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4483
4484
/*
4485
* IPI virtualization relies on APICv. Disable IPI virtualization if
4486
* APICv is inhibited.
4487
*/
4488
if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4489
exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4490
4491
return exec_control;
4492
}
4493
4494
/*
4495
* Adjust a single secondary execution control bit to intercept/allow an
4496
* instruction in the guest. This is usually done based on whether or not a
4497
* feature has been exposed to the guest in order to correctly emulate faults.
4498
*/
4499
static inline void
4500
vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4501
u32 control, bool enabled, bool exiting)
4502
{
4503
/*
4504
* If the control is for an opt-in feature, clear the control if the
4505
* feature is not exposed to the guest, i.e. not enabled. If the
4506
* control is opt-out, i.e. an exiting control, clear the control if
4507
* the feature _is_ exposed to the guest, i.e. exiting/interception is
4508
* disabled for the associated instruction. Note, the caller is
4509
* responsible presetting exec_control to set all supported bits.
4510
*/
4511
if (enabled == exiting)
4512
*exec_control &= ~control;
4513
4514
/*
4515
* Update the nested MSR settings so that a nested VMM can/can't set
4516
* controls for features that are/aren't exposed to the guest.
4517
*/
4518
if (nested &&
4519
kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4520
/*
4521
* All features that can be added or removed to VMX MSRs must
4522
* be supported in the first place for nested virtualization.
4523
*/
4524
if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4525
enabled = false;
4526
4527
if (enabled)
4528
vmx->nested.msrs.secondary_ctls_high |= control;
4529
else
4530
vmx->nested.msrs.secondary_ctls_high &= ~control;
4531
}
4532
}
4533
4534
/*
4535
* Wrapper macro for the common case of adjusting a secondary execution control
4536
* based on a single guest CPUID bit, with a dedicated feature bit. This also
4537
* verifies that the control is actually supported by KVM and hardware.
4538
*/
4539
#define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4540
({ \
4541
struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4542
bool __enabled; \
4543
\
4544
if (cpu_has_vmx_##name()) { \
4545
__enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name); \
4546
vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4547
__enabled, exiting); \
4548
} \
4549
})
4550
4551
/* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4552
#define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4553
vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4554
4555
#define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4556
vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4557
4558
static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4559
{
4560
struct kvm_vcpu *vcpu = &vmx->vcpu;
4561
4562
u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4563
4564
if (vmx_pt_mode_is_system())
4565
exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4566
if (!cpu_need_virtualize_apic_accesses(vcpu))
4567
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4568
if (vmx->vpid == 0)
4569
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4570
if (!enable_ept) {
4571
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4572
exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4573
enable_unrestricted_guest = 0;
4574
}
4575
if (!enable_unrestricted_guest)
4576
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4577
if (kvm_pause_in_guest(vmx->vcpu.kvm))
4578
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4579
if (!kvm_vcpu_apicv_active(vcpu))
4580
exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4581
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4582
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4583
4584
/*
4585
* KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4586
* base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4587
*/
4588
exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4589
4590
/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4591
* in vmx_set_cr4. */
4592
exec_control &= ~SECONDARY_EXEC_DESC;
4593
4594
/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4595
(handle_vmptrld).
4596
We can NOT enable shadow_vmcs here because we don't have yet
4597
a current VMCS12
4598
*/
4599
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4600
4601
/*
4602
* PML is enabled/disabled when dirty logging of memsmlots changes, but
4603
* it needs to be set here when dirty logging is already active, e.g.
4604
* if this vCPU was created after dirty logging was enabled.
4605
*/
4606
if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4607
exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4608
4609
vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4610
4611
/*
4612
* RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4613
* feature is exposed to the guest. This creates a virtualization hole
4614
* if both are supported in hardware but only one is exposed to the
4615
* guest, but letting the guest execute RDTSCP or RDPID when either one
4616
* is advertised is preferable to emulating the advertised instruction
4617
* in KVM on #UD, and obviously better than incorrectly injecting #UD.
4618
*/
4619
if (cpu_has_vmx_rdtscp()) {
4620
bool rdpid_or_rdtscp_enabled =
4621
guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4622
guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4623
4624
vmx_adjust_secondary_exec_control(vmx, &exec_control,
4625
SECONDARY_EXEC_ENABLE_RDTSCP,
4626
rdpid_or_rdtscp_enabled, false);
4627
}
4628
4629
vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4630
4631
vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4632
vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4633
4634
vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4635
ENABLE_USR_WAIT_PAUSE, false);
4636
4637
if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4638
exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4639
4640
if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4641
exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4642
4643
return exec_control;
4644
}
4645
4646
static inline int vmx_get_pid_table_order(struct kvm *kvm)
4647
{
4648
return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4649
}
4650
4651
static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4652
{
4653
struct page *pages;
4654
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4655
4656
if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4657
return 0;
4658
4659
if (kvm_vmx->pid_table)
4660
return 0;
4661
4662
pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4663
vmx_get_pid_table_order(kvm));
4664
if (!pages)
4665
return -ENOMEM;
4666
4667
kvm_vmx->pid_table = (void *)page_address(pages);
4668
return 0;
4669
}
4670
4671
int vmx_vcpu_precreate(struct kvm *kvm)
4672
{
4673
return vmx_alloc_ipiv_pid_table(kvm);
4674
}
4675
4676
#define VMX_XSS_EXIT_BITMAP 0
4677
4678
static void init_vmcs(struct vcpu_vmx *vmx)
4679
{
4680
struct kvm *kvm = vmx->vcpu.kvm;
4681
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4682
4683
if (nested)
4684
nested_vmx_set_vmcs_shadowing_bitmap();
4685
4686
if (cpu_has_vmx_msr_bitmap())
4687
vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4688
4689
vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4690
4691
/* Control */
4692
pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4693
4694
exec_controls_set(vmx, vmx_exec_control(vmx));
4695
4696
if (cpu_has_secondary_exec_ctrls()) {
4697
secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4698
if (vmx->ve_info)
4699
vmcs_write64(VE_INFORMATION_ADDRESS,
4700
__pa(vmx->ve_info));
4701
}
4702
4703
if (cpu_has_tertiary_exec_ctrls())
4704
tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4705
4706
if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4707
vmcs_write64(EOI_EXIT_BITMAP0, 0);
4708
vmcs_write64(EOI_EXIT_BITMAP1, 0);
4709
vmcs_write64(EOI_EXIT_BITMAP2, 0);
4710
vmcs_write64(EOI_EXIT_BITMAP3, 0);
4711
4712
vmcs_write16(GUEST_INTR_STATUS, 0);
4713
4714
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4715
vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4716
}
4717
4718
if (vmx_can_use_ipiv(&vmx->vcpu)) {
4719
vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4720
vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4721
}
4722
4723
if (!kvm_pause_in_guest(kvm)) {
4724
vmcs_write32(PLE_GAP, ple_gap);
4725
vmx->ple_window = ple_window;
4726
vmx->ple_window_dirty = true;
4727
}
4728
4729
if (kvm_notify_vmexit_enabled(kvm))
4730
vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4731
4732
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4733
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4734
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4735
4736
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4737
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4738
vmx_set_constant_host_state(vmx);
4739
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4740
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4741
4742
if (cpu_has_vmx_vmfunc())
4743
vmcs_write64(VM_FUNCTION_CONTROL, 0);
4744
4745
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4746
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4747
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4748
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4749
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4750
4751
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4752
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4753
4754
vm_exit_controls_set(vmx, vmx_get_initial_vmexit_ctrl());
4755
4756
/* 22.2.1, 20.8.1 */
4757
vm_entry_controls_set(vmx, vmx_get_initial_vmentry_ctrl());
4758
4759
vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4760
vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4761
4762
set_cr4_guest_host_mask(vmx);
4763
4764
if (vmx->vpid != 0)
4765
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4766
4767
if (cpu_has_vmx_xsaves())
4768
vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4769
4770
if (enable_pml) {
4771
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4772
vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4773
}
4774
4775
vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4776
4777
if (vmx_pt_mode_is_host_guest()) {
4778
memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4779
/* Bit[6~0] are forced to 1, writes are ignored. */
4780
vmx->pt_desc.guest.output_mask = 0x7F;
4781
vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4782
}
4783
4784
vmcs_write32(GUEST_SYSENTER_CS, 0);
4785
vmcs_writel(GUEST_SYSENTER_ESP, 0);
4786
vmcs_writel(GUEST_SYSENTER_EIP, 0);
4787
4788
vmx_guest_debugctl_write(&vmx->vcpu, 0);
4789
4790
if (cpu_has_vmx_tpr_shadow()) {
4791
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4792
if (cpu_need_tpr_shadow(&vmx->vcpu))
4793
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4794
__pa(vmx->vcpu.arch.apic->regs));
4795
vmcs_write32(TPR_THRESHOLD, 0);
4796
}
4797
4798
vmx_setup_uret_msrs(vmx);
4799
}
4800
4801
static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4802
{
4803
struct vcpu_vmx *vmx = to_vmx(vcpu);
4804
4805
init_vmcs(vmx);
4806
4807
if (nested &&
4808
kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4809
memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4810
4811
vcpu_setup_sgx_lepubkeyhash(vcpu);
4812
4813
vmx->nested.posted_intr_nv = -1;
4814
vmx->nested.vmxon_ptr = INVALID_GPA;
4815
vmx->nested.current_vmptr = INVALID_GPA;
4816
4817
#ifdef CONFIG_KVM_HYPERV
4818
vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4819
#endif
4820
4821
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4822
vcpu->arch.microcode_version = 0x100000000ULL;
4823
vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4824
4825
/*
4826
* Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4827
* or POSTED_INTR_WAKEUP_VECTOR.
4828
*/
4829
vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
4830
__pi_set_sn(&vmx->vt.pi_desc);
4831
}
4832
4833
void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4834
{
4835
struct vcpu_vmx *vmx = to_vmx(vcpu);
4836
4837
if (!init_event)
4838
__vmx_vcpu_reset(vcpu);
4839
4840
vmx->rmode.vm86_active = 0;
4841
vmx->spec_ctrl = 0;
4842
4843
vmx->msr_ia32_umwait_control = 0;
4844
4845
vmx->hv_deadline_tsc = -1;
4846
kvm_set_cr8(vcpu, 0);
4847
4848
seg_setup(VCPU_SREG_CS);
4849
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4850
vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4851
4852
seg_setup(VCPU_SREG_DS);
4853
seg_setup(VCPU_SREG_ES);
4854
seg_setup(VCPU_SREG_FS);
4855
seg_setup(VCPU_SREG_GS);
4856
seg_setup(VCPU_SREG_SS);
4857
4858
vmcs_write16(GUEST_TR_SELECTOR, 0);
4859
vmcs_writel(GUEST_TR_BASE, 0);
4860
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4861
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4862
4863
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4864
vmcs_writel(GUEST_LDTR_BASE, 0);
4865
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4866
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4867
4868
vmcs_writel(GUEST_GDTR_BASE, 0);
4869
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4870
4871
vmcs_writel(GUEST_IDTR_BASE, 0);
4872
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4873
4874
vmx_segment_cache_clear(vmx);
4875
kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4876
4877
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4878
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4879
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4880
if (kvm_mpx_supported())
4881
vmcs_write64(GUEST_BNDCFGS, 0);
4882
4883
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4884
4885
if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
4886
vmcs_writel(GUEST_SSP, 0);
4887
vmcs_writel(GUEST_INTR_SSP_TABLE, 0);
4888
}
4889
if (kvm_cpu_cap_has(X86_FEATURE_IBT) ||
4890
kvm_cpu_cap_has(X86_FEATURE_SHSTK))
4891
vmcs_writel(GUEST_S_CET, 0);
4892
4893
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4894
4895
vpid_sync_context(vmx->vpid);
4896
4897
vmx_update_fb_clear_dis(vcpu, vmx);
4898
}
4899
4900
void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4901
{
4902
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4903
}
4904
4905
void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4906
{
4907
if (!enable_vnmi ||
4908
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4909
vmx_enable_irq_window(vcpu);
4910
return;
4911
}
4912
4913
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4914
}
4915
4916
void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4917
{
4918
struct vcpu_vmx *vmx = to_vmx(vcpu);
4919
uint32_t intr;
4920
int irq = vcpu->arch.interrupt.nr;
4921
4922
trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4923
4924
++vcpu->stat.irq_injections;
4925
if (vmx->rmode.vm86_active) {
4926
int inc_eip = 0;
4927
if (vcpu->arch.interrupt.soft)
4928
inc_eip = vcpu->arch.event_exit_inst_len;
4929
kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4930
return;
4931
}
4932
intr = irq | INTR_INFO_VALID_MASK;
4933
if (vcpu->arch.interrupt.soft) {
4934
intr |= INTR_TYPE_SOFT_INTR;
4935
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4936
vmx->vcpu.arch.event_exit_inst_len);
4937
} else
4938
intr |= INTR_TYPE_EXT_INTR;
4939
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4940
4941
vmx_clear_hlt(vcpu);
4942
}
4943
4944
void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4945
{
4946
struct vcpu_vmx *vmx = to_vmx(vcpu);
4947
4948
if (!enable_vnmi) {
4949
/*
4950
* Tracking the NMI-blocked state in software is built upon
4951
* finding the next open IRQ window. This, in turn, depends on
4952
* well-behaving guests: They have to keep IRQs disabled at
4953
* least as long as the NMI handler runs. Otherwise we may
4954
* cause NMI nesting, maybe breaking the guest. But as this is
4955
* highly unlikely, we can live with the residual risk.
4956
*/
4957
vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4958
vmx->loaded_vmcs->vnmi_blocked_time = 0;
4959
}
4960
4961
++vcpu->stat.nmi_injections;
4962
vmx->loaded_vmcs->nmi_known_unmasked = false;
4963
4964
if (vmx->rmode.vm86_active) {
4965
kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4966
return;
4967
}
4968
4969
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4970
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4971
4972
vmx_clear_hlt(vcpu);
4973
}
4974
4975
bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4976
{
4977
struct vcpu_vmx *vmx = to_vmx(vcpu);
4978
bool masked;
4979
4980
if (!enable_vnmi)
4981
return vmx->loaded_vmcs->soft_vnmi_blocked;
4982
if (vmx->loaded_vmcs->nmi_known_unmasked)
4983
return false;
4984
masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4985
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4986
return masked;
4987
}
4988
4989
void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4990
{
4991
struct vcpu_vmx *vmx = to_vmx(vcpu);
4992
4993
if (!enable_vnmi) {
4994
if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4995
vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4996
vmx->loaded_vmcs->vnmi_blocked_time = 0;
4997
}
4998
} else {
4999
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5000
if (masked)
5001
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5002
GUEST_INTR_STATE_NMI);
5003
else
5004
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5005
GUEST_INTR_STATE_NMI);
5006
}
5007
}
5008
5009
bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5010
{
5011
if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5012
return false;
5013
5014
if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5015
return true;
5016
5017
return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5018
(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5019
GUEST_INTR_STATE_NMI));
5020
}
5021
5022
int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5023
{
5024
if (to_vmx(vcpu)->nested.nested_run_pending)
5025
return -EBUSY;
5026
5027
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5028
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5029
return -EBUSY;
5030
5031
return !vmx_nmi_blocked(vcpu);
5032
}
5033
5034
bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5035
{
5036
return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5037
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5038
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5039
}
5040
5041
bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5042
{
5043
if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5044
return false;
5045
5046
return __vmx_interrupt_blocked(vcpu);
5047
}
5048
5049
int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5050
{
5051
if (to_vmx(vcpu)->nested.nested_run_pending)
5052
return -EBUSY;
5053
5054
/*
5055
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5056
* e.g. if the IRQ arrived asynchronously after checking nested events.
