Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/x86.c
29521 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine driver for Linux
4
*
5
* derived from drivers/kvm/kvm_main.c
6
*
7
* Copyright (C) 2006 Qumranet, Inc.
8
* Copyright (C) 2008 Qumranet, Inc.
9
* Copyright IBM Corporation, 2008
10
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
11
*
12
* Authors:
13
* Avi Kivity <[email protected]>
14
* Yaniv Kamay <[email protected]>
15
* Amit Shah <[email protected]>
16
* Ben-Ami Yassour <[email protected]>
17
*/
18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20
#include <linux/kvm_host.h>
21
#include "irq.h"
22
#include "ioapic.h"
23
#include "mmu.h"
24
#include "i8254.h"
25
#include "tss.h"
26
#include "kvm_cache_regs.h"
27
#include "kvm_emulate.h"
28
#include "mmu/page_track.h"
29
#include "x86.h"
30
#include "cpuid.h"
31
#include "pmu.h"
32
#include "hyperv.h"
33
#include "lapic.h"
34
#include "xen.h"
35
#include "smm.h"
36
37
#include <linux/clocksource.h>
38
#include <linux/interrupt.h>
39
#include <linux/kvm.h>
40
#include <linux/fs.h>
41
#include <linux/vmalloc.h>
42
#include <linux/export.h>
43
#include <linux/moduleparam.h>
44
#include <linux/mman.h>
45
#include <linux/highmem.h>
46
#include <linux/iommu.h>
47
#include <linux/cpufreq.h>
48
#include <linux/user-return-notifier.h>
49
#include <linux/srcu.h>
50
#include <linux/slab.h>
51
#include <linux/perf_event.h>
52
#include <linux/uaccess.h>
53
#include <linux/hash.h>
54
#include <linux/pci.h>
55
#include <linux/timekeeper_internal.h>
56
#include <linux/pvclock_gtod.h>
57
#include <linux/kvm_irqfd.h>
58
#include <linux/irqbypass.h>
59
#include <linux/sched/stat.h>
60
#include <linux/sched/isolation.h>
61
#include <linux/mem_encrypt.h>
62
#include <linux/entry-kvm.h>
63
#include <linux/suspend.h>
64
#include <linux/smp.h>
65
66
#include <trace/events/ipi.h>
67
#include <trace/events/kvm.h>
68
69
#include <asm/debugreg.h>
70
#include <asm/msr.h>
71
#include <asm/desc.h>
72
#include <asm/mce.h>
73
#include <asm/pkru.h>
74
#include <linux/kernel_stat.h>
75
#include <asm/fpu/api.h>
76
#include <asm/fpu/xcr.h>
77
#include <asm/fpu/xstate.h>
78
#include <asm/pvclock.h>
79
#include <asm/div64.h>
80
#include <asm/irq_remapping.h>
81
#include <asm/mshyperv.h>
82
#include <asm/hypervisor.h>
83
#include <asm/tlbflush.h>
84
#include <asm/intel_pt.h>
85
#include <asm/emulate_prefix.h>
86
#include <asm/sgx.h>
87
#include <clocksource/hyperv_timer.h>
88
89
#define CREATE_TRACE_POINTS
90
#include "trace.h"
91
92
#define MAX_IO_MSRS 256
93
94
/*
95
* Note, kvm_caps fields should *never* have default values, all fields must be
96
* recomputed from scratch during vendor module load, e.g. to account for a
97
* vendor module being reloaded with different module parameters.
98
*/
99
struct kvm_caps kvm_caps __read_mostly;
100
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_caps);
101
102
struct kvm_host_values kvm_host __read_mostly;
103
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_host);
104
105
#define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
106
107
#define emul_to_vcpu(ctxt) \
108
((struct kvm_vcpu *)(ctxt)->vcpu)
109
110
/* EFER defaults:
111
* - enable syscall per default because its emulated by KVM
112
* - enable LME and LMA per default on 64 bit KVM
113
*/
114
#ifdef CONFIG_X86_64
115
static
116
u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
117
#else
118
static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
119
#endif
120
121
#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
122
123
#define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
124
125
#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
126
KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
127
128
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
129
static void process_nmi(struct kvm_vcpu *vcpu);
130
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
131
static void store_regs(struct kvm_vcpu *vcpu);
132
static int sync_regs(struct kvm_vcpu *vcpu);
133
static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
134
135
static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136
static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137
138
static DEFINE_MUTEX(vendor_module_lock);
139
static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
140
static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
141
142
struct kvm_x86_ops kvm_x86_ops __read_mostly;
143
144
#define KVM_X86_OP(func) \
145
DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
146
*(((struct kvm_x86_ops *)0)->func));
147
#define KVM_X86_OP_OPTIONAL KVM_X86_OP
148
#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
149
#include <asm/kvm-x86-ops.h>
150
EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
151
EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
152
153
static bool __read_mostly ignore_msrs = 0;
154
module_param(ignore_msrs, bool, 0644);
155
156
bool __read_mostly report_ignored_msrs = true;
157
module_param(report_ignored_msrs, bool, 0644);
158
EXPORT_SYMBOL_FOR_KVM_INTERNAL(report_ignored_msrs);
159
160
unsigned int min_timer_period_us = 200;
161
module_param(min_timer_period_us, uint, 0644);
162
163
static bool __read_mostly kvmclock_periodic_sync = true;
164
module_param(kvmclock_periodic_sync, bool, 0444);
165
166
/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167
static u32 __read_mostly tsc_tolerance_ppm = 250;
168
module_param(tsc_tolerance_ppm, uint, 0644);
169
170
bool __read_mostly enable_vmware_backdoor = false;
171
module_param(enable_vmware_backdoor, bool, 0444);
172
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_vmware_backdoor);
173
174
/*
175
* Flags to manipulate forced emulation behavior (any non-zero value will
176
* enable forced emulation).
177
*/
178
#define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
179
static int __read_mostly force_emulation_prefix;
180
module_param(force_emulation_prefix, int, 0644);
181
182
int __read_mostly pi_inject_timer = -1;
183
module_param(pi_inject_timer, bint, 0644);
184
185
/* Enable/disable PMU virtualization */
186
bool __read_mostly enable_pmu = true;
187
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_pmu);
188
module_param(enable_pmu, bool, 0444);
189
190
bool __read_mostly eager_page_split = true;
191
module_param(eager_page_split, bool, 0644);
192
193
/* Enable/disable SMT_RSB bug mitigation */
194
static bool __read_mostly mitigate_smt_rsb;
195
module_param(mitigate_smt_rsb, bool, 0444);
196
197
/*
198
* Restoring the host value for MSRs that are only consumed when running in
199
* usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
200
* returns to userspace, i.e. the kernel can run with the guest's value.
201
*/
202
#define KVM_MAX_NR_USER_RETURN_MSRS 16
203
204
struct kvm_user_return_msrs {
205
struct user_return_notifier urn;
206
bool registered;
207
struct kvm_user_return_msr_values {
208
u64 host;
209
u64 curr;
210
} values[KVM_MAX_NR_USER_RETURN_MSRS];
211
};
212
213
u32 __read_mostly kvm_nr_uret_msrs;
214
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_nr_uret_msrs);
215
static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
216
static struct kvm_user_return_msrs __percpu *user_return_msrs;
217
218
#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
219
| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
220
| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
221
| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
222
223
#define XFEATURE_MASK_CET_ALL (XFEATURE_MASK_CET_USER | XFEATURE_MASK_CET_KERNEL)
224
/*
225
* Note, KVM supports exposing PT to the guest, but does not support context
226
* switching PT via XSTATE (KVM's PT virtualization relies on perf; swapping
227
* PT via guest XSTATE would clobber perf state), i.e. KVM doesn't support
228
* IA32_XSS[bit 8] (guests can/must use RDMSR/WRMSR to save/restore PT MSRs).
229
*/
230
#define KVM_SUPPORTED_XSS (XFEATURE_MASK_CET_ALL)
231
232
bool __read_mostly allow_smaller_maxphyaddr = 0;
233
EXPORT_SYMBOL_FOR_KVM_INTERNAL(allow_smaller_maxphyaddr);
234
235
bool __read_mostly enable_apicv = true;
236
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_apicv);
237
238
bool __read_mostly enable_ipiv = true;
239
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_ipiv);
240
241
bool __read_mostly enable_device_posted_irqs = true;
242
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_device_posted_irqs);
243
244
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245
KVM_GENERIC_VM_STATS(),
246
STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247
STATS_DESC_COUNTER(VM, mmu_pte_write),
248
STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249
STATS_DESC_COUNTER(VM, mmu_flooded),
250
STATS_DESC_COUNTER(VM, mmu_recycled),
251
STATS_DESC_COUNTER(VM, mmu_cache_miss),
252
STATS_DESC_ICOUNTER(VM, mmu_unsync),
253
STATS_DESC_ICOUNTER(VM, pages_4k),
254
STATS_DESC_ICOUNTER(VM, pages_2m),
255
STATS_DESC_ICOUNTER(VM, pages_1g),
256
STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257
STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258
STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259
};
260
261
const struct kvm_stats_header kvm_vm_stats_header = {
262
.name_size = KVM_STATS_NAME_SIZE,
263
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264
.id_offset = sizeof(struct kvm_stats_header),
265
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267
sizeof(kvm_vm_stats_desc),
268
};
269
270
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271
KVM_GENERIC_VCPU_STATS(),
272
STATS_DESC_COUNTER(VCPU, pf_taken),
273
STATS_DESC_COUNTER(VCPU, pf_fixed),
274
STATS_DESC_COUNTER(VCPU, pf_emulate),
275
STATS_DESC_COUNTER(VCPU, pf_spurious),
276
STATS_DESC_COUNTER(VCPU, pf_fast),
277
STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278
STATS_DESC_COUNTER(VCPU, pf_guest),
279
STATS_DESC_COUNTER(VCPU, tlb_flush),
280
STATS_DESC_COUNTER(VCPU, invlpg),
281
STATS_DESC_COUNTER(VCPU, exits),
282
STATS_DESC_COUNTER(VCPU, io_exits),
283
STATS_DESC_COUNTER(VCPU, mmio_exits),
284
STATS_DESC_COUNTER(VCPU, signal_exits),
285
STATS_DESC_COUNTER(VCPU, irq_window_exits),
286
STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287
STATS_DESC_COUNTER(VCPU, l1d_flush),
288
STATS_DESC_COUNTER(VCPU, halt_exits),
289
STATS_DESC_COUNTER(VCPU, request_irq_exits),
290
STATS_DESC_COUNTER(VCPU, irq_exits),
291
STATS_DESC_COUNTER(VCPU, host_state_reload),
292
STATS_DESC_COUNTER(VCPU, fpu_reload),
293
STATS_DESC_COUNTER(VCPU, insn_emulation),
294
STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295
STATS_DESC_COUNTER(VCPU, hypercalls),
296
STATS_DESC_COUNTER(VCPU, irq_injections),
297
STATS_DESC_COUNTER(VCPU, nmi_injections),
298
STATS_DESC_COUNTER(VCPU, req_event),
299
STATS_DESC_COUNTER(VCPU, nested_run),
300
STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301
STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302
STATS_DESC_COUNTER(VCPU, preemption_reported),
303
STATS_DESC_COUNTER(VCPU, preemption_other),
304
STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305
STATS_DESC_COUNTER(VCPU, notify_window_exits),
306
};
307
308
const struct kvm_stats_header kvm_vcpu_stats_header = {
309
.name_size = KVM_STATS_NAME_SIZE,
310
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311
.id_offset = sizeof(struct kvm_stats_header),
312
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314
sizeof(kvm_vcpu_stats_desc),
315
};
316
317
static struct kmem_cache *x86_emulator_cache;
318
319
/*
320
* The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
321
* the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
322
* KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
323
* require host support, i.e. should be probed via RDMSR. emulated_msrs holds
324
* MSRs that KVM emulates without strictly requiring host support.