5057
*/
5058
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5059
return -EBUSY;
5060
5061
return !vmx_interrupt_blocked(vcpu);
5062
}
5063
5064
int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5065
{
5066
void __user *ret;
5067
5068
if (enable_unrestricted_guest)
5069
return 0;
5070
5071
mutex_lock(&kvm->slots_lock);
5072
ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5073
PAGE_SIZE * 3);
5074
mutex_unlock(&kvm->slots_lock);
5075
5076
if (IS_ERR(ret))
5077
return PTR_ERR(ret);
5078
5079
to_kvm_vmx(kvm)->tss_addr = addr;
5080
5081
return init_rmode_tss(kvm, ret);
5082
}
5083
5084
int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5085
{
5086
to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5087
return 0;
5088
}
5089
5090
static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5091
{
5092
switch (vec) {
5093
case BP_VECTOR:
5094
/*
5095
* Update instruction length as we may reinject the exception
5096
* from user space while in guest debugging mode.
5097
*/
5098
to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5099
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5100
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5101
return false;
5102
fallthrough;
5103
case DB_VECTOR:
5104
return !(vcpu->guest_debug &
5105
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5106
case DE_VECTOR:
5107
case OF_VECTOR:
5108
case BR_VECTOR:
5109
case UD_VECTOR:
5110
case DF_VECTOR:
5111
case SS_VECTOR:
5112
case GP_VECTOR:
5113
case MF_VECTOR:
5114
return true;
5115
}
5116
return false;
5117
}
5118
5119
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5120
int vec, u32 err_code)
5121
{
5122
/*
5123
* Instruction with address size override prefix opcode 0x67
5124
* Cause the #SS fault with 0 error code in VM86 mode.
5125
*/
5126
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5127
if (kvm_emulate_instruction(vcpu, 0)) {
5128
if (vcpu->arch.halt_request) {
5129
vcpu->arch.halt_request = 0;
5130
return kvm_emulate_halt_noskip(vcpu);
5131
}
5132
return 1;
5133
}
5134
return 0;
5135
}
5136
5137
/*
5138
* Forward all other exceptions that are valid in real mode.
5139
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
5140
* the required debugging infrastructure rework.
5141
*/
5142
kvm_queue_exception(vcpu, vec);
5143
return 1;
5144
}
5145
5146
static int handle_machine_check(struct kvm_vcpu *vcpu)
5147
{
5148
/* handled by vmx_vcpu_run() */
5149
return 1;
5150
}
5151
5152
/*
5153
* If the host has split lock detection disabled, then #AC is
5154
* unconditionally injected into the guest, which is the pre split lock
5155
* detection behaviour.
5156
*
5157
* If the host has split lock detection enabled then #AC is
5158
* only injected into the guest when:
5159
* - Guest CPL == 3 (user mode)
5160
* - Guest has #AC detection enabled in CR0
5161
* - Guest EFLAGS has AC bit set
5162
*/
5163
bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5164
{
5165
if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5166
return true;
5167
5168
return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5169
(kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5170
}
5171
5172
static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5173
{
5174
return vcpu->arch.guest_fpu.fpstate->xfd &&
5175
!kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5176
}
5177
5178
static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5179
{
5180
struct vcpu_vmx *vmx = to_vmx(vcpu);
5181
struct kvm_run *kvm_run = vcpu->run;
5182
u32 intr_info, ex_no, error_code;
5183
unsigned long cr2, dr6;
5184
u32 vect_info;
5185
5186
vect_info = vmx->idt_vectoring_info;
5187
intr_info = vmx_get_intr_info(vcpu);
5188
5189
/*
5190
* Machine checks are handled by handle_exception_irqoff(), or by
5191
* vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5192
* vmx_vcpu_enter_exit().
5193
*/
5194
if (is_machine_check(intr_info) || is_nmi(intr_info))
5195
return 1;
5196
5197
/*
5198
* Queue the exception here instead of in handle_nm_fault_irqoff().
5199
* This ensures the nested_vmx check is not skipped so vmexit can
5200
* be reflected to L1 (when it intercepts #NM) before reaching this
5201
* point.
5202
*/
5203
if (is_nm_fault(intr_info)) {
5204
kvm_queue_exception_p(vcpu, NM_VECTOR,
5205
is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5206
return 1;
5207
}
5208
5209
if (is_invalid_opcode(intr_info))
5210
return handle_ud(vcpu);
5211
5212
if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5213
struct vmx_ve_information *ve_info = vmx->ve_info;
5214
5215
WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5216
"Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5217
dump_vmcs(vcpu);
5218
kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5219
return 1;
5220
}
5221
5222
error_code = 0;
5223
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5224
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5225
5226
if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5227
WARN_ON_ONCE(!enable_vmware_backdoor);
5228
5229
/*
5230
* VMware backdoor emulation on #GP interception only handles
5231
* IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5232
* error code on #GP.
5233
*/
5234
if (error_code) {
5235
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5236
return 1;
5237
}
5238
return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5239
}
5240
5241
/*
5242
* The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5243
* MMIO, it is better to report an internal error.
5244
* See the comments in vmx_handle_exit.
5245
*/
5246
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5247
!(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5248
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5249
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5250
vcpu->run->internal.ndata = 4;
5251
vcpu->run->internal.data[0] = vect_info;
5252
vcpu->run->internal.data[1] = intr_info;
5253
vcpu->run->internal.data[2] = error_code;
5254
vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5255
return 0;
5256
}
5257
5258
if (is_page_fault(intr_info)) {
5259
cr2 = vmx_get_exit_qual(vcpu);
5260
if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5261
/*
5262
* EPT will cause page fault only if we need to
5263
* detect illegal GPAs.
5264
*/
5265
WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5266
kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5267
return 1;
5268
} else
5269
return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5270
}
5271
5272
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5273
5274
if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5275
return handle_rmode_exception(vcpu, ex_no, error_code);
5276
5277
switch (ex_no) {
5278
case DB_VECTOR:
5279
dr6 = vmx_get_exit_qual(vcpu);
5280
if (!(vcpu->guest_debug &
5281
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5282
/*
5283
* If the #DB was due to ICEBP, a.k.a. INT1, skip the
5284
* instruction. ICEBP generates a trap-like #DB, but
5285
* despite its interception control being tied to #DB,
5286
* is an instruction intercept, i.e. the VM-Exit occurs
5287
* on the ICEBP itself. Use the inner "skip" helper to
5288
* avoid single-step #DB and MTF updates, as ICEBP is
5289
* higher priority. Note, skipping ICEBP still clears
5290
* STI and MOVSS blocking.
5291
*
5292
* For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5293
* if single-step is enabled in RFLAGS and STI or MOVSS
5294
* blocking is active, as the CPU doesn't set the bit
5295
* on VM-Exit due to #DB interception. VM-Entry has a
5296
* consistency check that a single-step #DB is pending
5297
* in this scenario as the previous instruction cannot
5298
* have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5299
* don't modify RFLAGS), therefore the one instruction
5300
* delay when activating single-step breakpoints must
5301
* have already expired. Note, the CPU sets/clears BS
5302
* as appropriate for all other VM-Exits types.
5303
*/
5304
if (is_icebp(intr_info))
5305
WARN_ON(!skip_emulated_instruction(vcpu));
5306
else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5307
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5308
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5309
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5310
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5311
5312
kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5313
return 1;
5314
}
5315
kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5316
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5317
fallthrough;
5318
case BP_VECTOR:
5319
/*
5320
* Update instruction length as we may reinject #BP from
5321
* user space while in guest debugging mode. Reading it for
5322
* #DB as well causes no harm, it is not used in that case.
5323
*/
5324
vmx->vcpu.arch.event_exit_inst_len =
5325
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5326
kvm_run->exit_reason = KVM_EXIT_DEBUG;
5327
kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5328
kvm_run->debug.arch.exception = ex_no;
5329
break;
5330
case AC_VECTOR:
5331
if (vmx_guest_inject_ac(vcpu)) {
5332
kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5333
return 1;
5334
}
5335
5336
/*
5337
* Handle split lock. Depending on detection mode this will
5338
* either warn and disable split lock detection for this
5339
* task or force SIGBUS on it.
5340
*/
5341
if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5342
return 1;
5343
fallthrough;
5344
default:
5345
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5346
kvm_run->ex.exception = ex_no;
5347
kvm_run->ex.error_code = error_code;
5348
break;
5349
}
5350
return 0;
5351
}
5352
5353
static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5354
{
5355
++vcpu->stat.irq_exits;
5356
return 1;
5357
}
5358
5359
static int handle_triple_fault(struct kvm_vcpu *vcpu)
5360
{
5361
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5362
vcpu->mmio_needed = 0;
5363
return 0;
5364
}
5365
5366
static int handle_io(struct kvm_vcpu *vcpu)
5367
{
5368
unsigned long exit_qualification;
5369
int size, in, string;
5370
unsigned port;
5371
5372
exit_qualification = vmx_get_exit_qual(vcpu);
5373
string = (exit_qualification & 16) != 0;
5374
5375
++vcpu->stat.io_exits;
5376
5377
if (string)
5378
return kvm_emulate_instruction(vcpu, 0);
5379
5380
port = exit_qualification >> 16;
5381
size = (exit_qualification & 7) + 1;
5382
in = (exit_qualification & 8) != 0;
5383
5384
return kvm_fast_pio(vcpu, size, port, in);
5385
}
5386
5387
void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5388
{
5389
/*
5390
* Patch in the VMCALL instruction:
5391
*/
5392
hypercall[0] = 0x0f;
5393
hypercall[1] = 0x01;
5394
hypercall[2] = 0xc1;
5395
}
5396
5397
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5398
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5399
{
5400
if (is_guest_mode(vcpu)) {
5401
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5402
unsigned long orig_val = val;
5403
5404
/*
5405
* We get here when L2 changed cr0 in a way that did not change
5406
* any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5407
* but did change L0 shadowed bits. So we first calculate the
5408
* effective cr0 value that L1 would like to write into the
5409
* hardware. It consists of the L2-owned bits from the new
5410
* value combined with the L1-owned bits from L1's guest_cr0.
5411
*/
5412
val = (val & ~vmcs12->cr0_guest_host_mask) |
5413
(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5414
5415
if (kvm_set_cr0(vcpu, val))
5416
return 1;
5417
vmcs_writel(CR0_READ_SHADOW, orig_val);
5418
return 0;
5419
} else {
5420
return kvm_set_cr0(vcpu, val);
5421
}
5422
}
5423
5424
static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5425
{
5426
if (is_guest_mode(vcpu)) {
5427
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5428
unsigned long orig_val = val;
5429
5430
/* analogously to handle_set_cr0 */
5431
val = (val & ~vmcs12->cr4_guest_host_mask) |
5432
(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5433
if (kvm_set_cr4(vcpu, val))
5434
return 1;
5435
vmcs_writel(CR4_READ_SHADOW, orig_val);
5436
return 0;
5437
} else
5438
return kvm_set_cr4(vcpu, val);
5439
}
5440
5441
static int handle_desc(struct kvm_vcpu *vcpu)
5442
{
5443
/*
5444
* UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5445
* and other code needs to be updated if UMIP can be guest owned.
5446
*/
5447
BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5448
5449
WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5450
return kvm_emulate_instruction(vcpu, 0);
5451
}
5452
5453
static int handle_cr(struct kvm_vcpu *vcpu)
5454
{
5455
unsigned long exit_qualification, val;
5456
int cr;
5457
int reg;
5458
int err;
5459
int ret;
5460
5461
exit_qualification = vmx_get_exit_qual(vcpu);
5462
cr = exit_qualification & 15;
5463
reg = (exit_qualification >> 8) & 15;
5464
switch ((exit_qualification >> 4) & 3) {
5465
case 0: /* mov to cr */
5466
val = kvm_register_read(vcpu, reg);
5467
trace_kvm_cr_write(cr, val);
5468
switch (cr) {
5469
case 0:
5470
err = handle_set_cr0(vcpu, val);
5471
return kvm_complete_insn_gp(vcpu, err);
5472
case 3:
5473
WARN_ON_ONCE(enable_unrestricted_guest);
5474
5475
err = kvm_set_cr3(vcpu, val);
5476
return kvm_complete_insn_gp(vcpu, err);
5477
case 4:
5478
err = handle_set_cr4(vcpu, val);
5479
return kvm_complete_insn_gp(vcpu, err);
5480
case 8: {
5481
u8 cr8_prev = kvm_get_cr8(vcpu);
5482
u8 cr8 = (u8)val;
5483
err = kvm_set_cr8(vcpu, cr8);
5484
ret = kvm_complete_insn_gp(vcpu, err);
5485
if (lapic_in_kernel(vcpu))
5486
return ret;
5487
if (cr8_prev <= cr8)
5488
return ret;
5489
/*
5490
* TODO: we might be squashing a
5491
* KVM_GUESTDBG_SINGLESTEP-triggered
5492
* KVM_EXIT_DEBUG here.
5493
*/
5494
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5495
return 0;
5496
}
5497
}
5498
break;
5499
case 2: /* clts */
5500
KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5501
return -EIO;
5502
case 1: /*mov from cr*/
5503
switch (cr) {
5504
case 3:
5505
WARN_ON_ONCE(enable_unrestricted_guest);
5506
5507
val = kvm_read_cr3(vcpu);
5508
kvm_register_write(vcpu, reg, val);
5509
trace_kvm_cr_read(cr, val);
5510
return kvm_skip_emulated_instruction(vcpu);
5511
case 8:
5512
val = kvm_get_cr8(vcpu);
5513
kvm_register_write(vcpu, reg, val);
5514
trace_kvm_cr_read(cr, val);
5515
return kvm_skip_emulated_instruction(vcpu);
5516
}
5517
break;
5518
case 3: /* lmsw */
5519
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5520
trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5521
kvm_lmsw(vcpu, val);
5522
5523
return kvm_skip_emulated_instruction(vcpu);
5524
default:
5525
break;
5526
}
5527
vcpu->run->exit_reason = 0;
5528
vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5529
(int)(exit_qualification >> 4) & 3, cr);
5530
return 0;
5531
}
5532
5533
static int handle_dr(struct kvm_vcpu *vcpu)
5534
{
5535
unsigned long exit_qualification;
5536
int dr, dr7, reg;
5537
int err = 1;
5538
5539
exit_qualification = vmx_get_exit_qual(vcpu);
5540
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5541
5542
/* First, if DR does not exist, trigger UD */
5543
if (!kvm_require_dr(vcpu, dr))
5544
return 1;
5545
5546
if (vmx_get_cpl(vcpu) > 0)
5547
goto out;
5548
5549
dr7 = vmcs_readl(GUEST_DR7);
5550
if (dr7 & DR7_GD) {
5551
/*
5552
* As the vm-exit takes precedence over the debug trap, we
5553
* need to emulate the latter, either for the host or the
5554
* guest debugging itself.
5555
*/
5556
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5557
vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5558
vcpu->run->debug.arch.dr7 = dr7;
5559
vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5560
vcpu->run->debug.arch.exception = DB_VECTOR;
5561
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5562
return 0;
5563
} else {
5564
kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5565
return 1;
5566
}
5567
}
5568
5569
if (vcpu->guest_debug == 0) {
5570
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5571
5572
/*
5573
* No more DR vmexits; force a reload of the debug registers
5574
* and reenter on this instruction. The next vmexit will
5575
* retrieve the full state of the debug registers.
5576
*/
5577
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5578
return 1;
5579
}
5580
5581
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5582
if (exit_qualification & TYPE_MOV_FROM_DR) {
5583
kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5584
err = 0;
5585
} else {
5586
err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5587
}
5588
5589
out:
5590
return kvm_complete_insn_gp(vcpu, err);
5591
}
5592
5593
void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5594
{
5595
get_debugreg(vcpu->arch.db[0], 0);
5596
get_debugreg(vcpu->arch.db[1], 1);
5597
get_debugreg(vcpu->arch.db[2], 2);
5598
get_debugreg(vcpu->arch.db[3], 3);
5599
get_debugreg(vcpu->arch.dr6, 6);
5600
vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5601
5602
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5603
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5604
5605
/*
5606
* exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5607
* a stale dr6 from the guest.
5608
*/
5609
set_debugreg(DR6_RESERVED, 6);
5610
}
5611
5612
void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5613
{
5614
vmcs_writel(GUEST_DR7, val);
5615
}
5616
5617
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5618
{
5619
kvm_apic_update_ppr(vcpu);
5620
return 1;
5621
}
5622
5623
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5624
{
5625
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5626
5627
kvm_make_request(KVM_REQ_EVENT, vcpu);
5628
5629
++vcpu->stat.irq_window_exits;
5630
return 1;
5631
}
5632
5633
static int handle_invlpg(struct kvm_vcpu *vcpu)
5634
{
5635
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5636
5637
kvm_mmu_invlpg(vcpu, exit_qualification);
5638
return kvm_skip_emulated_instruction(vcpu);
5639
}
5640
5641
static int handle_apic_access(struct kvm_vcpu *vcpu)
5642
{
5643
if (likely(fasteoi)) {
5644
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5645
int access_type, offset;
5646
5647
access_type = exit_qualification & APIC_ACCESS_TYPE;
5648
offset = exit_qualification & APIC_ACCESS_OFFSET;
5649
/*
5650
* Sane guest uses MOV to write EOI, with written value
5651
* not cared. So make a short-circuit here by avoiding
5652
* heavy instruction emulation.
5653
*/
5654
if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5655
(offset == APIC_EOI)) {
5656
kvm_lapic_set_eoi(vcpu);
5657
return kvm_skip_emulated_instruction(vcpu);
5658
}
5659
}
5660
return kvm_emulate_instruction(vcpu, 0);
5661
}
5662
5663
static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5664
{
5665
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5666
int vector = exit_qualification & 0xff;
5667
5668
/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5669
kvm_apic_set_eoi_accelerated(vcpu, vector);
5670
return 1;
5671
}
5672
5673
static int handle_apic_write(struct kvm_vcpu *vcpu)
5674
{
5675
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5676
5677
/*
5678
* APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5679
* hardware has done any necessary aliasing, offset adjustments, etc...
5680
* for the access. I.e. the correct value has already been written to
5681
* the vAPIC page for the correct 16-byte chunk. KVM needs only to
5682
* retrieve the register value and emulate the access.
5683
*/
5684
u32 offset = exit_qualification & 0xff0;
5685
5686
kvm_apic_write_nodecode(vcpu, offset);
5687
return 1;
5688
}
5689
5690
static int handle_task_switch(struct kvm_vcpu *vcpu)
5691
{
5692
struct vcpu_vmx *vmx = to_vmx(vcpu);
5693
unsigned long exit_qualification;
5694
bool has_error_code = false;
5695
u32 error_code = 0;
5696
u16 tss_selector;
5697
int reason, type, idt_v, idt_index;
5698
5699
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5700
idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5701
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5702
5703
exit_qualification = vmx_get_exit_qual(vcpu);
5704
5705
reason = (u32)exit_qualification >> 30;
5706
if (reason == TASK_SWITCH_GATE && idt_v) {
5707
switch (type) {
5708
case INTR_TYPE_NMI_INTR:
5709
vcpu->arch.nmi_injected = false;
5710
vmx_set_nmi_mask(vcpu, true);
5711
break;
5712
case INTR_TYPE_EXT_INTR:
5713
case INTR_TYPE_SOFT_INTR:
5714
kvm_clear_interrupt_queue(vcpu);
5715
break;
5716
case INTR_TYPE_HARD_EXCEPTION:
5717
if (vmx->idt_vectoring_info &
5718
VECTORING_INFO_DELIVER_CODE_MASK) {
5719
has_error_code = true;
5720
error_code =
5721
vmcs_read32(IDT_VECTORING_ERROR_CODE);
5722
}
5723
fallthrough;
5724
case INTR_TYPE_SOFT_EXCEPTION:
5725
kvm_clear_exception_queue(vcpu);
5726
break;
5727
default:
5728
break;
5729
}
5730
}
5731
tss_selector = exit_qualification;
5732
5733
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5734
type != INTR_TYPE_EXT_INTR &&
5735
type != INTR_TYPE_NMI_INTR))
5736
WARN_ON(!skip_emulated_instruction(vcpu));
5737
5738
/*
5739
* TODO: What about debug traps on tss switch?
5740
* Are we supposed to inject them and update dr6?
5741
*/
5742
return kvm_task_switch(vcpu, tss_selector,
5743
type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5744
reason, has_error_code, error_code);
5745
}
5746
5747
static int handle_ept_violation(struct kvm_vcpu *vcpu)
5748
{
5749
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5750
gpa_t gpa;
5751
5752
/*
5753
* EPT violation happened while executing iret from NMI,
5754
* "blocked by NMI" bit has to be set before next VM entry.
5755
* There are errata that may cause this bit to not be set:
5756
* AAK134, BY25.
5757
*/
5758
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5759
enable_vnmi &&
5760
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5761
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5762
5763
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5764
trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5765
5766
/*
5767
* Check that the GPA doesn't exceed physical memory limits, as that is
5768
* a guest page fault. We have to emulate the instruction here, because
5769
* if the illegal address is that of a paging structure, then
5770
* EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5771
* would also use advanced VM-exit information for EPT violations to
5772
* reconstruct the page fault error code.
5773
*/
5774
if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5775
return kvm_emulate_instruction(vcpu, 0);
5776
5777
return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
5778
}
5779
5780
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5781
{
5782
gpa_t gpa;
5783
5784
if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5785
return 1;
5786
5787
/*
5788
* A nested guest cannot optimize MMIO vmexits, because we have an
5789
* nGPA here instead of the required GPA.
5790
*/
5791
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5792
if (!is_guest_mode(vcpu) &&
5793
!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5794
trace_kvm_fast_mmio(gpa);
5795
return kvm_skip_emulated_instruction(vcpu);
5796
}
5797
5798
return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5799
}
5800
5801
static int handle_nmi_window(struct kvm_vcpu *vcpu)
5802
{
5803
if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5804
return -EIO;
5805
5806
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5807
++vcpu->stat.nmi_window_exits;
5808
kvm_make_request(KVM_REQ_EVENT, vcpu);
5809
5810
return 1;
5811
}
5812
5813
/*
5814
* Returns true if emulation is required (due to the vCPU having invalid state
5815
* with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5816
* current vCPU state.
5817
*/
5818
static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5819
{
5820
struct vcpu_vmx *vmx = to_vmx(vcpu);
5821
5822
if (!vmx->vt.emulation_required)
5823
return false;
5824
5825
/*
5826
* It is architecturally impossible for emulation to be required when a
5827
* nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5828
* guest state is invalid and unrestricted guest is disabled, i.e. KVM
5829
* should synthesize VM-Fail instead emulation L2 code. This path is
5830
* only reachable if userspace modifies L2 guest state after KVM has
5831
* performed the nested VM-Enter consistency checks.
5832
*/
5833
if (vmx->nested.nested_run_pending)
5834
return true;
5835
5836
/*
5837
* KVM only supports emulating exceptions if the vCPU is in Real Mode.
5838
* If emulation is required, KVM can't perform a successful VM-Enter to
5839
* inject the exception.
5840
*/
5841
return !vmx->rmode.vm86_active &&
5842
(kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5843
}
5844
5845
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5846
{
5847
struct vcpu_vmx *vmx = to_vmx(vcpu);
5848
bool intr_window_requested;
5849
unsigned count = 130;
5850
5851
intr_window_requested = exec_controls_get(vmx) &
5852
CPU_BASED_INTR_WINDOW_EXITING;
5853
5854
while (vmx->vt.emulation_required && count-- != 0) {
5855
if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5856
return handle_interrupt_window(&vmx->vcpu);
5857
5858
if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5859
return 1;
5860
5861
/*
5862
* Ensure that any updates to kvm->buses[] observed by the
5863
* previous instruction (emulated or otherwise) are also
5864
* visible to the instruction KVM is about to emulate.
5865
*/
5866
smp_rmb();
5867
5868
if (!kvm_emulate_instruction(vcpu, 0))
5869
return 0;
5870
5871
if (vmx_unhandleable_emulation_required(vcpu)) {
5872
kvm_prepare_emulation_failure_exit(vcpu);
5873
return 0;
5874
}
5875
5876
if (vcpu->arch.halt_request) {
5877
vcpu->arch.halt_request = 0;
5878
return kvm_emulate_halt_noskip(vcpu);
5879
}
5880
5881
/*
5882
* Note, return 1 and not 0, vcpu_run() will invoke
5883
* xfer_to_guest_mode() which will create a proper return
5884
* code.
5885
*/
5886
if (__xfer_to_guest_mode_work_pending())
5887
return 1;
5888
}
5889
5890
return 1;
5891
}
5892
5893
int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5894
{
5895
if (vmx_unhandleable_emulation_required(vcpu)) {
5896
kvm_prepare_emulation_failure_exit(vcpu);
5897
return 0;
5898
}
5899
5900
return 1;
5901
}
5902
5903
/*
5904
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5905
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5906
*/
5907
static int handle_pause(struct kvm_vcpu *vcpu)
5908
{
5909
if (!kvm_pause_in_guest(vcpu->kvm))
5910
grow_ple_window(vcpu);
5911
5912
/*
5913
* Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5914
* VM-execution control is ignored if CPL > 0. OTOH, KVM
5915
* never set PAUSE_EXITING and just set PLE if supported,
5916
* so the vcpu must be CPL=0 if it gets a PAUSE exit.
5917
*/
5918
kvm_vcpu_on_spin(vcpu, true);
5919
return kvm_skip_emulated_instruction(vcpu);
5920
}
5921
5922
static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5923
{
5924
return 1;
5925
}
5926
5927
static int handle_invpcid(struct kvm_vcpu *vcpu)
5928
{
5929
u32 vmx_instruction_info;
5930
unsigned long type;
5931
gva_t gva;
5932
struct {
5933
u64 pcid;
5934
u64 gla;
5935
} operand;
5936
int gpr_index;
5937
5938
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
5939
kvm_queue_exception(vcpu, UD_VECTOR);
5940
return 1;
5941
}
5942
5943
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5944
gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5945
type = kvm_register_read(vcpu, gpr_index);
5946
5947
/* According to the Intel instruction reference, the memory operand
5948
* is read even if it isn't needed (e.g., for type==all)
5949
*/
5950
if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5951
vmx_instruction_info, false,
5952
sizeof(operand), &gva))
5953
return 1;
5954
5955
return kvm_handle_invpcid(vcpu, type, gva);
5956
}
5957
5958
static int handle_pml_full(struct kvm_vcpu *vcpu)
5959
{
5960
unsigned long exit_qualification;
5961
5962
trace_kvm_pml_full(vcpu->vcpu_id);
5963
5964
exit_qualification = vmx_get_exit_qual(vcpu);
5965
5966
/*
5967
* PML buffer FULL happened while executing iret from NMI,
5968
* "blocked by NMI" bit has to be set before next VM entry.
5969
*/
5970
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5971
enable_vnmi &&
5972
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5973
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5974
GUEST_INTR_STATE_NMI);
5975
5976
/*
5977
* PML buffer already flushed at beginning of VMEXIT. Nothing to do
5978
* here.., and there's no userspace involvement needed for PML.
5979
*/
5980
return 1;
5981
}
5982
5983
static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5984
bool force_immediate_exit)
5985
{
5986
struct vcpu_vmx *vmx = to_vmx(vcpu);
5987
5988
/*
5989
* In the *extremely* unlikely scenario that this is a spurious VM-Exit
5990
* due to the timer expiring while it was "soft" disabled, just eat the
5991
* exit and re-enter the guest.
5992
*/
5993
if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5994
return EXIT_FASTPATH_REENTER_GUEST;
5995
5996
/*
5997
* If the timer expired because KVM used it to force an immediate exit,
5998
* then mission accomplished.
5999
*/
6000
if (force_immediate_exit)
6001
return EXIT_FASTPATH_EXIT_HANDLED;
6002
6003
/*
6004
* If L2 is active, go down the slow path as emulating the guest timer
6005
* expiration likely requires synthesizing a nested VM-Exit.
6006
*/
6007
if (is_guest_mode(vcpu))
6008
return EXIT_FASTPATH_NONE;
6009
6010
kvm_lapic_expired_hv_timer(vcpu);
6011
return EXIT_FASTPATH_REENTER_GUEST;
6012
}
6013
6014
static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6015
{
6016
/*
6017
* This non-fastpath handler is reached if and only if the preemption
6018
* timer was being used to emulate a guest timer while L2 is active.
6019
* All other scenarios are supposed to be handled in the fastpath.
6020
*/
6021
WARN_ON_ONCE(!is_guest_mode(vcpu));
6022
kvm_lapic_expired_hv_timer(vcpu);
6023
return 1;
6024
}
6025
6026
/*
6027
* When nested=0, all VMX instruction VM Exits filter here. The handlers
6028
* are overwritten by nested_vmx_hardware_setup() when nested=1.
6029
*/
6030
static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6031
{
6032
kvm_queue_exception(vcpu, UD_VECTOR);
6033
return 1;
6034
}
6035
6036
#ifndef CONFIG_X86_SGX_KVM
6037
static int handle_encls(struct kvm_vcpu *vcpu)
6038
{
6039
/*
6040
* SGX virtualization is disabled. There is no software enable bit for
6041
* SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6042
* the guest from executing ENCLS (when SGX is supported by hardware).
6043
*/
6044
kvm_queue_exception(vcpu, UD_VECTOR);
6045
return 1;
6046
}
6047
#endif /* CONFIG_X86_SGX_KVM */
6048
6049
static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6050
{
6051
/*
6052
* Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6053
* VM-Exits. Unconditionally set the flag here and leave the handling to
6054
* vmx_handle_exit().
6055
*/
6056
to_vt(vcpu)->exit_reason.bus_lock_detected = true;
6057
return 1;
6058
}
6059
6060
static int handle_notify(struct kvm_vcpu *vcpu)
6061
{
6062
unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6063
bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6064
6065
++vcpu->stat.notify_window_exits;
6066
6067
/*
6068
* Notify VM exit happened while executing iret from NMI,
6069
* "blocked by NMI" bit has to be set before next VM entry.
6070
*/
6071
if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6072
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6073
GUEST_INTR_STATE_NMI);
6074
6075
if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6076
context_invalid) {
6077
vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6078
vcpu->run->notify.flags = context_invalid ?
6079
KVM_NOTIFY_CONTEXT_INVALID : 0;
6080
return 0;
6081
}
6082
6083
return 1;
6084
}
6085
6086
static int vmx_get_msr_imm_reg(struct kvm_vcpu *vcpu)
6087
{
6088
return vmx_get_instr_info_reg(vmcs_read32(VMX_INSTRUCTION_INFO));
6089
}
6090
6091
static int handle_rdmsr_imm(struct kvm_vcpu *vcpu)
6092
{
6093
return kvm_emulate_rdmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6094
vmx_get_msr_imm_reg(vcpu));
6095
}
6096
6097
static int handle_wrmsr_imm(struct kvm_vcpu *vcpu)
6098
{
6099
return kvm_emulate_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6100
vmx_get_msr_imm_reg(vcpu));
6101
}
6102
6103
/*
6104
* The exit handlers return 1 if the exit was handled fully and guest execution
6105
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
6106
* to be done to userspace and return 0.