325
* msr_based_features holds MSRs that enumerate features, i.e. are effectively
326
* CPUID leafs. Note, msr_based_features isn't mutually exclusive with
327
* msrs_to_save and emulated_msrs.
328
*/
329
330
static const u32 msrs_to_save_base[] = {
331
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
332
MSR_STAR,
333
#ifdef CONFIG_X86_64
334
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
335
#endif
336
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
337
MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
338
MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
339
MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
340
MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
341
MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
342
MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
343
MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
344
MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
345
MSR_IA32_UMWAIT_CONTROL,
346
347
MSR_IA32_XFD, MSR_IA32_XFD_ERR, MSR_IA32_XSS,
348
349
MSR_IA32_U_CET, MSR_IA32_S_CET,
350
MSR_IA32_PL0_SSP, MSR_IA32_PL1_SSP, MSR_IA32_PL2_SSP,
351
MSR_IA32_PL3_SSP, MSR_IA32_INT_SSP_TAB,
352
};
353
354
static const u32 msrs_to_save_pmu[] = {
355
MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
356
MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
357
MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
358
MSR_CORE_PERF_GLOBAL_CTRL,
359
MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
360
361
/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
362
MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
363
MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
364
MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
365
MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
366
MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
367
MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
368
MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
369
MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
370
371
MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
372
MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
373
374
/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
375
MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
376
MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
377
MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
378
MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
379
380
MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
381
MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
382
MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
383
MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET,
384
};
385
386
static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
387
ARRAY_SIZE(msrs_to_save_pmu)];
388
static unsigned num_msrs_to_save;
389
390
static const u32 emulated_msrs_all[] = {
391
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
392
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
393
394
#ifdef CONFIG_KVM_HYPERV
395
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
396
HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
397
HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
398
HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
399
HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
400
HV_X64_MSR_RESET,
401
HV_X64_MSR_VP_INDEX,
402
HV_X64_MSR_VP_RUNTIME,
403
HV_X64_MSR_SCONTROL,
404
HV_X64_MSR_STIMER0_CONFIG,
405
HV_X64_MSR_VP_ASSIST_PAGE,
406
HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
407
HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
408
HV_X64_MSR_SYNDBG_OPTIONS,
409
HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
410
HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
411
HV_X64_MSR_SYNDBG_PENDING_BUFFER,
412
#endif
413
414
MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
415
MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
416
417
MSR_IA32_TSC_ADJUST,
418
MSR_IA32_TSC_DEADLINE,
419
MSR_IA32_ARCH_CAPABILITIES,
420
MSR_IA32_PERF_CAPABILITIES,
421
MSR_IA32_MISC_ENABLE,
422
MSR_IA32_MCG_STATUS,
423
MSR_IA32_MCG_CTL,
424
MSR_IA32_MCG_EXT_CTL,
425
MSR_IA32_SMBASE,
426
MSR_SMI_COUNT,
427
MSR_PLATFORM_INFO,
428
MSR_MISC_FEATURES_ENABLES,
429
MSR_AMD64_VIRT_SPEC_CTRL,
430
MSR_AMD64_TSC_RATIO,
431
MSR_IA32_POWER_CTL,
432
MSR_IA32_UCODE_REV,
433
434
/*
435
* KVM always supports the "true" VMX control MSRs, even if the host
436
* does not. The VMX MSRs as a whole are considered "emulated" as KVM
437
* doesn't strictly require them to exist in the host (ignoring that
438
* KVM would refuse to load in the first place if the core set of MSRs
439
* aren't supported).
440
*/
441
MSR_IA32_VMX_BASIC,
442
MSR_IA32_VMX_TRUE_PINBASED_CTLS,
443
MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
444
MSR_IA32_VMX_TRUE_EXIT_CTLS,
445
MSR_IA32_VMX_TRUE_ENTRY_CTLS,
446
MSR_IA32_VMX_MISC,
447
MSR_IA32_VMX_CR0_FIXED0,
448
MSR_IA32_VMX_CR4_FIXED0,
449
MSR_IA32_VMX_VMCS_ENUM,
450
MSR_IA32_VMX_PROCBASED_CTLS2,
451
MSR_IA32_VMX_EPT_VPID_CAP,
452
MSR_IA32_VMX_VMFUNC,
453
454
MSR_K7_HWCR,
455
MSR_KVM_POLL_CONTROL,
456
};
457
458
static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
459
static unsigned num_emulated_msrs;
460
461
/*
462
* List of MSRs that control the existence of MSR-based features, i.e. MSRs
463
* that are effectively CPUID leafs. VMX MSRs are also included in the set of
464
* feature MSRs, but are handled separately to allow expedited lookups.
465
*/
466
static const u32 msr_based_features_all_except_vmx[] = {
467
MSR_AMD64_DE_CFG,
468
MSR_IA32_UCODE_REV,
469
MSR_IA32_ARCH_CAPABILITIES,
470
MSR_IA32_PERF_CAPABILITIES,
471
MSR_PLATFORM_INFO,
472
};
473
474
static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
475
(KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
476
static unsigned int num_msr_based_features;
477
478
/*
479
* All feature MSRs except uCode revID, which tracks the currently loaded uCode
480
* patch, are immutable once the vCPU model is defined.
481
*/
482
static bool kvm_is_immutable_feature_msr(u32 msr)
483
{
484
int i;
485
486
if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
487
return true;
488
489
for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
490
if (msr == msr_based_features_all_except_vmx[i])
491
return msr != MSR_IA32_UCODE_REV;
492
}
493
494
return false;
495
}
496
497
static bool kvm_is_advertised_msr(u32 msr_index)
498
{
499
unsigned int i;
500
501
for (i = 0; i < num_msrs_to_save; i++) {
502
if (msrs_to_save[i] == msr_index)
503
return true;
504
}
505
506
for (i = 0; i < num_emulated_msrs; i++) {
507
if (emulated_msrs[i] == msr_index)
508
return true;
509
}
510
511
return false;
512
}
513
514
typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
515
bool host_initiated);
516
517
static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
518
u64 *data, bool host_initiated,
519
enum kvm_msr_access rw,
520
msr_access_t msr_access_fn)
521
{
522
const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
523
int ret;
524
525
BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
526
527
/*
528
* Zero the data on read failures to avoid leaking stack data to the
529
* guest and/or userspace, e.g. if the failure is ignored below.
530
*/
531
ret = msr_access_fn(vcpu, msr, data, host_initiated);
532
if (ret && rw == MSR_TYPE_R)
533
*data = 0;
534
535
if (ret != KVM_MSR_RET_UNSUPPORTED)
536
return ret;
537
538
/*
539
* Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
540
* advertises to userspace, even if an MSR isn't fully supported.
541
* Simply check that @data is '0', which covers both the write '0' case
542
* and all reads (in which case @data is zeroed on failure; see above).
543
*/
544
if (host_initiated && !*data && kvm_is_advertised_msr(msr))
545
return 0;
546
547
if (!ignore_msrs) {
548
kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
549
op, msr, *data);
550
return ret;
551
}
552
553
if (report_ignored_msrs)
554
kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
555
556
return 0;
557
}
558
559
static struct kmem_cache *kvm_alloc_emulator_cache(void)
560
{
561
unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
562
unsigned int size = sizeof(struct x86_emulate_ctxt);
563
564
return kmem_cache_create_usercopy("x86_emulator", size,
565
__alignof__(struct x86_emulate_ctxt),
566
SLAB_ACCOUNT, useroffset,
567
size - useroffset, NULL);
568
}
569
570
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
571
572
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
573
{
574
int i;
575
for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
576
vcpu->arch.apf.gfns[i] = ~0;
577
}
578
579
static void kvm_on_user_return(struct user_return_notifier *urn)
580
{
581
unsigned slot;
582
struct kvm_user_return_msrs *msrs
583
= container_of(urn, struct kvm_user_return_msrs, urn);
584
struct kvm_user_return_msr_values *values;
585
unsigned long flags;
586
587
/*
588
* Disabling irqs at this point since the following code could be
589
* interrupted and executed through kvm_arch_disable_virtualization_cpu()
590
*/
591
local_irq_save(flags);
592
if (msrs->registered) {
593
msrs->registered = false;
594
user_return_notifier_unregister(urn);
595
}
596
local_irq_restore(flags);
597
for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
598
values = &msrs->values[slot];
599
if (values->host != values->curr) {
600
wrmsrq(kvm_uret_msrs_list[slot], values->host);
601
values->curr = values->host;
602
}
603
}
604
}
605
606
static int kvm_probe_user_return_msr(u32 msr)
607
{
608
u64 val;
609
int ret;
610
611
preempt_disable();
612
ret = rdmsrq_safe(msr, &val);
613
if (ret)
614
goto out;
615
ret = wrmsrq_safe(msr, val);
616
out:
617
preempt_enable();
618
return ret;
619
}
620
621
int kvm_add_user_return_msr(u32 msr)
622
{
623
BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
624
625
if (kvm_probe_user_return_msr(msr))
626
return -1;
627
628
kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
629
return kvm_nr_uret_msrs++;
630
}
631
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_add_user_return_msr);
632
633
int kvm_find_user_return_msr(u32 msr)
634
{
635
int i;
636
637
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
638
if (kvm_uret_msrs_list[i] == msr)
639
return i;
640
}
641
return -1;
642
}
643
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_user_return_msr);
644
645
static void kvm_user_return_msr_cpu_online(void)
646
{
647
struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
648
u64 value;
649
int i;
650
651
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
652
rdmsrq_safe(kvm_uret_msrs_list[i], &value);
653
msrs->values[i].host = value;
654
msrs->values[i].curr = value;
655
}
656
}
657
658
static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
659
{
660
if (!msrs->registered) {
661
msrs->urn.on_user_return = kvm_on_user_return;
662
user_return_notifier_register(&msrs->urn);
663
msrs->registered = true;
664
}
665
}
666
667
int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
668
{
669
struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
670
int err;
671
672
value = (value & mask) | (msrs->values[slot].host & ~mask);
673
if (value == msrs->values[slot].curr)
674
return 0;
675
err = wrmsrq_safe(kvm_uret_msrs_list[slot], value);
676
if (err)
677
return 1;
678
679
msrs->values[slot].curr = value;
680
kvm_user_return_register_notifier(msrs);
681
return 0;
682
}
683
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_user_return_msr);
684
685
void kvm_user_return_msr_update_cache(unsigned int slot, u64 value)
686
{
687
struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
688
689
msrs->values[slot].curr = value;
690
kvm_user_return_register_notifier(msrs);
691
}
692
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_user_return_msr_update_cache);
693
694
u64 kvm_get_user_return_msr(unsigned int slot)
695
{
696
return this_cpu_ptr(user_return_msrs)->values[slot].curr;
697
}
698
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_user_return_msr);
699
700
static void drop_user_return_notifiers(void)
701
{
702
struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
703
704
if (msrs->registered)
705
kvm_on_user_return(&msrs->urn);
706
}
707
708
/*
709
* Handle a fault on a hardware virtualization (VMX or SVM) instruction.
710
*
711
* Hardware virtualization extension instructions may fault if a reboot turns
712
* off virtualization while processes are running. Usually after catching the
713
* fault we just panic; during reboot instead the instruction is ignored.
714
*/
715
noinstr void kvm_spurious_fault(void)
716
{
717
/* Fault while not rebooting. We want the trace. */
718
BUG_ON(!kvm_rebooting);
719
}
720
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spurious_fault);
721
722
#define EXCPT_BENIGN 0
723
#define EXCPT_CONTRIBUTORY 1
724
#define EXCPT_PF 2
725
726
static int exception_class(int vector)
727
{
728
switch (vector) {
729
case PF_VECTOR:
730
return EXCPT_PF;
731
case DE_VECTOR:
732
case TS_VECTOR:
733
case NP_VECTOR:
734
case SS_VECTOR:
735
case GP_VECTOR:
736
return EXCPT_CONTRIBUTORY;
737
default:
738
break;
739
}
740
return EXCPT_BENIGN;
741
}
742
743
#define EXCPT_FAULT 0
744
#define EXCPT_TRAP 1
745
#define EXCPT_ABORT 2
746
#define EXCPT_INTERRUPT 3
747
#define EXCPT_DB 4
748
749
static int exception_type(int vector)
750
{
751
unsigned int mask;
752
753
if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
754
return EXCPT_INTERRUPT;
755
756
mask = 1 << vector;
757
758
/*
759
* #DBs can be trap-like or fault-like, the caller must check other CPU
760
* state, e.g. DR6, to determine whether a #DB is a trap or fault.