6107
*/
6108
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6109
[EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6110
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6111
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6112
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6113
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
6114
[EXIT_REASON_CR_ACCESS] = handle_cr,
6115
[EXIT_REASON_DR_ACCESS] = handle_dr,
6116
[EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6117
[EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6118
[EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6119
[EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6120
[EXIT_REASON_HLT] = kvm_emulate_halt,
6121
[EXIT_REASON_INVD] = kvm_emulate_invd,
6122
[EXIT_REASON_INVLPG] = handle_invlpg,
6123
[EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6124
[EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6125
[EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6126
[EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6127
[EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6128
[EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6129
[EXIT_REASON_VMREAD] = handle_vmx_instruction,
6130
[EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6131
[EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6132
[EXIT_REASON_VMOFF] = handle_vmx_instruction,
6133
[EXIT_REASON_VMON] = handle_vmx_instruction,
6134
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6135
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6136
[EXIT_REASON_APIC_WRITE] = handle_apic_write,
6137
[EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6138
[EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6139
[EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6140
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6141
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6142
[EXIT_REASON_GDTR_IDTR] = handle_desc,
6143
[EXIT_REASON_LDTR_TR] = handle_desc,
6144
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6145
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6146
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6147
[EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6148
[EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6149
[EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6150
[EXIT_REASON_INVEPT] = handle_vmx_instruction,
6151
[EXIT_REASON_INVVPID] = handle_vmx_instruction,
6152
[EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6153
[EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6154
[EXIT_REASON_PML_FULL] = handle_pml_full,
6155
[EXIT_REASON_INVPCID] = handle_invpcid,
6156
[EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6157
[EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6158
[EXIT_REASON_ENCLS] = handle_encls,
6159
[EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6160
[EXIT_REASON_NOTIFY] = handle_notify,
6161
[EXIT_REASON_MSR_READ_IMM] = handle_rdmsr_imm,
6162
[EXIT_REASON_MSR_WRITE_IMM] = handle_wrmsr_imm,
6163
};
6164
6165
static const int kvm_vmx_max_exit_handlers =
6166
ARRAY_SIZE(kvm_vmx_exit_handlers);
6167
6168
void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6169
u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6170
{
6171
struct vcpu_vmx *vmx = to_vmx(vcpu);
6172
6173
*reason = vmx->vt.exit_reason.full;
6174
*info1 = vmx_get_exit_qual(vcpu);
6175
if (!(vmx->vt.exit_reason.failed_vmentry)) {
6176
*info2 = vmx->idt_vectoring_info;
6177
*intr_info = vmx_get_intr_info(vcpu);
6178
if (is_exception_with_error_code(*intr_info))
6179
*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6180
else
6181
*error_code = 0;
6182
} else {
6183
*info2 = 0;
6184
*intr_info = 0;
6185
*error_code = 0;
6186
}
6187
}
6188
6189
void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6190
{
6191
*intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6192
if (is_exception_with_error_code(*intr_info))
6193
*error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6194
else
6195
*error_code = 0;
6196
}
6197
6198
static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6199
{
6200
if (vmx->pml_pg) {
6201
__free_page(vmx->pml_pg);
6202
vmx->pml_pg = NULL;
6203
}
6204
}
6205
6206
static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6207
{
6208
struct vcpu_vmx *vmx = to_vmx(vcpu);
6209
u16 pml_idx, pml_tail_index;
6210
u64 *pml_buf;
6211
int i;
6212
6213
pml_idx = vmcs_read16(GUEST_PML_INDEX);
6214
6215
/* Do nothing if PML buffer is empty */
6216
if (pml_idx == PML_HEAD_INDEX)
6217
return;
6218
/*
6219
* PML index always points to the next available PML buffer entity
6220
* unless PML log has just overflowed.
6221
*/
6222
pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6223
6224
/*
6225
* PML log is written backwards: the CPU first writes the entry 511
6226
* then the entry 510, and so on.
6227
*
6228
* Read the entries in the same order they were written, to ensure that
6229
* the dirty ring is filled in the same order the CPU wrote them.
6230
*/
6231
pml_buf = page_address(vmx->pml_pg);
6232
6233
for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6234
u64 gpa;
6235
6236
gpa = pml_buf[i];
6237
WARN_ON(gpa & (PAGE_SIZE - 1));
6238
kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6239
}
6240
6241
/* reset PML index */
6242
vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6243
}
6244
6245
static void vmx_dump_sel(char *name, uint32_t sel)
6246
{
6247
pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6248
name, vmcs_read16(sel),
6249
vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6250
vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6251
vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6252
}
6253
6254
static void vmx_dump_dtsel(char *name, uint32_t limit)
6255
{
6256
pr_err("%s limit=0x%08x, base=0x%016lx\n",
6257
name, vmcs_read32(limit),
6258
vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6259
}
6260
6261
static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6262
{
6263
unsigned int i;
6264
struct vmx_msr_entry *e;
6265
6266
pr_err("MSR %s:\n", name);
6267
for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6268
pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6269
}
6270
6271
void dump_vmcs(struct kvm_vcpu *vcpu)
6272
{
6273
struct vcpu_vmx *vmx = to_vmx(vcpu);
6274
u32 vmentry_ctl, vmexit_ctl;
6275
u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6276
u64 tertiary_exec_control;
6277
unsigned long cr4;
6278
int efer_slot;
6279
6280
if (!dump_invalid_vmcs) {
6281
pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6282
return;
6283
}
6284
6285
vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6286
vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6287
cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6288
pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6289
cr4 = vmcs_readl(GUEST_CR4);
6290
6291
if (cpu_has_secondary_exec_ctrls())
6292
secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6293
else
6294
secondary_exec_control = 0;
6295
6296
if (cpu_has_tertiary_exec_ctrls())
6297
tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6298
else
6299
tertiary_exec_control = 0;
6300
6301
pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6302
vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6303
pr_err("*** Guest State ***\n");
6304
pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6305
vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6306
vmcs_readl(CR0_GUEST_HOST_MASK));
6307
pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6308
cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6309
pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6310
if (cpu_has_vmx_ept()) {
6311
pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6312
vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6313
pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6314
vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6315
}
6316
pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6317
vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6318
pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6319
vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6320
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6321
vmcs_readl(GUEST_SYSENTER_ESP),
6322
vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6323
vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6324
vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6325
vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6326
vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6327
vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6328
vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6329
vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6330
vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6331
vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6332
vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6333
efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6334
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6335
pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6336
else if (efer_slot >= 0)
6337
pr_err("EFER= 0x%016llx (autoload)\n",
6338
vmx->msr_autoload.guest.val[efer_slot].value);
6339
else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6340
pr_err("EFER= 0x%016llx (effective)\n",
6341
vcpu->arch.efer | (EFER_LMA | EFER_LME));
6342
else
6343
pr_err("EFER= 0x%016llx (effective)\n",
6344
vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6345
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6346
pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6347
pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6348
vmcs_read64(GUEST_IA32_DEBUGCTL),
6349
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6350
if (cpu_has_load_perf_global_ctrl() &&
6351
vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6352
pr_err("PerfGlobCtl = 0x%016llx\n",
6353
vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6354
if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6355
pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6356
pr_err("Interruptibility = %08x ActivityState = %08x\n",
6357
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6358
vmcs_read32(GUEST_ACTIVITY_STATE));
6359
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6360
pr_err("InterruptStatus = %04x\n",
6361
vmcs_read16(GUEST_INTR_STATUS));
6362
if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6363
vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6364
if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6365
vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6366
6367
if (vmentry_ctl & VM_ENTRY_LOAD_CET_STATE)
6368
pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6369
vmcs_readl(GUEST_S_CET), vmcs_readl(GUEST_SSP),
6370
vmcs_readl(GUEST_INTR_SSP_TABLE));
6371
pr_err("*** Host State ***\n");
6372
pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6373
vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6374
pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6375
vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6376
vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6377
vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6378
vmcs_read16(HOST_TR_SELECTOR));
6379
pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6380
vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6381
vmcs_readl(HOST_TR_BASE));
6382
pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6383
vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6384
pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6385
vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6386
vmcs_readl(HOST_CR4));
6387
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6388
vmcs_readl(HOST_IA32_SYSENTER_ESP),
6389
vmcs_read32(HOST_IA32_SYSENTER_CS),
6390
vmcs_readl(HOST_IA32_SYSENTER_EIP));
6391
if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6392
pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6393
if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6394
pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6395
if (cpu_has_load_perf_global_ctrl() &&
6396
vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6397
pr_err("PerfGlobCtl = 0x%016llx\n",
6398
vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6399
if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6400
vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6401
if (vmexit_ctl & VM_EXIT_LOAD_CET_STATE)
6402
pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6403
vmcs_readl(HOST_S_CET), vmcs_readl(HOST_SSP),
6404
vmcs_readl(HOST_INTR_SSP_TABLE));
6405
6406
pr_err("*** Control State ***\n");
6407
pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6408
cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6409
pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6410
pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6411
pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6412
vmcs_read32(EXCEPTION_BITMAP),
6413
vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6414
vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6415
pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6416
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6417
vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6418
vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6419
pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6420
vmcs_read32(VM_EXIT_INTR_INFO),
6421
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6422
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6423
pr_err(" reason=%08x qualification=%016lx\n",
6424
vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6425
pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6426
vmcs_read32(IDT_VECTORING_INFO_FIELD),
6427
vmcs_read32(IDT_VECTORING_ERROR_CODE));
6428
pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6429
if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6430
pr_err("TSC Multiplier = 0x%016llx\n",
6431
vmcs_read64(TSC_MULTIPLIER));
6432
if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6433
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6434
u16 status = vmcs_read16(GUEST_INTR_STATUS);
6435
pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6436
}
6437
pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6438
if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6439
pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6440
pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6441
}
6442
if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6443
pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6444
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6445
pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6446
if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6447
pr_err("PLE Gap=%08x Window=%08x\n",
6448
vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6449
if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6450
pr_err("Virtual processor ID = 0x%04x\n",
6451
vmcs_read16(VIRTUAL_PROCESSOR_ID));
6452
if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6453
struct vmx_ve_information *ve_info = vmx->ve_info;
6454
u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6455
6456
/*
6457
* If KVM is dumping the VMCS, then something has gone wrong
6458
* already. Derefencing an address from the VMCS, which could
6459
* very well be corrupted, is a terrible idea. The virtual
6460
* address is known so use it.
6461
*/
6462
pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6463
ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6464
pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6465
ve_info->exit_reason, ve_info->delivery,
6466
ve_info->exit_qualification,
6467
ve_info->guest_linear_address,
6468
ve_info->guest_physical_address, ve_info->eptp_index);
6469
}
6470
}
6471
6472
/*
6473
* The guest has exited. See if we can fix it or if we need userspace
6474
* assistance.
6475
*/
6476
static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6477
{
6478
struct vcpu_vmx *vmx = to_vmx(vcpu);
6479
union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6480
u32 vectoring_info = vmx->idt_vectoring_info;
6481
u16 exit_handler_index;
6482
6483
/*
6484
* Flush logged GPAs PML buffer, this will make dirty_bitmap more
6485
* updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6486
* querying dirty_bitmap, we only need to kick all vcpus out of guest
6487
* mode as if vcpus is in root mode, the PML buffer must has been
6488
* flushed already. Note, PML is never enabled in hardware while
6489
* running L2.
6490
*/
6491
if (enable_pml && !is_guest_mode(vcpu))
6492
vmx_flush_pml_buffer(vcpu);
6493
6494
/*
6495
* KVM should never reach this point with a pending nested VM-Enter.
6496
* More specifically, short-circuiting VM-Entry to emulate L2 due to
6497
* invalid guest state should never happen as that means KVM knowingly
6498
* allowed a nested VM-Enter with an invalid vmcs12. More below.
6499
*/
6500
if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6501
return -EIO;
6502
6503
if (is_guest_mode(vcpu)) {
6504
/*
6505
* PML is never enabled when running L2, bail immediately if a
6506
* PML full exit occurs as something is horribly wrong.
6507
*/
6508
if (exit_reason.basic == EXIT_REASON_PML_FULL)
6509
goto unexpected_vmexit;
6510
6511
/*
6512
* The host physical addresses of some pages of guest memory
6513
* are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6514
* Page). The CPU may write to these pages via their host
6515
* physical address while L2 is running, bypassing any
6516
* address-translation-based dirty tracking (e.g. EPT write
6517
* protection).
6518
*
6519
* Mark them dirty on every exit from L2 to prevent them from
6520
* getting out of sync with dirty tracking.
6521
*/
6522
nested_mark_vmcs12_pages_dirty(vcpu);
6523
6524
/*
6525
* Synthesize a triple fault if L2 state is invalid. In normal
6526
* operation, nested VM-Enter rejects any attempt to enter L2
6527
* with invalid state. However, those checks are skipped if
6528
* state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6529
* L2 state is invalid, it means either L1 modified SMRAM state
6530
* or userspace provided bad state. Synthesize TRIPLE_FAULT as
6531
* doing so is architecturally allowed in the RSM case, and is
6532
* the least awful solution for the userspace case without
6533
* risking false positives.
6534
*/
6535
if (vmx->vt.emulation_required) {
6536
nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6537
return 1;
6538
}
6539
6540
if (nested_vmx_reflect_vmexit(vcpu))
6541
return 1;
6542
}
6543
6544
/* If guest state is invalid, start emulating. L2 is handled above. */
6545
if (vmx->vt.emulation_required)
6546
return handle_invalid_guest_state(vcpu);
6547
6548
if (exit_reason.failed_vmentry) {
6549
dump_vmcs(vcpu);
6550
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6551
vcpu->run->fail_entry.hardware_entry_failure_reason
6552
= exit_reason.full;
6553
vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6554
return 0;
6555
}
6556
6557
if (unlikely(vmx->fail)) {
6558
dump_vmcs(vcpu);
6559
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6560
vcpu->run->fail_entry.hardware_entry_failure_reason
6561
= vmcs_read32(VM_INSTRUCTION_ERROR);
6562
vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6563
return 0;
6564
}
6565
6566
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6567
(exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6568
exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6569
exit_reason.basic != EXIT_REASON_PML_FULL &&
6570
exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6571
exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6572
exit_reason.basic != EXIT_REASON_NOTIFY &&
6573
exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6574
kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6575
return 0;
6576
}
6577
6578
if (unlikely(!enable_vnmi &&
6579
vmx->loaded_vmcs->soft_vnmi_blocked)) {
6580
if (!vmx_interrupt_blocked(vcpu)) {
6581
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6582
} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6583
vcpu->arch.nmi_pending) {
6584
/*
6585
* This CPU don't support us in finding the end of an
6586
* NMI-blocked window if the guest runs with IRQs
6587
* disabled. So we pull the trigger after 1 s of
6588
* futile waiting, but inform the user about this.
6589
*/
6590
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6591
"state on VCPU %d after 1 s timeout\n",
6592
__func__, vcpu->vcpu_id);
6593
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6594
}
6595
}
6596
6597
if (exit_fastpath != EXIT_FASTPATH_NONE)
6598
return 1;
6599
6600
if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6601
goto unexpected_vmexit;
6602
#ifdef CONFIG_MITIGATION_RETPOLINE
6603
if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6604
return kvm_emulate_wrmsr(vcpu);
6605
else if (exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6606
return handle_wrmsr_imm(vcpu);
6607
else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6608
return handle_preemption_timer(vcpu);
6609
else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6610
return handle_interrupt_window(vcpu);
6611
else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6612
return handle_external_interrupt(vcpu);
6613
else if (exit_reason.basic == EXIT_REASON_HLT)
6614
return kvm_emulate_halt(vcpu);
6615
else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6616
return handle_ept_misconfig(vcpu);
6617
#endif
6618
6619
exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6620
kvm_vmx_max_exit_handlers);
6621
if (!kvm_vmx_exit_handlers[exit_handler_index])
6622
goto unexpected_vmexit;
6623
6624
return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6625
6626
unexpected_vmexit:
6627
vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6628
exit_reason.full);
6629
dump_vmcs(vcpu);
6630
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6631
vcpu->run->internal.suberror =
6632
KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6633
vcpu->run->internal.ndata = 2;
6634
vcpu->run->internal.data[0] = exit_reason.full;
6635
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6636
return 0;
6637
}
6638
6639
int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6640
{
6641
int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6642
6643
/*
6644
* Exit to user space when bus lock detected to inform that there is
6645
* a bus lock in guest.
6646
*/
6647
if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6648
if (ret > 0)
6649
vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6650
6651
vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6652
return 0;
6653
}
6654
return ret;
6655
}
6656
6657
/*
6658
* Software based L1D cache flush which is used when microcode providing
6659
* the cache control MSR is not loaded.
6660
*
6661
* The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6662
* flush it is required to read in 64 KiB because the replacement algorithm
6663
* is not exactly LRU. This could be sized at runtime via topology
6664
* information but as all relevant affected CPUs have 32KiB L1D cache size
6665
* there is no point in doing so.
6666
*/
6667
static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6668
{
6669
int size = PAGE_SIZE << L1D_CACHE_ORDER;
6670
6671
/*
6672
* This code is only executed when the flush mode is 'cond' or
6673
* 'always'
6674
*/
6675
if (static_branch_likely(&vmx_l1d_flush_cond)) {
6676
bool flush_l1d;
6677
6678
/*
6679
* Clear the per-vcpu flush bit, it gets set again if the vCPU
6680
* is reloaded, i.e. if the vCPU is scheduled out or if KVM
6681
* exits to userspace, or if KVM reaches one of the unsafe
6682
* VMEXIT handlers, e.g. if KVM calls into the emulator.
6683
*/
6684
flush_l1d = vcpu->arch.l1tf_flush_l1d;
6685
vcpu->arch.l1tf_flush_l1d = false;
6686
6687
/*
6688
* Clear the per-cpu flush bit, it gets set again from
6689
* the interrupt handlers.
6690
*/
6691
flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6692
kvm_clear_cpu_l1tf_flush_l1d();
6693
6694
if (!flush_l1d)
6695
return;
6696
}
6697
6698
vcpu->stat.l1d_flush++;
6699
6700
if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6701
native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6702
return;
6703
}
6704
6705
asm volatile(
6706
/* First ensure the pages are in the TLB */
6707
"xorl %%eax, %%eax\n"
6708
".Lpopulate_tlb:\n\t"
6709
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6710
"addl $4096, %%eax\n\t"
6711
"cmpl %%eax, %[size]\n\t"
6712
"jne .Lpopulate_tlb\n\t"
6713
"xorl %%eax, %%eax\n\t"
6714
"cpuid\n\t"
6715
/* Now fill the cache */
6716
"xorl %%eax, %%eax\n"
6717
".Lfill_cache:\n"
6718
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6719
"addl $64, %%eax\n\t"
6720
"cmpl %%eax, %[size]\n\t"
6721
"jne .Lfill_cache\n\t"
6722
"lfence\n"
6723
:: [flush_pages] "r" (vmx_l1d_flush_pages),
6724
[size] "r" (size)
6725
: "eax", "ebx", "ecx", "edx");
6726
}
6727
6728
void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6729
{
6730
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6731
int tpr_threshold;
6732
6733
if (is_guest_mode(vcpu) &&
6734
nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6735
return;
6736
6737
tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6738
if (is_guest_mode(vcpu))
6739
to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6740
else
6741
vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6742
}
6743
6744
void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6745
{
6746
struct vcpu_vmx *vmx = to_vmx(vcpu);
6747
u32 sec_exec_control;
6748
6749
if (!lapic_in_kernel(vcpu))
6750
return;
6751
6752
if (!flexpriority_enabled &&
6753
!cpu_has_vmx_virtualize_x2apic_mode())
6754
return;
6755
6756
/* Postpone execution until vmcs01 is the current VMCS. */
6757
if (is_guest_mode(vcpu)) {
6758
vmx->nested.change_vmcs01_virtual_apic_mode = true;
6759
return;
6760
}
6761
6762
sec_exec_control = secondary_exec_controls_get(vmx);
6763
sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6764
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6765
6766
switch (kvm_get_apic_mode(vcpu)) {
6767
case LAPIC_MODE_INVALID:
6768
WARN_ONCE(true, "Invalid local APIC state");
6769
break;
6770
case LAPIC_MODE_DISABLED:
6771
break;
6772
case LAPIC_MODE_XAPIC:
6773
if (flexpriority_enabled) {
6774
sec_exec_control |=
6775
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6776
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6777
6778
/*
6779
* Flush the TLB, reloading the APIC access page will
6780
* only do so if its physical address has changed, but
6781
* the guest may have inserted a non-APIC mapping into
6782
* the TLB while the APIC access page was disabled.
6783
*/
6784
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6785
}
6786
break;
6787
case LAPIC_MODE_X2APIC:
6788
if (cpu_has_vmx_virtualize_x2apic_mode())
6789
sec_exec_control |=
6790
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6791
break;
6792
}
6793
secondary_exec_controls_set(vmx, sec_exec_control);
6794
6795
vmx_update_msr_bitmap_x2apic(vcpu);
6796
}
6797
6798
void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6799
{
6800
const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6801
struct kvm *kvm = vcpu->kvm;
6802
struct kvm_memslots *slots = kvm_memslots(kvm);
6803
struct kvm_memory_slot *slot;
6804
struct page *refcounted_page;
6805
unsigned long mmu_seq;
6806
kvm_pfn_t pfn;
6807
bool writable;
6808
6809
/* Defer reload until vmcs01 is the current VMCS. */
6810
if (is_guest_mode(vcpu)) {
6811
to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6812
return;
6813
}
6814
6815
if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6816
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6817
return;
6818
6819
/*
6820
* Explicitly grab the memslot using KVM's internal slot ID to ensure
6821
* KVM doesn't unintentionally grab a userspace memslot. It _should_
6822
* be impossible for userspace to create a memslot for the APIC when
6823
* APICv is enabled, but paranoia won't hurt in this case.
6824
*/
6825
slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6826
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6827
return;
6828
6829
/*
6830
* Ensure that the mmu_notifier sequence count is read before KVM
6831
* retrieves the pfn from the primary MMU. Note, the memslot is
6832
* protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6833
* in kvm_mmu_invalidate_end().
6834
*/
6835
mmu_seq = kvm->mmu_invalidate_seq;
6836
smp_rmb();
6837
6838
/*
6839
* No need to retry if the memslot does not exist or is invalid. KVM
6840
* controls the APIC-access page memslot, and only deletes the memslot
6841
* if APICv is permanently inhibited, i.e. the memslot won't reappear.
6842
*/
6843
pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6844
if (is_error_noslot_pfn(pfn))
6845
return;
6846
6847
read_lock(&vcpu->kvm->mmu_lock);
6848
if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6849
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6850
else
6851
vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6852
6853
/*
6854
* Do not pin the APIC access page in memory so that it can be freely
6855
* migrated, the MMU notifier will call us again if it is migrated or
6856
* swapped out. KVM backs the memslot with anonymous memory, the pfn
6857
* should always point at a refcounted page (if the pfn is valid).
6858
*/
6859
if (!WARN_ON_ONCE(!refcounted_page))
6860
kvm_release_page_clean(refcounted_page);
6861
6862
/*
6863
* No need for a manual TLB flush at this point, KVM has already done a
6864
* flush if there were SPTEs pointing at the previous page.
6865
*/
6866
read_unlock(&vcpu->kvm->mmu_lock);
6867
}
6868
6869
void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6870
{
6871
u16 status;
6872
u8 old;
6873
6874
/*
6875
* If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6876
* is only relevant for if and only if Virtual Interrupt Delivery is
6877
* enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6878
* vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested
6879
* VM-Exit, otherwise L1 with run with a stale SVI.
6880
*/
6881
if (is_guest_mode(vcpu)) {
6882
/*
6883
* KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6884
* is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6885
* Note, userspace can stuff state while L2 is active; assert
6886
* that VID is disabled if and only if the vCPU is in KVM_RUN
6887
* to avoid false positives if userspace is setting APIC state.
6888
*/
6889
WARN_ON_ONCE(vcpu->wants_to_run &&
6890
nested_cpu_has_vid(get_vmcs12(vcpu)));
6891
to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6892
return;
6893
}
6894
6895
if (max_isr == -1)
6896
max_isr = 0;
6897
6898
status = vmcs_read16(GUEST_INTR_STATUS);
6899
old = status >> 8;
6900
if (max_isr != old) {
6901
status &= 0xff;
6902
status |= max_isr << 8;
6903
vmcs_write16(GUEST_INTR_STATUS, status);
6904
}
6905
}
6906
6907
static void vmx_set_rvi(int vector)
6908
{
6909
u16 status;
6910
u8 old;
6911
6912
if (vector == -1)
6913
vector = 0;
6914
6915
status = vmcs_read16(GUEST_INTR_STATUS);
6916
old = (u8)status & 0xff;
6917
if ((u8)vector != old) {
6918
status &= ~0xff;
6919
status |= (u8)vector;
6920
vmcs_write16(GUEST_INTR_STATUS, status);
6921
}
6922
}
6923
6924
int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6925
{
6926
struct vcpu_vt *vt = to_vt(vcpu);
6927
int max_irr;
6928
bool got_posted_interrupt;
6929
6930
if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6931
return -EIO;
6932
6933
if (pi_test_on(&vt->pi_desc)) {
6934
pi_clear_on(&vt->pi_desc);
6935
/*
6936
* IOMMU can write to PID.ON, so the barrier matters even on UP.
6937
* But on x86 this is just a compiler barrier anyway.
6938
*/
6939
smp_mb__after_atomic();
6940
got_posted_interrupt =
6941
kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
6942
} else {
6943
max_irr = kvm_lapic_find_highest_irr(vcpu);
6944
got_posted_interrupt = false;
6945
}
6946
6947
/*
6948
* Newly recognized interrupts are injected via either virtual interrupt
6949
* delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6950
* disabled in two cases:
6951
*
6952
* 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6953
* wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6954
* VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6955
* into L2, but KVM doesn't use virtual interrupt delivery to inject
6956
* interrupts into L2, and so KVM_REQ_EVENT is again needed.
6957
*
6958
* 2) If APICv is disabled for this vCPU, assigned devices may still
6959
* attempt to post interrupts. The posted interrupt vector will cause
6960
* a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6961
*/
6962
if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6963
vmx_set_rvi(max_irr);
6964
else if (got_posted_interrupt)
6965
kvm_make_request(KVM_REQ_EVENT, vcpu);
6966
6967
return max_irr;
6968
}
6969
6970
void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6971
{
6972
if (!kvm_vcpu_apicv_active(vcpu))
6973
return;
6974
6975
vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6976
vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6977
vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6978
vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6979
}
6980
6981
void vmx_do_interrupt_irqoff(unsigned long entry);
6982
void vmx_do_nmi_irqoff(void);
6983
6984
static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6985
{
6986
/*
6987
* Save xfd_err to guest_fpu before interrupt is enabled, so the
6988
* MSR value is not clobbered by the host activity before the guest
6989
* has chance to consume it.
6990
*
6991
* Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
6992
* interception may have been caused by L1 interception. Per the SDM,
6993
* XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
6994
*
6995
* Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
6996
* unlike CR2 and DR6, the value is not a payload that is attached to
6997
* the #NM exception.
6998
*/
6999
if (is_xfd_nm_fault(vcpu))
7000
rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7001
}
7002
7003
static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7004
{
7005
/* if exit due to PF check for async PF */
7006
if (is_page_fault(intr_info))
7007
vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7008
/* if exit due to NM, handle before interrupts are enabled */
7009
else if (is_nm_fault(intr_info))
7010
handle_nm_fault_irqoff(vcpu);
7011
/* Handle machine checks before interrupts are enabled */
7012
else if (is_machine_check(intr_info))
7013
kvm_machine_check();
7014
}
7015
7016
static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7017
u32 intr_info)
7018
{
7019
unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7020
7021
if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7022
"unexpected VM-Exit interrupt info: 0x%x", intr_info))
7023
return;
7024
7025
kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7026
if (cpu_feature_enabled(X86_FEATURE_FRED))
7027
fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7028
else
7029
vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7030
kvm_after_interrupt(vcpu);
7031
7032
vcpu->arch.at_instruction_boundary = true;
7033
}
7034
7035
void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7036
{
7037
if (to_vt(vcpu)->emulation_required)
7038
return;
7039
7040
if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7041
handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7042
else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI)
7043
handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7044
}
7045
7046
/*
7047
* The kvm parameter can be NULL (module initialization, or invocation before
7048
* VM creation). Be sure to check the kvm parameter before using it.
7049
*/
7050
bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7051
{
7052
switch (index) {
7053
case MSR_IA32_SMBASE:
7054
if (!IS_ENABLED(CONFIG_KVM_SMM))
7055
return false;
7056
/*
7057
* We cannot do SMM unless we can run the guest in big
7058
* real mode.
7059
*/
7060
return enable_unrestricted_guest || emulate_invalid_guest_state;
7061
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7062
return nested;
7063
case MSR_AMD64_VIRT_SPEC_CTRL:
7064
case MSR_AMD64_TSC_RATIO:
7065
/* This is AMD only. */
7066
return false;
7067
default:
7068
return true;
7069
}
7070
}
7071
7072
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7073
{
7074
u32 exit_intr_info;
7075
bool unblock_nmi;
7076
u8 vector;
7077
bool idtv_info_valid;
7078
7079
idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7080
7081
if (enable_vnmi) {
7082
if (vmx->loaded_vmcs->nmi_known_unmasked)
7083
return;
7084
7085
exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7086
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7087
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7088
/*
7089
* SDM 3: 27.7.1.2 (September 2008)
7090
* Re-set bit "block by NMI" before VM entry if vmexit caused by
7091
* a guest IRET fault.
7092
* SDM 3: 23.2.2 (September 2008)
7093
* Bit 12 is undefined in any of the following cases:
7094
* If the VM exit sets the valid bit in the IDT-vectoring
7095
* information field.
7096
* If the VM exit is due to a double fault.
7097
*/
7098
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7099
vector != DF_VECTOR && !idtv_info_valid)
7100
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7101
GUEST_INTR_STATE_NMI);
7102
else
7103
vmx->loaded_vmcs->nmi_known_unmasked =
7104
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7105
& GUEST_INTR_STATE_NMI);
7106
} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7107
vmx->loaded_vmcs->vnmi_blocked_time +=
7108
ktime_to_ns(ktime_sub(ktime_get(),
7109
vmx->loaded_vmcs->entry_time));
7110
}
7111
7112
static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7113
u32 idt_vectoring_info,
7114
int instr_len_field,
7115
int error_code_field)
7116
{
7117
u8 vector;
7118
int type;
7119
bool idtv_info_valid;
7120
7121
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7122
7123
vcpu->arch.nmi_injected = false;
7124
kvm_clear_exception_queue(vcpu);
7125
kvm_clear_interrupt_queue(vcpu);
7126
7127
if (!idtv_info_valid)
7128
return;
7129
7130
kvm_make_request(KVM_REQ_EVENT, vcpu);
7131
7132
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7133
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7134
7135
switch (type) {
7136
case INTR_TYPE_NMI_INTR:
7137
vcpu->arch.nmi_injected = true;
7138
/*
7139
* SDM 3: 27.7.1.2 (September 2008)
7140
* Clear bit "block by NMI" before VM entry if a NMI
7141
* delivery faulted.