761
*/
762
if (mask & (1 << DB_VECTOR))
763
return EXCPT_DB;
764
765
if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
766
return EXCPT_TRAP;
767
768
if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
769
return EXCPT_ABORT;
770
771
/* Reserved exceptions will result in fault */
772
return EXCPT_FAULT;
773
}
774
775
void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
776
struct kvm_queued_exception *ex)
777
{
778
if (!ex->has_payload)
779
return;
780
781
switch (ex->vector) {
782
case DB_VECTOR:
783
/*
784
* "Certain debug exceptions may clear bit 0-3. The
785
* remaining contents of the DR6 register are never
786
* cleared by the processor".
787
*/
788
vcpu->arch.dr6 &= ~DR_TRAP_BITS;
789
/*
790
* In order to reflect the #DB exception payload in guest
791
* dr6, three components need to be considered: active low
792
* bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
793
* DR6_BS and DR6_BT)
794
* DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
795
* In the target guest dr6:
796
* FIXED_1 bits should always be set.
797
* Active low bits should be cleared if 1-setting in payload.
798
* Active high bits should be set if 1-setting in payload.
799
*
800
* Note, the payload is compatible with the pending debug
801
* exceptions/exit qualification under VMX, that active_low bits
802
* are active high in payload.
803
* So they need to be flipped for DR6.
804
*/
805
vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
806
vcpu->arch.dr6 |= ex->payload;
807
vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
808
809
/*
810
* The #DB payload is defined as compatible with the 'pending
811
* debug exceptions' field under VMX, not DR6. While bit 12 is
812
* defined in the 'pending debug exceptions' field (enabled
813
* breakpoint), it is reserved and must be zero in DR6.
814
*/
815
vcpu->arch.dr6 &= ~BIT(12);
816
break;
817
case PF_VECTOR:
818
vcpu->arch.cr2 = ex->payload;
819
break;
820
}
821
822
ex->has_payload = false;
823
ex->payload = 0;
824
}
825
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_deliver_exception_payload);
826
827
static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
828
bool has_error_code, u32 error_code,
829
bool has_payload, unsigned long payload)
830
{
831
struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
832
833
ex->vector = vector;
834
ex->injected = false;
835
ex->pending = true;
836
ex->has_error_code = has_error_code;
837
ex->error_code = error_code;
838
ex->has_payload = has_payload;
839
ex->payload = payload;
840
}
841
842
static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
843
bool has_error, u32 error_code,
844
bool has_payload, unsigned long payload)
845
{
846
u32 prev_nr;
847
int class1, class2;
848
849
kvm_make_request(KVM_REQ_EVENT, vcpu);
850
851
/*
852
* If the exception is destined for L2, morph it to a VM-Exit if L1
853
* wants to intercept the exception.
854
*/
855
if (is_guest_mode(vcpu) &&
856
kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
857
kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
858
has_payload, payload);
859
return;
860
}
861
862
if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
863
queue:
864
vcpu->arch.exception.pending = true;
865
vcpu->arch.exception.injected = false;
866
867
vcpu->arch.exception.has_error_code = has_error;
868
vcpu->arch.exception.vector = nr;
869
vcpu->arch.exception.error_code = error_code;
870
vcpu->arch.exception.has_payload = has_payload;
871
vcpu->arch.exception.payload = payload;
872
if (!is_guest_mode(vcpu))
873
kvm_deliver_exception_payload(vcpu,
874
&vcpu->arch.exception);
875
return;
876
}
877
878
/* to check exception */
879
prev_nr = vcpu->arch.exception.vector;
880
if (prev_nr == DF_VECTOR) {
881
/* triple fault -> shutdown */
882
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
883
return;
884
}
885
class1 = exception_class(prev_nr);
886
class2 = exception_class(nr);
887
if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
888
(class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
889
/*
890
* Synthesize #DF. Clear the previously injected or pending
891
* exception so as not to incorrectly trigger shutdown.
892
*/
893
vcpu->arch.exception.injected = false;
894
vcpu->arch.exception.pending = false;
895
896
kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
897
} else {
898
/* replace previous exception with a new one in a hope
899
that instruction re-execution will regenerate lost
900
exception */
901
goto queue;
902
}
903
}
904
905
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
906
{
907
kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
908
}
909
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception);
910
911
912
void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
913
unsigned long payload)
914
{
915
kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
916
}
917
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_p);
918
919
static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
920
u32 error_code, unsigned long payload)
921
{
922
kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
923
}
924
925
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
926
bool has_error_code, u32 error_code)
927
{
928
929
/*
930
* On VM-Entry, an exception can be pending if and only if event
931
* injection was blocked by nested_run_pending. In that case, however,
932
* vcpu_enter_guest() requests an immediate exit, and the guest
933
* shouldn't proceed far enough to need reinjection.
934
*/
935
WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
936
937
/*
938
* Do not check for interception when injecting an event for L2, as the
939
* exception was checked for intercept when it was original queued, and
940
* re-checking is incorrect if _L1_ injected the exception, in which
941
* case it's exempt from interception.
942
*/
943
kvm_make_request(KVM_REQ_EVENT, vcpu);
944
945
vcpu->arch.exception.injected = true;
946
vcpu->arch.exception.has_error_code = has_error_code;
947
vcpu->arch.exception.vector = nr;
948
vcpu->arch.exception.error_code = error_code;
949
vcpu->arch.exception.has_payload = false;
950
vcpu->arch.exception.payload = 0;
951
}
952
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_requeue_exception);
953
954
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
955
{
956
if (err)
957
kvm_inject_gp(vcpu, 0);
958
else
959
return kvm_skip_emulated_instruction(vcpu);
960
961
return 1;
962
}
963
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_complete_insn_gp);
964
965
static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
966
{
967
if (err) {
968
kvm_inject_gp(vcpu, 0);
969
return 1;
970
}
971
972
return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
973
EMULTYPE_COMPLETE_USER_EXIT);
974
}
975
976
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
977
{
978
++vcpu->stat.pf_guest;
979
980
/*
981
* Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
982
* whether or not L1 wants to intercept "regular" #PF.
983
*/
984
if (is_guest_mode(vcpu) && fault->async_page_fault)
985
kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
986
true, fault->error_code,
987
true, fault->address);
988
else
989
kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
990
fault->address);
991
}
992
993
void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
994
struct x86_exception *fault)
995
{
996
struct kvm_mmu *fault_mmu;
997
WARN_ON_ONCE(fault->vector != PF_VECTOR);
998
999
fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
1000
vcpu->arch.walk_mmu;
1001
1002
/*
1003
* Invalidate the TLB entry for the faulting address, if it exists,
1004
* else the access will fault indefinitely (and to emulate hardware).
1005
*/
1006
if ((fault->error_code & PFERR_PRESENT_MASK) &&
1007
!(fault->error_code & PFERR_RSVD_MASK))
1008
kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
1009
KVM_MMU_ROOT_CURRENT);
1010
1011
fault_mmu->inject_page_fault(vcpu, fault);
1012
}
1013
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_emulated_page_fault);
1014
1015
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
1016
{
1017
atomic_inc(&vcpu->arch.nmi_queued);
1018
kvm_make_request(KVM_REQ_NMI, vcpu);
1019
}
1020
1021
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1022
{
1023
kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
1024
}
1025
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_e);
1026
1027
/*
1028
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
1029
* a #GP and return false.
1030
*/
1031
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1032
{
1033
if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1034
return true;
1035
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1036
return false;
1037
}
1038
1039
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1040
{
1041
if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1042
return true;
1043
1044
kvm_queue_exception(vcpu, UD_VECTOR);
1045
return false;
1046
}
1047
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_require_dr);
1048
1049
static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1050
{
1051
return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1052
}
1053
1054
/*
1055
* Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1056
*/
1057
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1058
{
1059
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1060
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1061
gpa_t real_gpa;
1062
int i;
1063
int ret;
1064
u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1065
1066
/*
1067
* If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1068
* to an L1 GPA.
1069
*/
1070
real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1071
PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1072
if (real_gpa == INVALID_GPA)
1073
return 0;
1074
1075
/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1076
ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1077
cr3 & GENMASK(11, 5), sizeof(pdpte));
1078
if (ret < 0)
1079
return 0;
1080
1081
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1082
if ((pdpte[i] & PT_PRESENT_MASK) &&
1083
(pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1084
return 0;
1085
}
1086
}
1087
1088
/*
1089
* Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1090
* Shadow page roots need to be reconstructed instead.
1091
*/
1092
if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1093
kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1094
1095
memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1096
kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1097
kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1098
vcpu->arch.pdptrs_from_userspace = false;
1099
1100
return 1;
1101
}
1102
EXPORT_SYMBOL_FOR_KVM_INTERNAL(load_pdptrs);
1103
1104
static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1105
{
1106
#ifdef CONFIG_X86_64
1107
if (cr0 & 0xffffffff00000000UL)
1108
return false;
1109
#endif
1110
1111
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1112
return false;
1113
1114
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1115
return false;
1116
1117
return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1118
}
1119
1120
void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1121
{
1122
/*
1123
* CR0.WP is incorporated into the MMU role, but only for non-nested,
1124
* indirect shadow MMUs. If paging is disabled, no updates are needed
1125
* as there are no permission bits to emulate. If TDP is enabled, the
1126
* MMU's metadata needs to be updated, e.g. so that emulating guest
1127
* translations does the right thing, but there's no need to unload the
1128
* root as CR0.WP doesn't affect SPTEs.
1129
*/
1130
if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1131
if (!(cr0 & X86_CR0_PG))
1132
return;
1133
1134
if (tdp_enabled) {
1135
kvm_init_mmu(vcpu);
1136
return;
1137
}
1138
}
1139
1140
if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1141
kvm_clear_async_pf_completion_queue(vcpu);
1142
kvm_async_pf_hash_reset(vcpu);
1143
1144
/*
1145
* Clearing CR0.PG is defined to flush the TLB from the guest's
1146
* perspective.
1147
*/
1148
if (!(cr0 & X86_CR0_PG))
1149
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1150
}
1151
1152
if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1153
kvm_mmu_reset_context(vcpu);
1154
}
1155
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr0);
1156
1157
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1158
{
1159
unsigned long old_cr0 = kvm_read_cr0(vcpu);
1160
1161
if (!kvm_is_valid_cr0(vcpu, cr0))
1162
return 1;
1163
1164
cr0 |= X86_CR0_ET;
1165
1166
/* Write to CR0 reserved bits are ignored, even on Intel. */
1167
cr0 &= ~CR0_RESERVED_BITS;
1168
1169
#ifdef CONFIG_X86_64
1170
if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1171
(cr0 & X86_CR0_PG)) {
1172
int cs_db, cs_l;
1173
1174
if (!is_pae(vcpu))
1175
return 1;
1176
kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1177
if (cs_l)
1178
return 1;
1179
}
1180
#endif
1181
if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1182
is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1183
!load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1184
return 1;
1185
1186
if (!(cr0 & X86_CR0_PG) &&
1187
(is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1188
return 1;
1189
1190
if (!(cr0 & X86_CR0_WP) && kvm_is_cr4_bit_set(vcpu, X86_CR4_CET))
1191
return 1;
1192
1193
kvm_x86_call(set_cr0)(vcpu, cr0);
1194
1195
kvm_post_set_cr0(vcpu, old_cr0, cr0);
1196
1197
return 0;
1198
}
1199
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr0);
1200
1201
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1202
{
1203
(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1204
}
1205
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lmsw);
1206
1207
void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1208
{
1209
if (vcpu->arch.guest_state_protected)
1210
return;
1211
1212
if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1213
1214
if (vcpu->arch.xcr0 != kvm_host.xcr0)
1215
xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1216
1217
if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1218
vcpu->arch.ia32_xss != kvm_host.xss)
1219
wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1220
}
1221
1222
if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1223
vcpu->arch.pkru != vcpu->arch.host_pkru &&
1224
((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1225
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1226
wrpkru(vcpu->arch.pkru);
1227
}
1228
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_guest_xsave_state);
1229
1230
void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1231
{
1232
if (vcpu->arch.guest_state_protected)
1233
return;
1234
1235
if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1236
((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1237
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1238
vcpu->arch.pkru = rdpkru();
1239
if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1240
wrpkru(vcpu->arch.host_pkru);
1241
}
1242
1243
if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1244
1245
if (vcpu->arch.xcr0 != kvm_host.xcr0)
1246
xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1247
1248
if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1249
vcpu->arch.ia32_xss != kvm_host.xss)
1250
wrmsrq(MSR_IA32_XSS, kvm_host.xss);
1251
}
1252
1253
}
1254
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_host_xsave_state);
1255
1256
#ifdef CONFIG_X86_64
1257
static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1258
{
1259
return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1260
}
1261
#endif
1262
1263
int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1264
{
1265
u64 xcr0 = xcr;
1266
u64 old_xcr0 = vcpu->arch.xcr0;
1267
u64 valid_bits;
1268
1269
/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1270
if (index != XCR_XFEATURE_ENABLED_MASK)
1271
return 1;
1272
if (!(xcr0 & XFEATURE_MASK_FP))
1273
return 1;
1274
if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1275
return 1;
1276
1277
/*
1278
* Do not allow the guest to set bits that we do not support
1279
* saving. However, xcr0 bit 0 is always set, even if the
1280
* emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1281
*/
1282
valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1283
if (xcr0 & ~valid_bits)
1284
return 1;
1285
1286
if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1287
(!(xcr0 & XFEATURE_MASK_BNDCSR)))
1288
return 1;
1289
1290
if (xcr0 & XFEATURE_MASK_AVX512) {
1291
if (!(xcr0 & XFEATURE_MASK_YMM))
1292
return 1;
1293
if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1294
return 1;
1295
}
1296
1297
if ((xcr0 & XFEATURE_MASK_XTILE) &&
1298
((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1299
return 1;
1300
1301
vcpu->arch.xcr0 = xcr0;
1302
1303
if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1304
vcpu->arch.cpuid_dynamic_bits_dirty = true;
1305
return 0;
1306
}
1307
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_set_xcr);
1308
1309
int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1310
{
1311
/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1312
if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1313
__kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1314
kvm_inject_gp(vcpu, 0);
1315
return 1;
1316
}
1317
1318
return kvm_skip_emulated_instruction(vcpu);
1319
}
1320
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_xsetbv);
1321
1322
static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1323
{
1324
return __kvm_is_valid_cr4(vcpu, cr4) &&
1325
kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1326
}
1327
1328
void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1329
{
1330
if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1331
kvm_mmu_reset_context(vcpu);
1332
1333
/*
1334
* If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1335
* according to the SDM; however, stale prev_roots could be reused
1336
* incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1337
* free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1338
* or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1339
* so fall through.
1340
*/
1341
if (!tdp_enabled &&
1342
(cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1343
kvm_mmu_unload(vcpu);
1344
1345
/*
1346
* The TLB has to be flushed for all PCIDs if any of the following
1347
* (architecturally required) changes happen:
1348
* - CR4.PCIDE is changed from 1 to 0
1349
* - CR4.PGE is toggled
1350
*
1351
* This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1352
*/
1353
if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1354
(!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1355
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1356
1357
/*
1358
* The TLB has to be flushed for the current PCID if any of the
1359
* following (architecturally required) changes happen:
1360
* - CR4.SMEP is changed from 0 to 1
1361
* - CR4.PAE is toggled
1362
*/
1363
else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1364
((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1365
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1366
1367
}
1368
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr4);
1369
1370
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1371
{
1372
unsigned long old_cr4 = kvm_read_cr4(vcpu);
1373
1374
if (!kvm_is_valid_cr4(vcpu, cr4))
1375
return 1;
1376
1377
if (is_long_mode(vcpu)) {
1378
if (!(cr4 & X86_CR4_PAE))
1379
return 1;
1380
if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1381
return 1;
1382
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1383
&& ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1384
&& !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1385
return 1;
1386
1387
if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1388
/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1389
if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1390
return 1;
1391
}
1392
1393
if ((cr4 & X86_CR4_CET) && !kvm_is_cr0_bit_set(vcpu, X86_CR0_WP))
1394
return 1;
1395
1396
kvm_x86_call(set_cr4)(vcpu, cr4);
1397
1398
kvm_post_set_cr4(vcpu, old_cr4, cr4);
1399
1400
return 0;
1401
}
1402
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr4);
1403
1404
static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1405
{
1406
struct kvm_mmu *mmu = vcpu->arch.mmu;
1407
unsigned long roots_to_free = 0;
1408
int i;
1409
1410
/*
1411
* MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1412
* this is reachable when running EPT=1 and unrestricted_guest=0, and
1413
* also via the emulator. KVM's TDP page tables are not in the scope of
1414
* the invalidation, but the guest's TLB entries need to be flushed as
1415
* the CPU may have cached entries in its TLB for the target PCID.
1416
*/
1417
if (unlikely(tdp_enabled)) {
1418
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1419
return;
1420
}
1421
1422
/*
1423
* If neither the current CR3 nor any of the prev_roots use the given
1424
* PCID, then nothing needs to be done here because a resync will
1425
* happen anyway before switching to any other CR3.
1426
*/
1427
if (kvm_get_active_pcid(vcpu) == pcid) {
1428
kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1429
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1430
}
1431
1432
/*
1433
* If PCID is disabled, there is no need to free prev_roots even if the
1434
* PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1435
* with PCIDE=0.
1436
*/
1437
if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1438
return;
1439
1440
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1441
if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1442
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1443
1444
kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1445
}
1446
1447
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1448
{
1449
bool skip_tlb_flush = false;
1450
unsigned long pcid = 0;
1451
#ifdef CONFIG_X86_64
1452
if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1453
skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1454
cr3 &= ~X86_CR3_PCID_NOFLUSH;
1455
pcid = cr3 & X86_CR3_PCID_MASK;
1456
}
1457
#endif
1458
1459
/* PDPTRs are always reloaded for PAE paging. */
1460
if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1461
goto handle_tlb_flush;
1462
1463
/*
1464
* Do not condition the GPA check on long mode, this helper is used to
1465
* stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1466
* the current vCPU mode is accurate.
1467
*/
1468
if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1469
return 1;
1470
1471
if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1472
return 1;
1473
1474
if (cr3 != kvm_read_cr3(vcpu))
1475
kvm_mmu_new_pgd(vcpu, cr3);
1476
1477
vcpu->arch.cr3 = cr3;
1478
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1479
/* Do not call post_set_cr3, we do not get here for confidential guests. */
1480
1481
handle_tlb_flush:
1482
/*
1483
* A load of CR3 that flushes the TLB flushes only the current PCID,
1484
* even if PCID is disabled, in which case PCID=0 is flushed. It's a
1485
* moot point in the end because _disabling_ PCID will flush all PCIDs,
1486
* and it's impossible to use a non-zero PCID when PCID is disabled,
1487
* i.e. only PCID=0 can be relevant.
1488
*/
1489
if (!skip_tlb_flush)
1490
kvm_invalidate_pcid(vcpu, pcid);
1491
1492
return 0;
1493
}
1494
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr3);
1495
1496
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1497
{
1498
if (cr8 & CR8_RESERVED_BITS)
1499
return 1;
1500
if (lapic_in_kernel(vcpu))
1501
kvm_lapic_set_tpr(vcpu, cr8);
1502
else
1503
vcpu->arch.cr8 = cr8;
1504
return 0;
1505
}
1506
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr8);
1507
1508
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1509
{
1510
if (lapic_in_kernel(vcpu))
1511
return kvm_lapic_get_cr8(vcpu);
1512
else
1513
return vcpu->arch.cr8;
1514
}
1515
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_cr8);
1516
1517
static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1518
{
1519
int i;
1520
1521
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1522
for (i = 0; i < KVM_NR_DB_REGS; i++)
1523
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1524
}
1525
}
1526
1527
void kvm_update_dr7(struct kvm_vcpu *vcpu)
1528
{
1529
unsigned long dr7;
1530
1531
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1532
dr7 = vcpu->arch.guest_debug_dr7;
1533
else
1534
dr7 = vcpu->arch.dr7;
1535
kvm_x86_call(set_dr7)(vcpu, dr7);
1536
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1537
if (dr7 & DR7_BP_EN_MASK)
1538
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1539
}
1540
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_update_dr7);
1541
1542
static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1543
{
1544
u64 fixed = DR6_FIXED_1;
1545
1546
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1547
fixed |= DR6_RTM;
1548
1549
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1550
fixed |= DR6_BUS_LOCK;
1551
return fixed;
1552
}
1553
1554
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1555
{
1556
size_t size = ARRAY_SIZE(vcpu->arch.db);
1557
1558
switch (dr) {
1559
case 0 ... 3:
1560
vcpu->arch.db[array_index_nospec(dr, size)] = val;
1561
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1562
vcpu->arch.eff_db[dr] = val;
1563
break;
1564
case 4:
1565
case 6:
1566
if (!kvm_dr6_valid(val))
1567
return 1; /* #GP */
1568
vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1569
break;
1570
case 5:
1571
default: /* 7 */
1572
if (!kvm_dr7_valid(val))
1573
return 1; /* #GP */
1574
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1575
kvm_update_dr7(vcpu);
1576
break;
1577
}
1578
1579
return 0;
1580
}
1581
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_dr);
1582
1583
unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1584
{
1585
size_t size = ARRAY_SIZE(vcpu->arch.db);
1586
1587
switch (dr) {
1588
case 0 ... 3:
1589
return vcpu->arch.db[array_index_nospec(dr, size)];
1590
case 4:
1591
case 6:
1592
return vcpu->arch.dr6;
1593
case 5:
1594
default: /* 7 */
1595
return vcpu->arch.dr7;
1596
}
1597
}
1598
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dr);
1599
1600
int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1601
{
1602
u32 pmc = kvm_rcx_read(vcpu);
1603
u64 data;
1604
1605
if (kvm_pmu_rdpmc(vcpu, pmc, &data)) {
1606
kvm_inject_gp(vcpu, 0);
1607
return 1;
1608
}
1609
1610
kvm_rax_write(vcpu, (u32)data);
1611
kvm_rdx_write(vcpu, data >> 32);
1612
return kvm_skip_emulated_instruction(vcpu);
1613
}
1614
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdpmc);
1615
1616
/*
1617
* Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1618
* does not yet virtualize. These include:
1619
* 10 - MISC_PACKAGE_CTRLS
1620
* 11 - ENERGY_FILTERING_CTL
1621
* 12 - DOITM
1622
* 18 - FB_CLEAR_CTRL
1623
* 21 - XAPIC_DISABLE_STATUS
1624
* 23 - OVERCLOCKING_STATUS
1625
*/
1626
1627
#define KVM_SUPPORTED_ARCH_CAP \
1628
(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1629
ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1630
ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1631
ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1632
ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1633
ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1634
1635
static u64 kvm_get_arch_capabilities(void)
1636
{
1637
u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1638
1639
/*
1640
* If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1641
* the nested hypervisor runs with NX huge pages. If it is not,
1642
* L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1643
* L1 guests, so it need not worry about its own (L2) guests.
1644
*/
1645
data |= ARCH_CAP_PSCHANGE_MC_NO;
1646
1647
/*
1648
* If we're doing cache flushes (either "always" or "cond")
1649
* we will do one whenever the guest does a vmlaunch/vmresume.