7142
*/
7143
vmx_set_nmi_mask(vcpu, false);
7144
break;
7145
case INTR_TYPE_SOFT_EXCEPTION:
7146
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7147
fallthrough;
7148
case INTR_TYPE_HARD_EXCEPTION: {
7149
u32 error_code = 0;
7150
7151
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7152
error_code = vmcs_read32(error_code_field);
7153
7154
kvm_requeue_exception(vcpu, vector,
7155
idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7156
error_code);
7157
break;
7158
}
7159
case INTR_TYPE_SOFT_INTR:
7160
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7161
fallthrough;
7162
case INTR_TYPE_EXT_INTR:
7163
kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7164
break;
7165
default:
7166
break;
7167
}
7168
}
7169
7170
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7171
{
7172
__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7173
VM_EXIT_INSTRUCTION_LEN,
7174
IDT_VECTORING_ERROR_CODE);
7175
}
7176
7177
void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7178
{
7179
__vmx_complete_interrupts(vcpu,
7180
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7181
VM_ENTRY_INSTRUCTION_LEN,
7182
VM_ENTRY_EXCEPTION_ERROR_CODE);
7183
7184
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7185
}
7186
7187
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7188
{
7189
int i, nr_msrs;
7190
struct perf_guest_switch_msr *msrs;
7191
struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7192
7193
pmu->host_cross_mapped_mask = 0;
7194
if (pmu->pebs_enable & pmu->global_ctrl)
7195
intel_pmu_cross_mapped_check(pmu);
7196
7197
/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7198
msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7199
if (!msrs)
7200
return;
7201
7202
for (i = 0; i < nr_msrs; i++)
7203
if (msrs[i].host == msrs[i].guest)
7204
clear_atomic_switch_msr(vmx, msrs[i].msr);
7205
else
7206
add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7207
msrs[i].host, false);
7208
}
7209
7210
static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7211
{
7212
struct vcpu_vmx *vmx = to_vmx(vcpu);
7213
u64 tscl;
7214
u32 delta_tsc;
7215
7216
if (force_immediate_exit) {
7217
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7218
vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7219
} else if (vmx->hv_deadline_tsc != -1) {
7220
tscl = rdtsc();
7221
if (vmx->hv_deadline_tsc > tscl)
7222
/* set_hv_timer ensures the delta fits in 32-bits */
7223
delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7224
cpu_preemption_timer_multi);
7225
else
7226
delta_tsc = 0;
7227
7228
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7229
vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7230
} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7231
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7232
vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7233
}
7234
}
7235
7236
void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7237
{
7238
if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7239
vmx->loaded_vmcs->host_state.rsp = host_rsp;
7240
vmcs_writel(HOST_RSP, host_rsp);
7241
}
7242
}
7243
7244
void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7245
unsigned int flags)
7246
{
7247
u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7248
7249
if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7250
return;
7251
7252
if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7253
vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7254
7255
/*
7256
* If the guest/host SPEC_CTRL values differ, restore the host value.
7257
*
7258
* For legacy IBRS, the IBRS bit always needs to be written after
7259
* transitioning from a less privileged predictor mode, regardless of
7260
* whether the guest/host values differ.
7261
*/
7262
if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7263
vmx->spec_ctrl != hostval)
7264
native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7265
7266
barrier_nospec();
7267
}
7268
7269
static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7270
bool force_immediate_exit)
7271
{
7272
/*
7273
* If L2 is active, some VMX preemption timer exits can be handled in
7274
* the fastpath even, all other exits must use the slow path.
7275
*/
7276
if (is_guest_mode(vcpu) &&
7277
vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7278
return EXIT_FASTPATH_NONE;
7279
7280
switch (vmx_get_exit_reason(vcpu).basic) {
7281
case EXIT_REASON_MSR_WRITE:
7282
return handle_fastpath_wrmsr(vcpu);
7283
case EXIT_REASON_MSR_WRITE_IMM:
7284
return handle_fastpath_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
7285
vmx_get_msr_imm_reg(vcpu));
7286
case EXIT_REASON_PREEMPTION_TIMER:
7287
return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7288
case EXIT_REASON_HLT:
7289
return handle_fastpath_hlt(vcpu);
7290
case EXIT_REASON_INVD:
7291
return handle_fastpath_invd(vcpu);
7292
default:
7293
return EXIT_FASTPATH_NONE;
7294
}
7295
}
7296
7297
noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7298
{
7299
if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7300
!is_nmi(vmx_get_intr_info(vcpu)))
7301
return;
7302
7303
kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7304
if (cpu_feature_enabled(X86_FEATURE_FRED))
7305
fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7306
else
7307
vmx_do_nmi_irqoff();
7308
kvm_after_interrupt(vcpu);
7309
}
7310
7311
static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7312
unsigned int flags)
7313
{
7314
struct vcpu_vmx *vmx = to_vmx(vcpu);
7315
7316
guest_state_enter_irqoff();
7317
7318
/*
7319
* L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7320
* mitigation for MDS is done late in VMentry and is still
7321
* executed in spite of L1D Flush. This is because an extra VERW
7322
* should not matter much after the big hammer L1D Flush.
7323
*
7324
* cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA,
7325
* and is affected by MMIO Stale Data. In such cases mitigation in only
7326
* needed against an MMIO capable guest.
7327
*/
7328
if (static_branch_unlikely(&vmx_l1d_should_flush))
7329
vmx_l1d_flush(vcpu);
7330
else if (static_branch_unlikely(&cpu_buf_vm_clear) &&
7331
(flags & VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO))
7332
x86_clear_cpu_buffers();
7333
7334
vmx_disable_fb_clear(vmx);
7335
7336
if (vcpu->arch.cr2 != native_read_cr2())
7337
native_write_cr2(vcpu->arch.cr2);
7338
7339
vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7340
flags);
7341
7342
vcpu->arch.cr2 = native_read_cr2();
7343
vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7344
7345
vmx->idt_vectoring_info = 0;
7346
7347
vmx_enable_fb_clear(vmx);
7348
7349
if (unlikely(vmx->fail)) {
7350
vmx->vt.exit_reason.full = 0xdead;
7351
goto out;
7352
}
7353
7354
vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7355
if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7356
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7357
7358
vmx_handle_nmi(vcpu);
7359
7360
out:
7361
guest_state_exit_irqoff();
7362
}
7363
7364
fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
7365
{
7366
bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
7367
struct vcpu_vmx *vmx = to_vmx(vcpu);
7368
unsigned long cr3, cr4;
7369
7370
/* Record the guest's net vcpu time for enforced NMI injections. */
7371
if (unlikely(!enable_vnmi &&
7372
vmx->loaded_vmcs->soft_vnmi_blocked))
7373
vmx->loaded_vmcs->entry_time = ktime_get();
7374
7375
/*
7376
* Don't enter VMX if guest state is invalid, let the exit handler
7377
* start emulation until we arrive back to a valid state. Synthesize a
7378
* consistency check VM-Exit due to invalid guest state and bail.
7379
*/
7380
if (unlikely(vmx->vt.emulation_required)) {
7381
vmx->fail = 0;
7382
7383
vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7384
vmx->vt.exit_reason.failed_vmentry = 1;
7385
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7386
vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7387
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7388
vmx->vt.exit_intr_info = 0;
7389
return EXIT_FASTPATH_NONE;
7390
}
7391
7392
trace_kvm_entry(vcpu, force_immediate_exit);
7393
7394
if (vmx->ple_window_dirty) {
7395
vmx->ple_window_dirty = false;
7396
vmcs_write32(PLE_WINDOW, vmx->ple_window);
7397
}
7398
7399
/*
7400
* We did this in prepare_switch_to_guest, because it needs to
7401
* be within srcu_read_lock.
7402
*/
7403
WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7404
7405
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7406
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7407
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7408
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7409
vcpu->arch.regs_dirty = 0;
7410
7411
if (run_flags & KVM_RUN_LOAD_GUEST_DR6)
7412
set_debugreg(vcpu->arch.dr6, 6);
7413
7414
if (run_flags & KVM_RUN_LOAD_DEBUGCTL)
7415
vmx_reload_guest_debugctl(vcpu);
7416
7417
/*
7418
* Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7419
* prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7420
* it switches back to the current->mm, which can occur in KVM context
7421
* when switching to a temporary mm to patch kernel code, e.g. if KVM
7422
* toggles a static key while handling a VM-Exit.
7423
*/
7424
cr3 = __get_current_cr3_fast();
7425
if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7426
vmcs_writel(HOST_CR3, cr3);
7427
vmx->loaded_vmcs->host_state.cr3 = cr3;
7428
}
7429
7430
cr4 = cr4_read_shadow();
7431
if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7432
vmcs_writel(HOST_CR4, cr4);
7433
vmx->loaded_vmcs->host_state.cr4 = cr4;
7434
}
7435
7436
/* When single-stepping over STI and MOV SS, we must clear the
7437
* corresponding interruptibility bits in the guest state. Otherwise
7438
* vmentry fails as it then expects bit 14 (BS) in pending debug
7439
* exceptions being set, but that's not correct for the guest debugging
7440
* case. */
7441
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7442
vmx_set_interrupt_shadow(vcpu, 0);
7443
7444
kvm_load_guest_xsave_state(vcpu);
7445
7446
pt_guest_enter(vmx);
7447
7448
atomic_switch_perf_msrs(vmx);
7449
if (intel_pmu_lbr_is_enabled(vcpu))
7450
vmx_passthrough_lbr_msrs(vcpu);
7451
7452
if (enable_preemption_timer)
7453
vmx_update_hv_timer(vcpu, force_immediate_exit);
7454
else if (force_immediate_exit)
7455
smp_send_reschedule(vcpu->cpu);
7456
7457
kvm_wait_lapic_expire(vcpu);
7458
7459
/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7460
vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7461
7462
/* All fields are clean at this point */
7463
if (kvm_is_using_evmcs()) {
7464
current_evmcs->hv_clean_fields |=
7465
HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7466
7467
current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7468
}
7469
7470
/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7471
if (vcpu->arch.host_debugctl)
7472
update_debugctlmsr(vcpu->arch.host_debugctl);
7473
7474
#ifndef CONFIG_X86_64
7475
/*
7476
* The sysexit path does not restore ds/es, so we must set them to
7477
* a reasonable value ourselves.
7478
*
7479
* We can't defer this to vmx_prepare_switch_to_host() since that
7480
* function may be executed in interrupt context, which saves and
7481
* restore segments around it, nullifying its effect.
7482
*/
7483
loadsegment(ds, __USER_DS);
7484
loadsegment(es, __USER_DS);
7485
#endif
7486
7487
pt_guest_exit(vmx);
7488
7489
kvm_load_host_xsave_state(vcpu);
7490
7491
if (is_guest_mode(vcpu)) {
7492
/*
7493
* Track VMLAUNCH/VMRESUME that have made past guest state
7494
* checking.
7495
*/
7496
if (vmx->nested.nested_run_pending &&
7497
!vmx_get_exit_reason(vcpu).failed_vmentry)
7498
++vcpu->stat.nested_run;
7499
7500
vmx->nested.nested_run_pending = 0;
7501
}
7502
7503
if (unlikely(vmx->fail))
7504
return EXIT_FASTPATH_NONE;
7505
7506
if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
7507
kvm_machine_check();
7508
7509
trace_kvm_exit(vcpu, KVM_ISA_VMX);
7510
7511
if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7512
return EXIT_FASTPATH_NONE;
7513
7514
vmx->loaded_vmcs->launched = 1;
7515
7516
vmx_recover_nmi_blocking(vmx);
7517
vmx_complete_interrupts(vmx);
7518
7519
return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7520
}
7521
7522
void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7523
{
7524
struct vcpu_vmx *vmx = to_vmx(vcpu);
7525
7526
if (enable_pml)
7527
vmx_destroy_pml_buffer(vmx);
7528
free_vpid(vmx->vpid);
7529
nested_vmx_free_vcpu(vcpu);
7530
free_loaded_vmcs(vmx->loaded_vmcs);
7531
free_page((unsigned long)vmx->ve_info);
7532
}
7533
7534
int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7535
{
7536
struct vmx_uret_msr *tsx_ctrl;
7537
struct vcpu_vmx *vmx;
7538
int i, err;
7539
7540
BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7541
vmx = to_vmx(vcpu);
7542
7543
INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7544
7545
err = -ENOMEM;
7546
7547
vmx->vpid = allocate_vpid();
7548
7549
/*
7550
* If PML is turned on, failure on enabling PML just results in failure
7551
* of creating the vcpu, therefore we can simplify PML logic (by
7552
* avoiding dealing with cases, such as enabling PML partially on vcpus
7553
* for the guest), etc.
7554
*/
7555
if (enable_pml) {
7556
vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7557
if (!vmx->pml_pg)
7558
goto free_vpid;
7559
}
7560
7561
for (i = 0; i < kvm_nr_uret_msrs; ++i)
7562
vmx->guest_uret_msrs[i].mask = -1ull;
7563
if (boot_cpu_has(X86_FEATURE_RTM)) {
7564
/*
7565
* TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7566
* Keep the host value unchanged to avoid changing CPUID bits
7567
* under the host kernel's feet.
7568
*/
7569
tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7570
if (tsx_ctrl)
7571
tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7572
}
7573
7574
err = alloc_loaded_vmcs(&vmx->vmcs01);
7575
if (err < 0)
7576
goto free_pml;
7577
7578
/*
7579
* Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7580
* nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7581
* feature only for vmcs01, KVM currently isn't equipped to realize any
7582
* performance benefits from enabling it for vmcs02.
7583
*/
7584
if (kvm_is_using_evmcs() &&
7585
(ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7586
struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7587
7588
evmcs->hv_enlightenments_control.msr_bitmap = 1;
7589
}
7590
7591
vmx->loaded_vmcs = &vmx->vmcs01;
7592
7593
if (cpu_need_virtualize_apic_accesses(vcpu)) {
7594
err = kvm_alloc_apic_access_page(vcpu->kvm);
7595
if (err)
7596
goto free_vmcs;
7597
}
7598
7599
if (enable_ept && !enable_unrestricted_guest) {
7600
err = init_rmode_identity_map(vcpu->kvm);
7601
if (err)
7602
goto free_vmcs;
7603
}
7604
7605
err = -ENOMEM;
7606
if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7607
struct page *page;
7608
7609
BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7610
7611
/* ve_info must be page aligned. */
7612
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7613
if (!page)
7614
goto free_vmcs;
7615
7616
vmx->ve_info = page_to_virt(page);
7617
}
7618
7619
if (vmx_can_use_ipiv(vcpu))
7620
WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7621
__pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7622
7623
return 0;
7624
7625
free_vmcs:
7626
free_loaded_vmcs(vmx->loaded_vmcs);
7627
free_pml:
7628
vmx_destroy_pml_buffer(vmx);
7629
free_vpid:
7630
free_vpid(vmx->vpid);
7631
return err;
7632
}
7633
7634
#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7635
#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7636
7637
int vmx_vm_init(struct kvm *kvm)
7638
{
7639
if (!ple_gap)
7640
kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
7641
7642
if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7643
switch (l1tf_mitigation) {
7644
case L1TF_MITIGATION_OFF:
7645
case L1TF_MITIGATION_FLUSH_NOWARN:
7646
/* 'I explicitly don't care' is set */
7647
break;
7648
case L1TF_MITIGATION_AUTO:
7649
case L1TF_MITIGATION_FLUSH:
7650
case L1TF_MITIGATION_FLUSH_NOSMT:
7651
case L1TF_MITIGATION_FULL:
7652
/*
7653
* Warn upon starting the first VM in a potentially
7654
* insecure environment.