1650
* If an outer hypervisor is doing the cache flush for us
1651
* (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1652
* capability to the guest too, and if EPT is disabled we're not
1653
* vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1654
* require a nested hypervisor to do a flush of its own.
1655
*/
1656
if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1657
data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1658
1659
if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1660
data |= ARCH_CAP_RDCL_NO;
1661
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1662
data |= ARCH_CAP_SSB_NO;
1663
if (!boot_cpu_has_bug(X86_BUG_MDS))
1664
data |= ARCH_CAP_MDS_NO;
1665
if (!boot_cpu_has_bug(X86_BUG_RFDS))
1666
data |= ARCH_CAP_RFDS_NO;
1667
if (!boot_cpu_has_bug(X86_BUG_ITS))
1668
data |= ARCH_CAP_ITS_NO;
1669
1670
if (!boot_cpu_has(X86_FEATURE_RTM)) {
1671
/*
1672
* If RTM=0 because the kernel has disabled TSX, the host might
1673
* have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1674
* and therefore knows that there cannot be TAA) but keep
1675
* TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1676
* and we want to allow migrating those guests to tsx=off hosts.
1677
*/
1678
data &= ~ARCH_CAP_TAA_NO;
1679
} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1680
data |= ARCH_CAP_TAA_NO;
1681
} else {
1682
/*
1683
* Nothing to do here; we emulate TSX_CTRL if present on the
1684
* host so the guest can choose between disabling TSX or
1685
* using VERW to clear CPU buffers.
1686
*/
1687
}
1688
1689
if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1690
data |= ARCH_CAP_GDS_NO;
1691
1692
return data;
1693
}
1694
1695
static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1696
bool host_initiated)
1697
{
1698
WARN_ON_ONCE(!host_initiated);
1699
1700
switch (index) {
1701
case MSR_IA32_ARCH_CAPABILITIES:
1702
*data = kvm_get_arch_capabilities();
1703
break;
1704
case MSR_IA32_PERF_CAPABILITIES:
1705
*data = kvm_caps.supported_perf_cap;
1706
break;
1707
case MSR_PLATFORM_INFO:
1708
*data = MSR_PLATFORM_INFO_CPUID_FAULT;
1709
break;
1710
case MSR_IA32_UCODE_REV:
1711
rdmsrq_safe(index, data);
1712
break;
1713
default:
1714
return kvm_x86_call(get_feature_msr)(index, data);
1715
}
1716
return 0;
1717
}
1718
1719
static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1720
{
1721
return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1722
kvm_get_feature_msr);
1723
}
1724
1725
static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726
{
1727
if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1728
return false;
1729
1730
if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1731
return false;
1732
1733
if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1734
return false;
1735
1736
if (efer & (EFER_LME | EFER_LMA) &&
1737
!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1738
return false;
1739
1740
if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1741
return false;
1742
1743
return true;
1744
1745
}
1746
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747
{
1748
if (efer & efer_reserved_bits)
1749
return false;
1750
1751
return __kvm_valid_efer(vcpu, efer);
1752
}
1753
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_valid_efer);
1754
1755
static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756
{
1757
u64 old_efer = vcpu->arch.efer;
1758
u64 efer = msr_info->data;
1759
int r;
1760
1761
if (efer & efer_reserved_bits)
1762
return 1;
1763
1764
if (!msr_info->host_initiated) {
1765
if (!__kvm_valid_efer(vcpu, efer))
1766
return 1;
1767
1768
if (is_paging(vcpu) &&
1769
(vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770
return 1;
1771
}
1772
1773
efer &= ~EFER_LMA;
1774
efer |= vcpu->arch.efer & EFER_LMA;
1775
1776
r = kvm_x86_call(set_efer)(vcpu, efer);
1777
if (r) {
1778
WARN_ON(r > 0);
1779
return r;
1780
}
1781
1782
if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783
kvm_mmu_reset_context(vcpu);
1784
1785
if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1786
(efer & EFER_SVME))
1787
kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1788
1789
return 0;
1790
}
1791
1792
void kvm_enable_efer_bits(u64 mask)
1793
{
1794
efer_reserved_bits &= ~mask;
1795
}
1796
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_efer_bits);
1797
1798
bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1799
{
1800
struct kvm_x86_msr_filter *msr_filter;
1801
struct msr_bitmap_range *ranges;
1802
struct kvm *kvm = vcpu->kvm;
1803
bool allowed;
1804
int idx;
1805
u32 i;
1806
1807
/* x2APIC MSRs do not support filtering. */
1808
if (index >= 0x800 && index <= 0x8ff)
1809
return true;
1810
1811
idx = srcu_read_lock(&kvm->srcu);
1812
1813
msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1814
if (!msr_filter) {
1815
allowed = true;
1816
goto out;
1817
}
1818
1819
allowed = msr_filter->default_allow;
1820
ranges = msr_filter->ranges;
1821
1822
for (i = 0; i < msr_filter->count; i++) {
1823
u32 start = ranges[i].base;
1824
u32 end = start + ranges[i].nmsrs;
1825
u32 flags = ranges[i].flags;
1826
unsigned long *bitmap = ranges[i].bitmap;
1827
1828
if ((index >= start) && (index < end) && (flags & type)) {
1829
allowed = test_bit(index - start, bitmap);
1830
break;
1831
}
1832
}
1833
1834
out:
1835
srcu_read_unlock(&kvm->srcu, idx);
1836
1837
return allowed;
1838
}
1839
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_msr_allowed);
1840
1841
/*
1842
* Write @data into the MSR specified by @index. Select MSR specific fault
1843
* checks are bypassed if @host_initiated is %true.
1844
* Returns 0 on success, non-0 otherwise.
1845
* Assumes vcpu_load() was already called.
1846
*/
1847
static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1848
bool host_initiated)
1849
{
1850
struct msr_data msr;
1851
1852
switch (index) {
1853
case MSR_FS_BASE:
1854
case MSR_GS_BASE:
1855
case MSR_KERNEL_GS_BASE:
1856
case MSR_CSTAR:
1857
case MSR_LSTAR:
1858
if (is_noncanonical_msr_address(data, vcpu))
1859
return 1;
1860
break;
1861
case MSR_IA32_SYSENTER_EIP:
1862
case MSR_IA32_SYSENTER_ESP:
1863
/*
1864
* IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1865
* non-canonical address is written on Intel but not on
1866
* AMD (which ignores the top 32-bits, because it does
1867
* not implement 64-bit SYSENTER).
1868
*
1869
* 64-bit code should hence be able to write a non-canonical
1870
* value on AMD. Making the address canonical ensures that
1871
* vmentry does not fail on Intel after writing a non-canonical
1872
* value, and that something deterministic happens if the guest
1873
* invokes 64-bit SYSENTER.
1874
*/
1875
data = __canonical_address(data, max_host_virt_addr_bits());
1876
break;
1877
case MSR_TSC_AUX:
1878
if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1879
return 1;
1880
1881
if (!host_initiated &&
1882
!guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1883
!guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1884
return 1;
1885
1886
/*
1887
* Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1888
* incomplete and conflicting architectural behavior. Current
1889
* AMD CPUs completely ignore bits 63:32, i.e. they aren't
1890
* reserved and always read as zeros. Enforce Intel's reserved
1891
* bits check if the guest CPU is Intel compatible, otherwise
1892
* clear the bits. This ensures cross-vendor migration will
1893
* provide consistent behavior for the guest.
1894
*/
1895
if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1896
return 1;
1897
1898
data = (u32)data;
1899
break;
1900
case MSR_IA32_U_CET:
1901
case MSR_IA32_S_CET:
1902
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1903
!guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1904
return KVM_MSR_RET_UNSUPPORTED;
1905
if (!kvm_is_valid_u_s_cet(vcpu, data))
1906
return 1;
1907
break;
1908
case MSR_KVM_INTERNAL_GUEST_SSP:
1909
if (!host_initiated)
1910
return 1;
1911
fallthrough;
1912
/*
1913
* Note that the MSR emulation here is flawed when a vCPU
1914
* doesn't support the Intel 64 architecture. The expected
1915
* architectural behavior in this case is that the upper 32
1916
* bits do not exist and should always read '0'. However,
1917
* because the actual hardware on which the virtual CPU is
1918
* running does support Intel 64, XRSTORS/XSAVES in the
1919
* guest could observe behavior that violates the
1920
* architecture. Intercepting XRSTORS/XSAVES for this
1921
* special case isn't deemed worthwhile.
1922
*/
1923
case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1924
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1925
return KVM_MSR_RET_UNSUPPORTED;
1926
/*
1927
* MSR_IA32_INT_SSP_TAB is not present on processors that do
1928
* not support Intel 64 architecture.
1929
*/
1930
if (index == MSR_IA32_INT_SSP_TAB && !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1931
return KVM_MSR_RET_UNSUPPORTED;
1932
if (is_noncanonical_msr_address(data, vcpu))
1933
return 1;
1934
/* All SSP MSRs except MSR_IA32_INT_SSP_TAB must be 4-byte aligned */
1935
if (index != MSR_IA32_INT_SSP_TAB && !IS_ALIGNED(data, 4))
1936
return 1;
1937
break;
1938
}
1939
1940
msr.data = data;
1941
msr.index = index;
1942
msr.host_initiated = host_initiated;
1943
1944
return kvm_x86_call(set_msr)(vcpu, &msr);
1945
}
1946
1947
static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1948
bool host_initiated)
1949
{
1950
return __kvm_set_msr(vcpu, index, *data, host_initiated);
1951
}
1952
1953
static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1954
u32 index, u64 data, bool host_initiated)
1955
{
1956
return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1957
_kvm_set_msr);
1958
}
1959
1960
/*
1961
* Read the MSR specified by @index into @data. Select MSR specific fault
1962
* checks are bypassed if @host_initiated is %true.
1963
* Returns 0 on success, non-0 otherwise.
1964
* Assumes vcpu_load() was already called.