7655
*/
7656
if (sched_smt_active())
7657
pr_warn_once(L1TF_MSG_SMT);
7658
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7659
pr_warn_once(L1TF_MSG_L1D);
7660
break;
7661
case L1TF_MITIGATION_FULL_FORCE:
7662
/* Flush is enforced */
7663
break;
7664
}
7665
}
7666
7667
if (enable_pml)
7668
kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7669
return 0;
7670
}
7671
7672
static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7673
{
7674
/*
7675
* Non-coherent DMA devices need the guest to flush CPU properly.
7676
* In that case it is not possible to map all guest RAM as WB, so
7677
* always trust guest PAT.
7678
*/
7679
return !kvm_arch_has_noncoherent_dma(kvm) &&
7680
kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7681
}
7682
7683
u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7684
{
7685
/*
7686
* Force UC for host MMIO regions, as allowing the guest to access MMIO
7687
* with cacheable accesses will result in Machine Checks.
7688
*/
7689
if (is_mmio)
7690
return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7691
7692
/* Force WB if ignoring guest PAT */
7693
if (vmx_ignore_guest_pat(vcpu->kvm))
7694
return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7695
7696
return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7697
}
7698
7699
static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7700
{
7701
/*
7702
* These bits in the secondary execution controls field
7703
* are dynamic, the others are mostly based on the hypervisor
7704
* architecture and the guest's CPUID. Do not touch the
7705
* dynamic bits.
7706
*/
7707
u32 mask =
7708
SECONDARY_EXEC_SHADOW_VMCS |
7709
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7710
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7711
SECONDARY_EXEC_DESC;
7712
7713
u32 cur_ctl = secondary_exec_controls_get(vmx);
7714
7715
secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7716
}
7717
7718
/*
7719
* Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7720
* (indicating "allowed-1") if they are supported in the guest's CPUID.
7721
*/
7722
static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7723
{
7724
struct vcpu_vmx *vmx = to_vmx(vcpu);
7725
struct kvm_cpuid_entry2 *entry;
7726
7727
vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7728
vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7729
7730
#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7731
if (entry && (entry->_reg & (_cpuid_mask))) \
7732
vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7733
} while (0)
7734
7735
entry = kvm_find_cpuid_entry(vcpu, 0x1);
7736
cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7737
cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7738
cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7739
cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7740
cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7741
cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7742
cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7743
cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7744
cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7745
cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7746
cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7747
cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7748
cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7749
cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7750
7751
entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7752
cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7753
cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7754
cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7755
cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7756
cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7757
cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7758
cr4_fixed1_update(X86_CR4_CET, ecx, feature_bit(SHSTK));
7759
cr4_fixed1_update(X86_CR4_CET, edx, feature_bit(IBT));
7760
7761
entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7762
cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7763
7764
#undef cr4_fixed1_update
7765
}
7766
7767
static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7768
{
7769
struct vcpu_vmx *vmx = to_vmx(vcpu);
7770
struct kvm_cpuid_entry2 *best = NULL;
7771
int i;
7772
7773
for (i = 0; i < PT_CPUID_LEAVES; i++) {
7774
best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7775
if (!best)
7776
return;
7777
vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7778
vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7779
vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7780
vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7781
}
7782
7783
/* Get the number of configurable Address Ranges for filtering */
7784
vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7785
PT_CAP_num_address_ranges);
7786
7787
/* Initialize and clear the no dependency bits */
7788
vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7789
RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7790
RTIT_CTL_BRANCH_EN);
7791
7792
/*
7793
* If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7794
* will inject an #GP
7795
*/
7796
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7797
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7798
7799
/*
7800
* If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7801
* PSBFreq can be set
7802
*/
7803
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7804
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7805
RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7806
7807
/*
7808
* If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7809
*/
7810
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7811
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7812
RTIT_CTL_MTC_RANGE);
7813
7814
/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7815
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7816
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7817
RTIT_CTL_PTW_EN);
7818
7819
/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7820
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7821
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7822
7823
/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7824
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7825
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7826
7827
/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7828
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7829
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7830
7831
/* unmask address range configure area */
7832
for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7833
vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7834
}
7835
7836
void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7837
{
7838
struct vcpu_vmx *vmx = to_vmx(vcpu);
7839
7840
/*
7841
* XSAVES is effectively enabled if and only if XSAVE is also exposed
7842
* to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7843
* set if and only if XSAVE is supported.
7844
*/
7845
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7846
guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7847
7848
vmx_setup_uret_msrs(vmx);
7849
7850
if (cpu_has_secondary_exec_ctrls())
7851
vmcs_set_secondary_exec_control(vmx,
7852
vmx_secondary_exec_control(vmx));
7853
7854
if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7855
vmx->msr_ia32_feature_control_valid_bits |=
7856
FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7857
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7858
else
7859
vmx->msr_ia32_feature_control_valid_bits &=
7860
~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7861
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7862
7863
if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7864
nested_vmx_cr_fixed1_bits_update(vcpu);
7865
7866
if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7867
guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7868
update_intel_pt_cfg(vcpu);
7869
7870
if (boot_cpu_has(X86_FEATURE_RTM)) {
7871
struct vmx_uret_msr *msr;
7872
msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7873
if (msr) {
7874
bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7875
vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7876
}
7877
}
7878
7879
set_cr4_guest_host_mask(vmx);
7880
7881
vmx_write_encls_bitmap(vcpu, NULL);
7882
if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7883
vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7884
else
7885
vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7886
7887
if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7888
vmx->msr_ia32_feature_control_valid_bits |=
7889
FEAT_CTL_SGX_LC_ENABLED;
7890
else
7891
vmx->msr_ia32_feature_control_valid_bits &=
7892
~FEAT_CTL_SGX_LC_ENABLED;
7893
7894
/* Refresh #PF interception to account for MAXPHYADDR changes. */
7895
vmx_update_exception_bitmap(vcpu);
7896
}
7897
7898
static __init u64 vmx_get_perf_capabilities(void)
7899
{
7900
u64 perf_cap = PERF_CAP_FW_WRITES;
7901
u64 host_perf_cap = 0;
7902
7903
if (!enable_pmu)
7904
return 0;
7905
7906
if (boot_cpu_has(X86_FEATURE_PDCM))
7907
rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7908
7909
if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7910
x86_perf_get_lbr(&vmx_lbr_caps);
7911
7912
/*
7913
* KVM requires LBR callstack support, as the overhead due to
7914
* context switching LBRs without said support is too high.
7915
* See intel_pmu_create_guest_lbr_event() for more info.
7916
*/
7917
if (!vmx_lbr_caps.has_callstack)
7918
memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7919
else if (vmx_lbr_caps.nr)
7920
perf_cap |= host_perf_cap & PERF_CAP_LBR_FMT;
7921
}
7922
7923
if (vmx_pebs_supported()) {
7924
perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7925
7926
/*
7927
* Disallow adaptive PEBS as it is functionally broken, can be
7928
* used by the guest to read *host* LBRs, and can be used to
7929
* bypass userspace event filters. To correctly and safely
7930
* support adaptive PEBS, KVM needs to:
7931
*
7932
* 1. Account for the ADAPTIVE flag when (re)programming fixed
7933
* counters.
7934
*
7935
* 2. Gain support from perf (or take direct control of counter
7936
* programming) to support events without adaptive PEBS
7937
* enabled for the hardware counter.
7938
*
7939
* 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7940
* adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7941
*
7942
* 4. Document which PMU events are effectively exposed to the
7943
* guest via adaptive PEBS, and make adaptive PEBS mutually
7944
* exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7945
*/
7946
perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7947
}
7948
7949
return perf_cap;
7950
}
7951
7952
static __init void vmx_set_cpu_caps(void)
7953
{
7954
kvm_set_cpu_caps();
7955
7956
/* CPUID 0x1 */
7957
if (nested)
7958
kvm_cpu_cap_set(X86_FEATURE_VMX);
7959
7960
/* CPUID 0x7 */
7961
if (kvm_mpx_supported())
7962
kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7963
if (!cpu_has_vmx_invpcid())
7964
kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7965
if (vmx_pt_mode_is_host_guest())
7966
kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7967
if (vmx_pebs_supported()) {
7968
kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7969
kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7970
}
7971
7972
if (!enable_pmu)
7973
kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7974
kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7975
7976
if (!enable_sgx) {
7977
kvm_cpu_cap_clear(X86_FEATURE_SGX);
7978
kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7979
kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7980
kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7981
kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7982
}
7983
7984
if (vmx_umip_emulated())
7985
kvm_cpu_cap_set(X86_FEATURE_UMIP);
7986
7987
/* CPUID 0xD.1 */
7988
if (!cpu_has_vmx_xsaves())
7989
kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7990
7991
/* CPUID 0x80000001 and 0x7 (RDPID) */
7992
if (!cpu_has_vmx_rdtscp()) {
7993
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7994
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7995
}
7996
7997
if (cpu_has_vmx_waitpkg())
7998
kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7999
8000
/*
8001
* Disable CET if unrestricted_guest is unsupported as KVM doesn't
8002
* enforce CET HW behaviors in emulator. On platforms with
8003
* VMX_BASIC[bit56] == 0, inject #CP at VMX entry with error code
8004
* fails, so disable CET in this case too.
8005
*/
8006
if (!cpu_has_load_cet_ctrl() || !enable_unrestricted_guest ||
8007
!cpu_has_vmx_basic_no_hw_errcode_cc()) {
8008
kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
8009
kvm_cpu_cap_clear(X86_FEATURE_IBT);
8010
}
8011
}
8012
8013
static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
8014
struct x86_instruction_info *info,
8015
unsigned long *exit_qualification)
8016
{
8017
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8018
unsigned short port;
8019
int size;
8020
bool imm;
8021
8022
/*
8023
* If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8024
* VM-exits depend on the 'unconditional IO exiting' VM-execution
8025
* control.
8026
*
8027
* Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8028
*/
8029
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8030
return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8031
8032
if (info->intercept == x86_intercept_in ||
8033
info->intercept == x86_intercept_ins) {
8034
port = info->src_val;
8035
size = info->dst_bytes;
8036
imm = info->src_type == OP_IMM;
8037
} else {
8038
port = info->dst_val;
8039
size = info->src_bytes;
8040
imm = info->dst_type == OP_IMM;
8041
}
8042
8043
8044
*exit_qualification = ((unsigned long)port << 16) | (size - 1);
8045
8046
if (info->intercept == x86_intercept_ins ||
8047
info->intercept == x86_intercept_outs)
8048
*exit_qualification |= BIT(4);
8049
8050
if (info->rep_prefix)
8051
*exit_qualification |= BIT(5);
8052
8053
if (imm)
8054
*exit_qualification |= BIT(6);
8055
8056
return nested_vmx_check_io_bitmaps(vcpu, port, size);
8057
}
8058
8059
int vmx_check_intercept(struct kvm_vcpu *vcpu,
8060
struct x86_instruction_info *info,
8061
enum x86_intercept_stage stage,
8062
struct x86_exception *exception)
8063
{
8064
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8065
unsigned long exit_qualification = 0;
8066
u32 vm_exit_reason;
8067
u64 exit_insn_len;
8068
8069
switch (info->intercept) {
8070
case x86_intercept_rdpid:
8071
/*
8072
* RDPID causes #UD if not enabled through secondary execution
8073
* controls (ENABLE_RDTSCP). Note, the implicit MSR access to
8074
* TSC_AUX is NOT subject to interception, i.e. checking only
8075
* the dedicated execution control is architecturally correct.
8076
*/
8077
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8078
exception->vector = UD_VECTOR;
8079
exception->error_code_valid = false;
8080
return X86EMUL_PROPAGATE_FAULT;
8081
}
8082
return X86EMUL_CONTINUE;
8083
8084
case x86_intercept_in:
8085
case x86_intercept_ins:
8086
case x86_intercept_out:
8087
case x86_intercept_outs:
8088
if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
8089
return X86EMUL_CONTINUE;
8090
8091
vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
8092
break;
8093
8094
case x86_intercept_lgdt:
8095
case x86_intercept_lidt:
8096
case x86_intercept_lldt:
8097
case x86_intercept_ltr:
8098
case x86_intercept_sgdt:
8099
case x86_intercept_sidt:
8100
case x86_intercept_sldt:
8101
case x86_intercept_str:
8102
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8103
return X86EMUL_CONTINUE;
8104
8105
if (info->intercept == x86_intercept_lldt ||
8106
info->intercept == x86_intercept_ltr ||
8107
info->intercept == x86_intercept_sldt ||
8108
info->intercept == x86_intercept_str)
8109
vm_exit_reason = EXIT_REASON_LDTR_TR;
8110
else
8111
vm_exit_reason = EXIT_REASON_GDTR_IDTR;
8112
/*
8113
* FIXME: Decode the ModR/M to generate the correct exit
8114
* qualification for memory operands.
8115
*/
8116
break;
8117
8118
case x86_intercept_hlt:
8119
if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
8120
return X86EMUL_CONTINUE;
8121
8122
vm_exit_reason = EXIT_REASON_HLT;
8123
break;
8124
8125
case x86_intercept_pause:
8126
/*
8127
* PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8128
* with vanilla NOPs in the emulator. Apply the interception
8129
* check only to actual PAUSE instructions. Don't check
8130
* PAUSE-loop-exiting, software can't expect a given PAUSE to
8131
* exit, i.e. KVM is within its rights to allow L2 to execute
8132
* the PAUSE.
8133
*/
8134
if ((info->rep_prefix != REPE_PREFIX) ||
8135
!nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8136
return X86EMUL_CONTINUE;
8137
8138
vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8139
break;
8140
8141
/* TODO: check more intercepts... */
8142
default:
8143
return X86EMUL_UNHANDLEABLE;
8144
}
8145
8146
exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8147
if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8148
return X86EMUL_UNHANDLEABLE;
8149
8150
__nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8151
exit_insn_len);
8152
return X86EMUL_INTERCEPTED;
8153
}
8154
8155
#ifdef CONFIG_X86_64
8156
/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8157
static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8158
u64 divisor, u64 *result)
8159
{
8160
u64 low = a << shift, high = a >> (64 - shift);
8161
8162
/* To avoid the overflow on divq */
8163
if (high >= divisor)
8164
return 1;
8165
8166
/* Low hold the result, high hold rem which is discarded */
8167
asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8168
"rm" (divisor), "0" (low), "1" (high));
8169
*result = low;
8170
8171
return 0;
8172
}
8173
8174
int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8175
bool *expired)
8176
{
8177
struct vcpu_vmx *vmx;
8178
u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8179
struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8180
8181
vmx = to_vmx(vcpu);
8182
tscl = rdtsc();
8183
guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8184
delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8185
lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8186
ktimer->timer_advance_ns);
8187
8188
if (delta_tsc > lapic_timer_advance_cycles)
8189
delta_tsc -= lapic_timer_advance_cycles;
8190
else
8191
delta_tsc = 0;
8192
8193
/* Convert to host delta tsc if tsc scaling is enabled */
8194
if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8195
delta_tsc && u64_shl_div_u64(delta_tsc,
8196
kvm_caps.tsc_scaling_ratio_frac_bits,
8197
vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8198
return -ERANGE;
8199
8200
/*
8201
* If the delta tsc can't fit in the 32 bit after the multi shift,
8202
* we can't use the preemption timer.