1965
*/
1966
static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1967
bool host_initiated)
1968
{
1969
struct msr_data msr;
1970
int ret;
1971
1972
switch (index) {
1973
case MSR_TSC_AUX:
1974
if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1975
return 1;
1976
1977
if (!host_initiated &&
1978
!guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1979
!guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1980
return 1;
1981
break;
1982
case MSR_IA32_U_CET:
1983
case MSR_IA32_S_CET:
1984
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1985
!guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1986
return KVM_MSR_RET_UNSUPPORTED;
1987
break;
1988
case MSR_KVM_INTERNAL_GUEST_SSP:
1989
if (!host_initiated)
1990
return 1;
1991
fallthrough;
1992
case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1993
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1994
return KVM_MSR_RET_UNSUPPORTED;
1995
break;
1996
}
1997
1998
msr.index = index;
1999
msr.host_initiated = host_initiated;
2000
2001
ret = kvm_x86_call(get_msr)(vcpu, &msr);
2002
if (!ret)
2003
*data = msr.data;
2004
return ret;
2005
}
2006
2007
int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2008
{
2009
return __kvm_set_msr(vcpu, index, data, true);
2010
}
2011
2012
int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2013
{
2014
return __kvm_get_msr(vcpu, index, data, true);
2015
}
2016
2017
static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
2018
u32 index, u64 *data, bool host_initiated)
2019
{
2020
return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
2021
__kvm_get_msr);
2022
}
2023
2024
int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2025
{
2026
return kvm_get_msr_ignored_check(vcpu, index, data, false);
2027
}
2028
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_read);
2029
2030
int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2031
{
2032
return kvm_set_msr_ignored_check(vcpu, index, data, false);
2033
}
2034
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_write);
2035
2036
int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2037
{
2038
if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
2039
return KVM_MSR_RET_FILTERED;
2040
2041
return __kvm_emulate_msr_read(vcpu, index, data);
2042
}
2043
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_read);
2044
2045
int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2046
{
2047
if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
2048
return KVM_MSR_RET_FILTERED;
2049
2050
return __kvm_emulate_msr_write(vcpu, index, data);
2051
}
2052
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_write);
2053
2054
2055
static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
2056
{
2057
if (!vcpu->run->msr.error) {
2058
kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
2059
kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
2060
}
2061
}
2062
2063
static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2064
{
2065
return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2066
}
2067
2068
static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2069
{
2070
complete_userspace_rdmsr(vcpu);
2071
return complete_emulated_msr_access(vcpu);
2072
}
2073
2074
static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2075
{
2076
return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2077
}
2078
2079
static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2080
{
2081
complete_userspace_rdmsr(vcpu);
2082
return complete_fast_msr_access(vcpu);
2083
}
2084
2085
static int complete_fast_rdmsr_imm(struct kvm_vcpu *vcpu)
2086
{
2087
if (!vcpu->run->msr.error)
2088
kvm_register_write(vcpu, vcpu->arch.cui_rdmsr_imm_reg,
2089
vcpu->run->msr.data);
2090
2091
return complete_fast_msr_access(vcpu);
2092
}
2093
2094
static u64 kvm_msr_reason(int r)
2095
{
2096
switch (r) {
2097
case KVM_MSR_RET_UNSUPPORTED:
2098
return KVM_MSR_EXIT_REASON_UNKNOWN;
2099
case KVM_MSR_RET_FILTERED:
2100
return KVM_MSR_EXIT_REASON_FILTER;
2101
default:
2102
return KVM_MSR_EXIT_REASON_INVAL;
2103
}
2104
}
2105
2106
static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2107
u32 exit_reason, u64 data,
2108
int (*completion)(struct kvm_vcpu *vcpu),
2109
int r)
2110
{
2111
u64 msr_reason = kvm_msr_reason(r);
2112
2113
/* Check if the user wanted to know about this MSR fault */
2114
if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2115
return 0;
2116
2117
vcpu->run->exit_reason = exit_reason;
2118
vcpu->run->msr.error = 0;
2119
memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2120
vcpu->run->msr.reason = msr_reason;
2121
vcpu->run->msr.index = index;
2122
vcpu->run->msr.data = data;
2123
vcpu->arch.complete_userspace_io = completion;
2124
2125
return 1;
2126
}
2127
2128
static int __kvm_emulate_rdmsr(struct kvm_vcpu *vcpu, u32 msr, int reg,
2129
int (*complete_rdmsr)(struct kvm_vcpu *))
2130
{
2131
u64 data;
2132
int r;
2133
2134
r = kvm_emulate_msr_read(vcpu, msr, &data);
2135
2136
if (!r) {
2137
trace_kvm_msr_read(msr, data);
2138
2139
if (reg < 0) {
2140
kvm_rax_write(vcpu, data & -1u);
2141
kvm_rdx_write(vcpu, (data >> 32) & -1u);
2142
} else {
2143
kvm_register_write(vcpu, reg, data);
2144
}
2145
} else {
2146
/* MSR read failed? See if we should ask user space */
2147
if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_RDMSR, 0,
2148
complete_rdmsr, r))
2149
return 0;
2150
trace_kvm_msr_read_ex(msr);
2151
}
2152
2153
return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2154
}
2155
2156
int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2157
{
2158
return __kvm_emulate_rdmsr(vcpu, kvm_rcx_read(vcpu), -1,
2159
complete_fast_rdmsr);
2160
}
2161
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr);
2162
2163
int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2164
{
2165
vcpu->arch.cui_rdmsr_imm_reg = reg;
2166
2167
return __kvm_emulate_rdmsr(vcpu, msr, reg, complete_fast_rdmsr_imm);
2168
}
2169
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr_imm);
2170
2171
static int __kvm_emulate_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2172
{
2173
int r;
2174
2175
r = kvm_emulate_msr_write(vcpu, msr, data);
2176
if (!r) {
2177
trace_kvm_msr_write(msr, data);
2178
} else {
2179
/* MSR write failed? See if we should ask user space */
2180
if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_WRMSR, data,
2181
complete_fast_msr_access, r))
2182
return 0;
2183
/* Signal all other negative errors to userspace */
2184
if (r < 0)
2185
return r;
2186
trace_kvm_msr_write_ex(msr, data);
2187
}
2188
2189
return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2190
}
2191
2192
int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2193
{
2194
return __kvm_emulate_wrmsr(vcpu, kvm_rcx_read(vcpu),
2195
kvm_read_edx_eax(vcpu));
2196
}
2197
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr);
2198
2199
int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2200
{
2201
return __kvm_emulate_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2202
}
2203
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr_imm);
2204
2205
int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2206
{
2207
return kvm_skip_emulated_instruction(vcpu);
2208
}
2209
2210
int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2211
{
2212
/* Treat an INVD instruction as a NOP and just skip it. */
2213
return kvm_emulate_as_nop(vcpu);
2214
}
2215
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_invd);
2216
2217
fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu)
2218
{
2219
if (!kvm_emulate_invd(vcpu))
2220
return EXIT_FASTPATH_EXIT_USERSPACE;
2221
2222
return EXIT_FASTPATH_REENTER_GUEST;
2223
}
2224
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_invd);
2225
2226
int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2227
{
2228
kvm_queue_exception(vcpu, UD_VECTOR);
2229
return 1;
2230
}
2231
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invalid_op);
2232
2233
2234
static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2235
{
2236
bool enabled;
2237
2238
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2239
goto emulate_as_nop;
2240
2241
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2242
enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2243
else
2244
enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2245
2246
if (!enabled)
2247
return kvm_handle_invalid_op(vcpu);
2248
2249
emulate_as_nop:
2250
pr_warn_once("%s instruction emulated as NOP!\n", insn);
2251
return kvm_emulate_as_nop(vcpu);
2252
}
2253
int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2254
{
2255
return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2256
}
2257
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_mwait);
2258
2259
int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2260
{
2261
return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2262
}
2263
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_monitor);
2264
2265
static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2266
{
2267
xfer_to_guest_mode_prepare();
2268
2269
return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2270
kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2271
}
2272
2273
static fastpath_t __handle_fastpath_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2274
{
2275
switch (msr) {
2276
case APIC_BASE_MSR + (APIC_ICR >> 4):
2277
if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic) ||
2278
kvm_x2apic_icr_write_fast(vcpu->arch.apic, data))
2279
return EXIT_FASTPATH_NONE;
2280
break;
2281
case MSR_IA32_TSC_DEADLINE:
2282
kvm_set_lapic_tscdeadline_msr(vcpu, data);
2283
break;
2284
default:
2285
return EXIT_FASTPATH_NONE;
2286
}
2287
2288
trace_kvm_msr_write(msr, data);
2289
2290
if (!kvm_skip_emulated_instruction(vcpu))
2291
return EXIT_FASTPATH_EXIT_USERSPACE;
2292
2293
return EXIT_FASTPATH_REENTER_GUEST;
2294
}
2295
2296
fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu)
2297
{
2298
return __handle_fastpath_wrmsr(vcpu, kvm_rcx_read(vcpu),
2299
kvm_read_edx_eax(vcpu));
2300
}
2301
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr);
2302
2303
fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2304
{
2305
return __handle_fastpath_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2306
}
2307
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr_imm);
2308
2309
/*
2310
* Adapt set_msr() to msr_io()'s calling convention
2311
*/
2312
static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2313
{
2314
return kvm_get_msr_ignored_check(vcpu, index, data, true);
2315
}
2316
2317
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2318
{
2319
u64 val;
2320
2321
/*
2322
* Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2323
* not support modifying the guest vCPU model on the fly, e.g. changing
2324
* the nVMX capabilities while L2 is running is nonsensical. Allow
2325
* writes of the same value, e.g. to allow userspace to blindly stuff
2326
* all MSRs when emulating RESET.
2327
*/
2328
if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2329
(do_get_msr(vcpu, index, &val) || *data != val))
2330
return -EINVAL;
2331
2332
return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2333
}
2334
2335
#ifdef CONFIG_X86_64
2336
struct pvclock_clock {
2337
int vclock_mode;
2338
u64 cycle_last;
2339
u64 mask;
2340
u32 mult;
2341
u32 shift;
2342
u64 base_cycles;
2343
u64 offset;
2344
};
2345
2346
struct pvclock_gtod_data {
2347
seqcount_t seq;
2348
2349
struct pvclock_clock clock; /* extract of a clocksource struct */
2350
struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2351
2352
ktime_t offs_boot;
2353
u64 wall_time_sec;
2354
};
2355
2356
static struct pvclock_gtod_data pvclock_gtod_data;
2357
2358
static void update_pvclock_gtod(struct timekeeper *tk)
2359
{
2360
struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2361
2362
write_seqcount_begin(&vdata->seq);
2363
2364
/* copy pvclock gtod data */
2365
vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2366
vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2367
vdata->clock.mask = tk->tkr_mono.mask;
2368
vdata->clock.mult = tk->tkr_mono.mult;
2369
vdata->clock.shift = tk->tkr_mono.shift;
2370
vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2371
vdata->clock.offset = tk->tkr_mono.base;
2372
2373
vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2374
vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2375
vdata->raw_clock.mask = tk->tkr_raw.mask;
2376
vdata->raw_clock.mult = tk->tkr_raw.mult;
2377
vdata->raw_clock.shift = tk->tkr_raw.shift;
2378
vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2379
vdata->raw_clock.offset = tk->tkr_raw.base;
2380
2381
vdata->wall_time_sec = tk->xtime_sec;
2382
2383
vdata->offs_boot = tk->offs_boot;
2384
2385
write_seqcount_end(&vdata->seq);
2386
}
2387
2388
static s64 get_kvmclock_base_ns(void)
2389
{
2390
/* Count up from boot time, but with the frequency of the raw clock. */
2391
return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2392
}
2393
#else
2394
static s64 get_kvmclock_base_ns(void)
2395
{
2396
/* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2397
return ktime_get_boottime_ns();
2398
}
2399
#endif
2400
2401
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2402
{
2403
int version;
2404
int r;
2405
struct pvclock_wall_clock wc;
2406
u32 wc_sec_hi;
2407
u64 wall_nsec;
2408
2409
if (!wall_clock)
2410
return;
2411
2412
r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2413
if (r)
2414
return;
2415
2416
if (version & 1)
2417
++version; /* first time write, random junk */
2418
2419
++version;
2420
2421
if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2422
return;
2423
2424
wall_nsec = kvm_get_wall_clock_epoch(kvm);
2425
2426
wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2427
wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2428
wc.version = version;
2429
2430
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2431
2432
if (sec_hi_ofs) {
2433
wc_sec_hi = wall_nsec >> 32;
2434
kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2435
&wc_sec_hi, sizeof(wc_sec_hi));
2436
}
2437
2438
version++;
2439
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2440
}
2441
2442
static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2443
bool old_msr, bool host_initiated)
2444
{
2445
struct kvm_arch *ka = &vcpu->kvm->arch;
2446
2447
if (vcpu->vcpu_id == 0 && !host_initiated) {
2448
if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2449
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2450
2451
ka->boot_vcpu_runs_old_kvmclock = old_msr;
2452
}
2453
2454
vcpu->arch.time = system_time;
2455
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2456
2457
/* we verify if the enable bit is set... */
2458
if (system_time & 1)
2459
kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2460
sizeof(struct pvclock_vcpu_time_info));
2461
else
2462
kvm_gpc_deactivate(&vcpu->arch.pv_time);
2463
2464
return;
2465
}
2466
2467
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2468
{
2469
do_shl32_div32(dividend, divisor);
2470
return dividend;
2471
}
2472
2473
static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2474
s8 *pshift, u32 *pmultiplier)
2475
{
2476
uint64_t scaled64;
2477
int32_t shift = 0;
2478
uint64_t tps64;
2479
uint32_t tps32;
2480
2481
tps64 = base_hz;
2482
scaled64 = scaled_hz;
2483
while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2484
tps64 >>= 1;
2485
shift--;
2486
}
2487
2488
tps32 = (uint32_t)tps64;
2489
while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2490
if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2491
scaled64 >>= 1;
2492
else
2493
tps32 <<= 1;
2494
shift++;
2495
}
2496
2497
*pshift = shift;
2498
*pmultiplier = div_frac(scaled64, tps32);
2499
}
2500
2501
#ifdef CONFIG_X86_64
2502
static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2503
#endif
2504
2505
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2506
static unsigned long max_tsc_khz;
2507
2508
static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2509
{
2510
u64 v = (u64)khz * (1000000 + ppm);
2511
do_div(v, 1000000);
2512
return v;
2513
}
2514
2515
static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2516
2517
static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2518
{
2519
u64 ratio;
2520
2521
/* Guest TSC same frequency as host TSC? */
2522
if (!scale) {
2523
kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2524
return 0;
2525
}
2526
2527
/* TSC scaling supported? */
2528
if (!kvm_caps.has_tsc_control) {
2529
if (user_tsc_khz > tsc_khz) {
2530
vcpu->arch.tsc_catchup = 1;
2531
vcpu->arch.tsc_always_catchup = 1;
2532
return 0;
2533
} else {
2534
pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2535
return -1;
2536
}
2537
}
2538
2539
/* TSC scaling required - calculate ratio */
2540
ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2541
user_tsc_khz, tsc_khz);
2542
2543
if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2544
pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2545
user_tsc_khz);
2546
return -1;
2547
}
2548
2549
kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2550
return 0;
2551
}
2552
2553
static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2554
{
2555
u32 thresh_lo, thresh_hi;
2556
int use_scaling = 0;
2557
2558
/* tsc_khz can be zero if TSC calibration fails */
2559
if (user_tsc_khz == 0) {
2560
/* set tsc_scaling_ratio to a safe value */
2561
kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2562
return -1;
2563
}
2564
2565
/* Compute a scale to convert nanoseconds in TSC cycles */
2566
kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2567
&vcpu->arch.virtual_tsc_shift,
2568
&vcpu->arch.virtual_tsc_mult);
2569
vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2570
2571
/*
2572
* Compute the variation in TSC rate which is acceptable
2573
* within the range of tolerance and decide if the
2574
* rate being applied is within that bounds of the hardware
2575
* rate. If so, no scaling or compensation need be done.
2576
*/
2577
thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2578
thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2579
if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2580
pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2581
user_tsc_khz, thresh_lo, thresh_hi);
2582
use_scaling = 1;
2583
}
2584
return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2585
}
2586
2587
static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2588
{
2589
u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2590
vcpu->arch.virtual_tsc_mult,
2591
vcpu->arch.virtual_tsc_shift);
2592
tsc += vcpu->arch.this_tsc_write;
2593
return tsc;
2594
}
2595
2596
#ifdef CONFIG_X86_64
2597
static inline bool gtod_is_based_on_tsc(int mode)
2598
{
2599
return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2600
}
2601
#endif
2602
2603
static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2604
{
2605
#ifdef CONFIG_X86_64
2606
struct kvm_arch *ka = &vcpu->kvm->arch;
2607
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2608
2609
/*
2610
* To use the masterclock, the host clocksource must be based on TSC
2611
* and all vCPUs must have matching TSCs. Note, the count for matching
2612
* vCPUs doesn't include the reference vCPU, hence "+1".
2613
*/
2614
bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2615
atomic_read(&vcpu->kvm->online_vcpus)) &&
2616
gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2617
2618
/*
2619
* Request a masterclock update if the masterclock needs to be toggled
2620
* on/off, or when starting a new generation and the masterclock is
2621
* enabled (compute_guest_tsc() requires the masterclock snapshot to be
2622
* taken _after_ the new generation is created).
2623
*/
2624
if ((ka->use_master_clock && new_generation) ||
2625
(ka->use_master_clock != use_master_clock))
2626
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2627
2628
trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2629
atomic_read(&vcpu->kvm->online_vcpus),
2630
ka->use_master_clock, gtod->clock.vclock_mode);
2631
#endif
2632
}
2633
2634
/*
2635
* Multiply tsc by a fixed point number represented by ratio.
2636
*
2637
* The most significant 64-N bits (mult) of ratio represent the
2638
* integral part of the fixed point number; the remaining N bits
2639
* (frac) represent the fractional part, ie. ratio represents a fixed
2640
* point number (mult + frac * 2^(-N)).
2641
*
2642
* N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2643
*/
2644
static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2645
{
2646
return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2647
}
2648
2649
u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2650
{
2651
u64 _tsc = tsc;
2652
2653
if (ratio != kvm_caps.default_tsc_scaling_ratio)
2654
_tsc = __scale_tsc(ratio, tsc);
2655
2656
return _tsc;
2657
}
2658
2659
static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2660
{
2661
u64 tsc;
2662
2663
tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2664
2665
return target_tsc - tsc;
2666
}
2667
2668
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2669
{
2670
return vcpu->arch.l1_tsc_offset +
2671
kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2672
}
2673
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_l1_tsc);
2674
2675
u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2676
{
2677
u64 nested_offset;
2678
2679
if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2680
nested_offset = l1_offset;
2681
else
2682
nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2683
kvm_caps.tsc_scaling_ratio_frac_bits);
2684
2685
nested_offset += l2_offset;
2686
return nested_offset;
2687
}
2688
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_offset);
2689
2690
u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2691
{
2692
if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2693
return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2694
kvm_caps.tsc_scaling_ratio_frac_bits);
2695
2696
return l1_multiplier;
2697
}
2698
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_multiplier);
2699
2700
static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2701
{
2702
if (vcpu->arch.guest_tsc_protected)
2703
return;
2704
2705
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2706
vcpu->arch.l1_tsc_offset,
2707
l1_offset);
2708
2709
vcpu->arch.l1_tsc_offset = l1_offset;
2710
2711
/*
2712
* If we are here because L1 chose not to trap WRMSR to TSC then
2713
* according to the spec this should set L1's TSC (as opposed to
2714
* setting L1's offset for L2).
2715
*/
2716
if (is_guest_mode(vcpu))
2717
vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2718
l1_offset,
2719
kvm_x86_call(get_l2_tsc_offset)(vcpu),
2720
kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2721
else
2722
vcpu->arch.tsc_offset = l1_offset;
2723
2724
kvm_x86_call(write_tsc_offset)(vcpu);
2725
}
2726
2727
static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2728
{
2729
vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2730
2731
/* Userspace is changing the multiplier while L2 is active */
2732
if (is_guest_mode(vcpu))
2733
vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2734
l1_multiplier,
2735
kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2736
else
2737
vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2738
2739
if (kvm_caps.has_tsc_control)
2740
kvm_x86_call(write_tsc_multiplier)(vcpu);
2741
}
2742
2743
static inline bool kvm_check_tsc_unstable(void)
2744
{
2745
#ifdef CONFIG_X86_64
2746
/*
2747
* TSC is marked unstable when we're running on Hyper-V,
2748
* 'TSC page' clocksource is good.
2749
*/
2750
if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2751
return false;
2752
#endif
2753
return check_tsc_unstable();
2754
}
2755
2756
/*
2757
* Infers attempts to synchronize the guest's tsc from host writes. Sets the
2758
* offset for the vcpu and tracks the TSC matching generation that the vcpu
2759
* participates in.
2760
*/
2761
static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2762
u64 ns, bool matched, bool user_set_tsc)
2763
{
2764
struct kvm *kvm = vcpu->kvm;
2765
2766
lockdep_assert_held(&kvm->arch.tsc_write_lock);
2767
2768
if (vcpu->arch.guest_tsc_protected)
2769
return;
2770
2771
if (user_set_tsc)
2772
vcpu->kvm->arch.user_set_tsc = true;
2773
2774
/*
2775
* We also track th most recent recorded KHZ, write and time to
2776
* allow the matching interval to be extended at each write.
2777
*/
2778
kvm->arch.last_tsc_nsec = ns;
2779
kvm->arch.last_tsc_write = tsc;
2780
kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2781
kvm->arch.last_tsc_offset = offset;
2782
2783
vcpu->arch.last_guest_tsc = tsc;
2784
2785
kvm_vcpu_write_tsc_offset(vcpu, offset);
2786
2787
if (!matched) {
2788
/*
2789
* We split periods of matched TSC writes into generations.
2790
* For each generation, we track the original measured
2791
* nanosecond time, offset, and write, so if TSCs are in
2792
* sync, we can match exact offset, and if not, we can match
2793
* exact software computation in compute_guest_tsc()
2794
*
2795
* These values are tracked in kvm->arch.cur_xxx variables.
2796
*/
2797
kvm->arch.cur_tsc_generation++;
2798
kvm->arch.cur_tsc_nsec = ns;
2799
kvm->arch.cur_tsc_write = tsc;
2800
kvm->arch.cur_tsc_offset = offset;
2801
kvm->arch.nr_vcpus_matched_tsc = 0;
2802
} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2803
kvm->arch.nr_vcpus_matched_tsc++;
2804
}
2805
2806
/* Keep track of which generation this VCPU has synchronized to */
2807
vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2808
vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2809
vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2810
2811
kvm_track_tsc_matching(vcpu, !matched);
2812
}
2813
2814
static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2815
{
2816
u64 data = user_value ? *user_value : 0;
2817
struct kvm *kvm = vcpu->kvm;
2818
u64 offset, ns, elapsed;
2819
unsigned long flags;
2820
bool matched = false;
2821
bool synchronizing = false;
2822
2823
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2824
offset = kvm_compute_l1_tsc_offset(vcpu, data);
2825
ns = get_kvmclock_base_ns();
2826
elapsed = ns - kvm->arch.last_tsc_nsec;
2827
2828
if (vcpu->arch.virtual_tsc_khz) {
2829
if (data == 0) {
2830
/*
2831
* Force synchronization when creating a vCPU, or when
2832
* userspace explicitly writes a zero value.
2833
*/
2834
synchronizing = true;
2835
} else if (kvm->arch.user_set_tsc) {
2836
u64 tsc_exp = kvm->arch.last_tsc_write +
2837
nsec_to_cycles(vcpu, elapsed);
2838
u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2839
/*
2840
* Here lies UAPI baggage: when a user-initiated TSC write has
2841
* a small delta (1 second) of virtual cycle time against the
2842
* previously set vCPU, we assume that they were intended to be
2843
* in sync and the delta was only due to the racy nature of the
2844
* legacy API.
2845
*
2846
* This trick falls down when restoring a guest which genuinely
2847
* has been running for less time than the 1 second of imprecision
2848
* which we allow for in the legacy API. In this case, the first
2849
* value written by userspace (on any vCPU) should not be subject
2850
* to this 'correction' to make it sync up with values that only
2851
* come from the kernel's default vCPU creation. Make the 1-second
2852
* slop hack only trigger if the user_set_tsc flag is already set.
2853
*/
2854
synchronizing = data < tsc_exp + tsc_hz &&
2855
data + tsc_hz > tsc_exp;
2856
}
2857
}
2858
2859
2860
/*
2861
* For a reliable TSC, we can match TSC offsets, and for an unstable
2862
* TSC, we add elapsed time in this computation. We could let the
2863
* compensation code attempt to catch up if we fall behind, but
2864
* it's better to try to match offsets from the beginning.
2865
*/
2866
if (synchronizing &&
2867
vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2868
if (!kvm_check_tsc_unstable()) {
2869
offset = kvm->arch.cur_tsc_offset;
2870
} else {
2871
u64 delta = nsec_to_cycles(vcpu, elapsed);
2872
data += delta;
2873
offset = kvm_compute_l1_tsc_offset(vcpu, data);
2874
}
2875
matched = true;
2876
}
2877
2878
__kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2879
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2880
}
2881
2882
static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2883
s64 adjustment)
2884
{
2885
u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2886
kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2887
}
2888
2889
static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2890
{
2891
if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2892
WARN_ON(adjustment < 0);
2893
adjustment = kvm_scale_tsc((u64) adjustment,
2894
vcpu->arch.l1_tsc_scaling_ratio);
2895
adjust_tsc_offset_guest(vcpu, adjustment);
2896
}
2897
2898
#ifdef CONFIG_X86_64
2899
2900
static u64 read_tsc(void)
2901
{
2902
u64 ret = (u64)rdtsc_ordered();
2903
u64 last = pvclock_gtod_data.clock.cycle_last;
2904
2905
if (likely(ret >= last))
2906
return ret;
2907
2908
/*
2909
* GCC likes to generate cmov here, but this branch is extremely
2910
* predictable (it's just a function of time and the likely is
2911
* very likely) and there's a data dependence, so force GCC
2912
* to generate a branch instead. I don't barrier() because
2913
* we don't actually need a barrier, and if this function
2914
* ever gets inlined it will generate worse code.