8203
* It's possible that it fits on later vmentries, but checking
8204
* on every vmentry is costly so we just use an hrtimer.
8205
*/
8206
if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8207
return -ERANGE;
8208
8209
vmx->hv_deadline_tsc = tscl + delta_tsc;
8210
*expired = !delta_tsc;
8211
return 0;
8212
}
8213
8214
void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8215
{
8216
to_vmx(vcpu)->hv_deadline_tsc = -1;
8217
}
8218
#endif
8219
8220
void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8221
{
8222
struct vcpu_vmx *vmx = to_vmx(vcpu);
8223
8224
if (WARN_ON_ONCE(!enable_pml))
8225
return;
8226
8227
if (is_guest_mode(vcpu)) {
8228
vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8229
return;
8230
}
8231
8232
/*
8233
* Note, nr_memslots_dirty_logging can be changed concurrent with this
8234
* code, but in that case another update request will be made and so
8235
* the guest will never run with a stale PML value.
8236
*/
8237
if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8238
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8239
else
8240
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8241
}
8242
8243
void vmx_setup_mce(struct kvm_vcpu *vcpu)
8244
{
8245
if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8246
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8247
FEAT_CTL_LMCE_ENABLED;
8248
else
8249
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8250
~FEAT_CTL_LMCE_ENABLED;
8251
}
8252
8253
#ifdef CONFIG_KVM_SMM
8254
int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8255
{
8256
/* we need a nested vmexit to enter SMM, postpone if run is pending */
8257
if (to_vmx(vcpu)->nested.nested_run_pending)
8258
return -EBUSY;
8259
return !is_smm(vcpu);
8260
}
8261
8262
int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8263
{
8264
struct vcpu_vmx *vmx = to_vmx(vcpu);
8265
8266
/*
8267
* TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8268
* SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8269
* SMI and RSM only modify state that is saved and restored via SMRAM.
8270
* E.g. most MSRs are left untouched, but many are modified by VM-Exit
8271
* and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8272
*/
8273
vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8274
if (vmx->nested.smm.guest_mode)
8275
nested_vmx_vmexit(vcpu, -1, 0, 0);
8276
8277
vmx->nested.smm.vmxon = vmx->nested.vmxon;
8278
vmx->nested.vmxon = false;
8279
vmx_clear_hlt(vcpu);
8280
return 0;
8281
}
8282
8283
int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8284
{
8285
struct vcpu_vmx *vmx = to_vmx(vcpu);
8286
int ret;
8287
8288
if (vmx->nested.smm.vmxon) {
8289
vmx->nested.vmxon = true;
8290
vmx->nested.smm.vmxon = false;
8291
}
8292
8293
if (vmx->nested.smm.guest_mode) {
8294
ret = nested_vmx_enter_non_root_mode(vcpu, false);
8295
if (ret)
8296
return ret;
8297
8298
vmx->nested.nested_run_pending = 1;
8299
vmx->nested.smm.guest_mode = false;
8300
}
8301
return 0;
8302
}
8303
8304
void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8305
{
8306
/* RSM will cause a vmexit anyway. */
8307
}
8308
#endif
8309
8310
bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8311
{
8312
return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8313
}
8314
8315
void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8316
{
8317
if (is_guest_mode(vcpu)) {
8318
struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8319
8320
if (hrtimer_try_to_cancel(timer) == 1)
8321
hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8322
}
8323
}
8324
8325
void vmx_hardware_unsetup(void)
8326
{
8327
kvm_set_posted_intr_wakeup_handler(NULL);
8328
8329
if (nested)
8330
nested_vmx_hardware_unsetup();
8331
8332
free_kvm_area();
8333
}
8334
8335
void vmx_vm_destroy(struct kvm *kvm)
8336
{
8337
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8338
8339
free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8340
}
8341
8342
/*
8343
* Note, the SDM states that the linear address is masked *after* the modified
8344
* canonicality check, whereas KVM masks (untags) the address and then performs
8345
* a "normal" canonicality check. Functionally, the two methods are identical,
8346
* and when the masking occurs relative to the canonicality check isn't visible
8347
* to software, i.e. KVM's behavior doesn't violate the SDM.
8348
*/
8349
gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8350
{
8351
int lam_bit;
8352
unsigned long cr3_bits;
8353
8354
if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8355
return gva;
8356
8357
if (!is_64_bit_mode(vcpu))
8358
return gva;
8359
8360
/*
8361
* Bit 63 determines if the address should be treated as user address
8362
* or a supervisor address.
8363
*/
8364
if (!(gva & BIT_ULL(63))) {
8365
cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8366
if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8367
return gva;
8368
8369
/* LAM_U48 is ignored if LAM_U57 is set. */
8370
lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8371
} else {
8372
if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8373
return gva;
8374
8375
lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8376
}
8377
8378
/*
8379
* Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8380
* Bit 63 is retained from the raw virtual address so that untagging
8381
* doesn't change a user access to a supervisor access, and vice versa.
8382
*/
8383
return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8384
}
8385
8386
static unsigned int vmx_handle_intel_pt_intr(void)
8387
{
8388
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8389
8390
/* '0' on failure so that the !PT case can use a RET0 static call. */
8391
if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8392
return 0;
8393
8394
kvm_make_request(KVM_REQ_PMI, vcpu);
8395
__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8396
(unsigned long *)&vcpu->arch.pmu.global_status);
8397
return 1;
8398
}
8399
8400
static __init void vmx_setup_user_return_msrs(void)
8401
{
8402
8403
/*
8404
* Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8405
* will emulate SYSCALL in legacy mode if the vendor string in guest
8406
* CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8407
* support this emulation, MSR_STAR is included in the list for i386,
8408
* but is never loaded into hardware. MSR_CSTAR is also never loaded
8409
* into hardware and is here purely for emulation purposes.
8410
*/
8411
const u32 vmx_uret_msrs_list[] = {
8412
#ifdef CONFIG_X86_64
8413
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8414
#endif
8415
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8416
MSR_IA32_TSX_CTRL,
8417
};
8418
int i;
8419
8420
BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8421
8422
for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8423
kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8424
}
8425
8426
static void __init vmx_setup_me_spte_mask(void)
8427
{
8428
u64 me_mask = 0;
8429
8430
/*
8431
* On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8432
* kvm_host.maxphyaddr. On MKTME and/or TDX capable systems,
8433
* boot_cpu_data.x86_phys_bits holds the actual physical address
8434
* w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8435
* MAXPHYADDR reported by CPUID. Those bits between are KeyID bits.
8436
*/
8437
if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8438
me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8439
kvm_host.maxphyaddr - 1);
8440
8441
/*
8442
* Unlike SME, host kernel doesn't support setting up any
8443
* MKTME KeyID on Intel platforms. No memory encryption
8444
* bits should be included into the SPTE.
8445
*/
8446
kvm_mmu_set_me_spte_mask(0, me_mask);
8447
}
8448
8449
__init int vmx_hardware_setup(void)
8450
{
8451
unsigned long host_bndcfgs;
8452
struct desc_ptr dt;
8453
int r;
8454
8455
store_idt(&dt);
8456
host_idt_base = dt.address;
8457
8458
vmx_setup_user_return_msrs();
8459
8460
8461
if (boot_cpu_has(X86_FEATURE_NX))
8462
kvm_enable_efer_bits(EFER_NX);
8463
8464
if (boot_cpu_has(X86_FEATURE_MPX)) {
8465
rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8466
WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8467
}
8468
8469
if (!cpu_has_vmx_mpx())
8470
kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8471
XFEATURE_MASK_BNDCSR);
8472
8473
if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8474
!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8475
enable_vpid = 0;
8476
8477
if (!cpu_has_vmx_ept() ||
8478
!cpu_has_vmx_ept_4levels() ||
8479
!cpu_has_vmx_ept_mt_wb() ||
8480
!cpu_has_vmx_invept_global())
8481
enable_ept = 0;
8482
8483
/* NX support is required for shadow paging. */
8484
if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8485
pr_err_ratelimited("NX (Execute Disable) not supported\n");
8486
return -EOPNOTSUPP;
8487
}
8488
8489
/*
8490
* Shadow paging doesn't have a (further) performance penalty
8491
* from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8492
* by default
8493
*/
8494
if (!enable_ept)
8495
allow_smaller_maxphyaddr = true;
8496
8497
if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8498
enable_ept_ad_bits = 0;
8499
8500
if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8501
enable_unrestricted_guest = 0;
8502
8503
if (!cpu_has_vmx_flexpriority())
8504
flexpriority_enabled = 0;
8505
8506
if (!cpu_has_virtual_nmis())
8507
enable_vnmi = 0;
8508
8509
#ifdef CONFIG_X86_SGX_KVM
8510
if (!cpu_has_vmx_encls_vmexit())
8511
enable_sgx = false;
8512
#endif
8513
8514
/*
8515
* set_apic_access_page_addr() is used to reload apic access
8516
* page upon invalidation. No need to do anything if not
8517
* using the APIC_ACCESS_ADDR VMCS field.
8518
*/
8519
if (!flexpriority_enabled)
8520
vt_x86_ops.set_apic_access_page_addr = NULL;
8521
8522
if (!cpu_has_vmx_tpr_shadow())
8523
vt_x86_ops.update_cr8_intercept = NULL;
8524
8525
#if IS_ENABLED(CONFIG_HYPERV)
8526
if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8527
&& enable_ept) {
8528
vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8529
vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8530
}
8531
#endif
8532
8533
if (!cpu_has_vmx_ple()) {
8534
ple_gap = 0;
8535
ple_window = 0;
8536
ple_window_grow = 0;
8537
ple_window_max = 0;
8538
ple_window_shrink = 0;
8539
}
8540
8541
if (!cpu_has_vmx_apicv())
8542
enable_apicv = 0;
8543
if (!enable_apicv)
8544
vt_x86_ops.sync_pir_to_irr = NULL;
8545
8546
if (!enable_apicv || !cpu_has_vmx_ipiv())
8547
enable_ipiv = false;
8548
8549
if (cpu_has_vmx_tsc_scaling())
8550
kvm_caps.has_tsc_control = true;
8551
8552
kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8553
kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8554
kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8555
kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8556
8557
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8558
8559
if (enable_ept)
8560
kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8561
cpu_has_vmx_ept_execute_only());
8562
else
8563
vt_x86_ops.get_mt_mask = NULL;
8564
8565
/*
8566
* Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8567
* bits to shadow_zero_check.
8568
*/
8569
vmx_setup_me_spte_mask();
8570
8571
kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8572
ept_caps_to_lpage_level(vmx_capability.ept));
8573
8574
/*
8575
* Only enable PML when hardware supports PML feature, and both EPT
8576
* and EPT A/D bit features are enabled -- PML depends on them to work.
8577
*/
8578
if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8579
enable_pml = 0;
8580
8581
if (!cpu_has_vmx_preemption_timer())
8582
enable_preemption_timer = false;
8583
8584
if (enable_preemption_timer) {
8585
u64 use_timer_freq = 5000ULL * 1000 * 1000;
8586
8587
cpu_preemption_timer_multi =
8588
vmx_misc_preemption_timer_rate(vmcs_config.misc);
8589
8590
if (tsc_khz)
8591
use_timer_freq = (u64)tsc_khz * 1000;
8592
use_timer_freq >>= cpu_preemption_timer_multi;
8593
8594
/*
8595
* KVM "disables" the preemption timer by setting it to its max
8596
* value. Don't use the timer if it might cause spurious exits
8597
* at a rate faster than 0.1 Hz (of uninterrupted guest time).
8598
*/
8599
if (use_timer_freq > 0xffffffffu / 10)
8600
enable_preemption_timer = false;
8601
}
8602
8603
if (!enable_preemption_timer) {
8604
vt_x86_ops.set_hv_timer = NULL;
8605
vt_x86_ops.cancel_hv_timer = NULL;
8606
}
8607
8608
kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8609
kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8610
8611
if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8612
return -EINVAL;
8613
if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8614
pt_mode = PT_MODE_SYSTEM;
8615
if (pt_mode == PT_MODE_HOST_GUEST)
8616
vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8617
else
8618
vt_init_ops.handle_intel_pt_intr = NULL;
8619
8620
setup_default_sgx_lepubkeyhash();
8621
8622
vmx_set_cpu_caps();
8623
8624
/*
8625
* Configure nested capabilities after core CPU capabilities so that
8626
* nested support can be conditional on base support, e.g. so that KVM
8627
* can hide/show features based on kvm_cpu_cap_has().
8628
*/
8629
if (nested) {
8630
nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8631
8632
r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8633
if (r)
8634
return r;
8635
}
8636
8637
r = alloc_kvm_area();
8638
if (r && nested)
8639
nested_vmx_hardware_unsetup();
8640
8641
kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8642
8643
/*
8644
* On Intel CPUs that lack self-snoop feature, letting the guest control
8645
* memory types may result in unexpected behavior. So always ignore guest
8646
* PAT on those CPUs and map VM as writeback, not allowing userspace to
8647
* disable the quirk.
8648
*
8649
* On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8650
* supported, UC is slow enough to cause issues with some older guests (e.g.
8651
* an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8652
* map the video RAM, causing wayland desktop to fail to get started
8653
* correctly). To avoid breaking those older guests that rely on KVM to force
8654
* memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8655
* safer (for performance) default behavior.
8656
*
8657
* On top of this, non-coherent DMA devices need the guest to flush CPU
8658
* caches properly. This also requires honoring guest PAT, and is forced
8659
* independent of the quirk in vmx_ignore_guest_pat().
8660
*/
8661
if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8662
kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8663
8664
kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8665
8666
return r;
8667
}
8668
8669
static void vmx_cleanup_l1d_flush(void)
8670
{
8671
if (vmx_l1d_flush_pages) {
8672
free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8673
vmx_l1d_flush_pages = NULL;
8674
}
8675
/* Restore state so sysfs ignores VMX */
8676
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8677
}
8678
8679
void vmx_exit(void)
8680
{
8681
allow_smaller_maxphyaddr = false;
8682
8683
vmx_cleanup_l1d_flush();
8684
8685
kvm_x86_vendor_exit();
8686
}
8687
8688
int __init vmx_init(void)
8689
{
8690
int r, cpu;
8691
8692
KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_vmx);
8693
8694
if (!kvm_is_vmx_supported())
8695
return -EOPNOTSUPP;
8696
8697
/*
8698
* Note, VMCS and eVMCS configuration only touch VMX knobs/variables,
8699
* i.e. there's nothing to unwind if a later step fails.
8700
*/
8701
hv_init_evmcs();
8702
8703
/*
8704
* Parse the VMCS config and VMX capabilities before anything else, so
8705
* that the information is available to all setup flows.
8706
*/
8707
if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8708
return -EIO;
8709
8710
r = kvm_x86_vendor_init(&vt_init_ops);
8711
if (r)
8712
return r;
8713
8714
/*
8715
* Must be called after common x86 init so enable_ept is properly set
8716
* up. Hand the parameter mitigation value in which was stored in
8717
* the pre module init parser. If no parameter was given, it will
8718
* contain 'auto' which will be turned into the default 'cond'
8719
* mitigation mode.
8720
*/
8721
r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8722
if (r)
8723
goto err_l1d_flush;
8724
8725
for_each_possible_cpu(cpu) {
8726
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8727
8728
pi_init_cpu(cpu);
8729
}
8730
8731
vmx_check_vmcs12_offsets();
8732
8733
return 0;
8734
8735
err_l1d_flush:
8736
kvm_x86_vendor_exit();
8737
return r;
8738
}
8739
8740