2915
*/
2916
asm volatile ("");
2917
return last;
2918
}
2919
2920
static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2921
int *mode)
2922
{
2923
u64 tsc_pg_val;
2924
long v;
2925
2926
switch (clock->vclock_mode) {
2927
case VDSO_CLOCKMODE_HVCLOCK:
2928
if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2929
tsc_timestamp, &tsc_pg_val)) {
2930
/* TSC page valid */
2931
*mode = VDSO_CLOCKMODE_HVCLOCK;
2932
v = (tsc_pg_val - clock->cycle_last) &
2933
clock->mask;
2934
} else {
2935
/* TSC page invalid */
2936
*mode = VDSO_CLOCKMODE_NONE;
2937
}
2938
break;
2939
case VDSO_CLOCKMODE_TSC:
2940
*mode = VDSO_CLOCKMODE_TSC;
2941
*tsc_timestamp = read_tsc();
2942
v = (*tsc_timestamp - clock->cycle_last) &
2943
clock->mask;
2944
break;
2945
default:
2946
*mode = VDSO_CLOCKMODE_NONE;
2947
}
2948
2949
if (*mode == VDSO_CLOCKMODE_NONE)
2950
*tsc_timestamp = v = 0;
2951
2952
return v * clock->mult;
2953
}
2954
2955
/*
2956
* As with get_kvmclock_base_ns(), this counts from boot time, at the
2957
* frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2958
*/
2959
static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2960
{
2961
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2962
unsigned long seq;
2963
int mode;
2964
u64 ns;
2965
2966
do {
2967
seq = read_seqcount_begin(&gtod->seq);
2968
ns = gtod->raw_clock.base_cycles;
2969
ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2970
ns >>= gtod->raw_clock.shift;
2971
ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2972
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2973
*t = ns;
2974
2975
return mode;
2976
}
2977
2978
/*
2979
* This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2980
* no boot time offset.
2981
*/
2982
static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2983
{
2984
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2985
unsigned long seq;
2986
int mode;
2987
u64 ns;
2988
2989
do {
2990
seq = read_seqcount_begin(&gtod->seq);
2991
ns = gtod->clock.base_cycles;
2992
ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2993
ns >>= gtod->clock.shift;
2994
ns += ktime_to_ns(gtod->clock.offset);
2995
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2996
*t = ns;
2997
2998
return mode;
2999
}
3000
3001
static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
3002
{
3003
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
3004
unsigned long seq;
3005
int mode;
3006
u64 ns;
3007
3008
do {
3009
seq = read_seqcount_begin(&gtod->seq);
3010
ts->tv_sec = gtod->wall_time_sec;
3011
ns = gtod->clock.base_cycles;
3012
ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
3013
ns >>= gtod->clock.shift;
3014
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
3015
3016
ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
3017
ts->tv_nsec = ns;
3018
3019
return mode;
3020
}
3021
3022
/*
3023
* Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
3024
* reports the TSC value from which it do so. Returns true if host is
3025
* using TSC based clocksource.
3026
*/
3027
static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3028
{
3029
/* checked again under seqlock below */
3030
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3031
return false;
3032
3033
return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
3034
tsc_timestamp));
3035
}
3036
3037
/*
3038
* Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
3039
* so. Returns true if host is using TSC based clocksource.
3040
*/
3041
bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3042
{
3043
/* checked again under seqlock below */
3044
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3045
return false;
3046
3047
return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
3048
tsc_timestamp));
3049
}
3050
3051
/*
3052
* Calculates CLOCK_REALTIME and reports the TSC value from which it did
3053
* so. Returns true if host is using TSC based clocksource.
3054
*
3055
* DO NOT USE this for anything related to migration. You want CLOCK_TAI
3056
* for that.
3057
*/
3058
static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
3059
u64 *tsc_timestamp)
3060
{
3061
/* checked again under seqlock below */
3062
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3063
return false;
3064
3065
return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
3066
}
3067
#endif
3068
3069
/*
3070
*
3071
* Assuming a stable TSC across physical CPUS, and a stable TSC
3072
* across virtual CPUs, the following condition is possible.
3073
* Each numbered line represents an event visible to both
3074
* CPUs at the next numbered event.
3075
*
3076
* "timespecX" represents host monotonic time. "tscX" represents
3077
* RDTSC value.
3078
*
3079
* VCPU0 on CPU0 | VCPU1 on CPU1
3080
*
3081
* 1. read timespec0,tsc0
3082
* 2. | timespec1 = timespec0 + N
3083
* | tsc1 = tsc0 + M
3084
* 3. transition to guest | transition to guest
3085
* 4. ret0 = timespec0 + (rdtsc - tsc0) |
3086
* 5. | ret1 = timespec1 + (rdtsc - tsc1)
3087
* | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
3088
*
3089
* Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
3090
*
3091
* - ret0 < ret1
3092
* - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
3093
* ...
3094
* - 0 < N - M => M < N
3095
*
3096
* That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3097
* always the case (the difference between two distinct xtime instances
3098
* might be smaller then the difference between corresponding TSC reads,
3099
* when updating guest vcpus pvclock areas).
3100
*
3101
* To avoid that problem, do not allow visibility of distinct
3102
* system_timestamp/tsc_timestamp values simultaneously: use a master
3103
* copy of host monotonic time values. Update that master copy
3104
* in lockstep.
3105
*
3106
* Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3107
*
3108
*/
3109
3110
static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3111
{
3112
#ifdef CONFIG_X86_64
3113
struct kvm_arch *ka = &kvm->arch;
3114
int vclock_mode;
3115
bool host_tsc_clocksource, vcpus_matched;
3116
3117
lockdep_assert_held(&kvm->arch.tsc_write_lock);
3118
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3119
atomic_read(&kvm->online_vcpus));
3120
3121
/*
3122
* If the host uses TSC clock, then passthrough TSC as stable
3123
* to the guest.
3124
*/
3125
host_tsc_clocksource = kvm_get_time_and_clockread(
3126
&ka->master_kernel_ns,
3127
&ka->master_cycle_now);
3128
3129
ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3130
&& !ka->backwards_tsc_observed
3131
&& !ka->boot_vcpu_runs_old_kvmclock;
3132
3133
if (ka->use_master_clock)
3134
atomic_set(&kvm_guest_has_master_clock, 1);
3135
3136
vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3137
trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3138
vcpus_matched);
3139
#endif
3140
}
3141
3142
static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3143
{
3144
kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3145
}
3146
3147
static void __kvm_start_pvclock_update(struct kvm *kvm)
3148
{
3149
raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3150
write_seqcount_begin(&kvm->arch.pvclock_sc);
3151
}
3152
3153
static void kvm_start_pvclock_update(struct kvm *kvm)
3154
{
3155
kvm_make_mclock_inprogress_request(kvm);
3156
3157
/* no guest entries from this point */
3158
__kvm_start_pvclock_update(kvm);
3159
}
3160
3161
static void kvm_end_pvclock_update(struct kvm *kvm)
3162
{
3163
struct kvm_arch *ka = &kvm->arch;
3164
struct kvm_vcpu *vcpu;
3165
unsigned long i;
3166
3167
write_seqcount_end(&ka->pvclock_sc);
3168
raw_spin_unlock_irq(&ka->tsc_write_lock);
3169
kvm_for_each_vcpu(i, vcpu, kvm)
3170
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3171
3172
/* guest entries allowed */
3173
kvm_for_each_vcpu(i, vcpu, kvm)
3174
kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3175
}
3176
3177
static void kvm_update_masterclock(struct kvm *kvm)
3178
{
3179
kvm_hv_request_tsc_page_update(kvm);
3180
kvm_start_pvclock_update(kvm);
3181
pvclock_update_vm_gtod_copy(kvm);
3182
kvm_end_pvclock_update(kvm);
3183
}
3184
3185
/*
3186
* Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3187
* per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3188
* can change during boot even if the TSC is constant, as it's possible for KVM
3189
* to be loaded before TSC calibration completes. Ideally, KVM would get a
3190
* notification when calibration completes, but practically speaking calibration
3191
* will complete before userspace is alive enough to create VMs.
3192
*/
3193
static unsigned long get_cpu_tsc_khz(void)
3194
{
3195
if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3196
return tsc_khz;
3197
else
3198
return __this_cpu_read(cpu_tsc_khz);
3199
}
3200
3201
/* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3202
static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3203
{
3204
struct kvm_arch *ka = &kvm->arch;
3205
struct pvclock_vcpu_time_info hv_clock;
3206
3207
/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3208
get_cpu();
3209
3210
data->flags = 0;
3211
if (ka->use_master_clock &&
3212
(static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3213
#ifdef CONFIG_X86_64
3214
struct timespec64 ts;
3215
3216
if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3217
data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3218
data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3219
} else
3220
#endif
3221
data->host_tsc = rdtsc();
3222
3223
data->flags |= KVM_CLOCK_TSC_STABLE;
3224
hv_clock.tsc_timestamp = ka->master_cycle_now;
3225
hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3226
kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3227
&hv_clock.tsc_shift,
3228
&hv_clock.tsc_to_system_mul);
3229
data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3230
} else {
3231
data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3232
}
3233
3234
put_cpu();
3235
}
3236
3237
static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3238
{
3239
struct kvm_arch *ka = &kvm->arch;
3240
unsigned seq;
3241
3242
do {
3243
seq = read_seqcount_begin(&ka->pvclock_sc);
3244
__get_kvmclock(kvm, data);
3245
} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3246
}
3247
3248
u64 get_kvmclock_ns(struct kvm *kvm)
3249
{
3250
struct kvm_clock_data data;
3251
3252
get_kvmclock(kvm, &data);
3253
return data.clock;
3254
}
3255
3256
static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3257
struct kvm_vcpu *vcpu,
3258
struct gfn_to_pfn_cache *gpc,
3259
unsigned int offset)
3260
{
3261
struct pvclock_vcpu_time_info *guest_hv_clock;
3262
struct pvclock_vcpu_time_info hv_clock;
3263
unsigned long flags;
3264
3265
memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3266
3267
read_lock_irqsave(&gpc->lock, flags);
3268
while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3269
read_unlock_irqrestore(&gpc->lock, flags);
3270
3271
if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3272
return;
3273
3274
read_lock_irqsave(&gpc->lock, flags);
3275
}
3276
3277
guest_hv_clock = (void *)(gpc->khva + offset);
3278
3279
/*
3280
* This VCPU is paused, but it's legal for a guest to read another
3281
* VCPU's kvmclock, so we really have to follow the specification where
3282
* it says that version is odd if data is being modified, and even after
3283
* it is consistent.
3284
*/
3285
3286
guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3287
smp_wmb();
3288
3289
/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3290
hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3291
3292
memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3293
3294
smp_wmb();
3295
3296
guest_hv_clock->version = ++hv_clock.version;
3297
3298
kvm_gpc_mark_dirty_in_slot(gpc);
3299
read_unlock_irqrestore(&gpc->lock, flags);
3300
3301
trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3302
}
3303
3304
int kvm_guest_time_update(struct kvm_vcpu *v)
3305
{
3306
struct pvclock_vcpu_time_info hv_clock = {};
3307
unsigned long flags, tgt_tsc_khz;
3308
unsigned seq;
3309
struct kvm_vcpu_arch *vcpu = &v->arch;
3310
struct kvm_arch *ka = &v->kvm->arch;
3311
s64 kernel_ns;
3312
u64 tsc_timestamp, host_tsc;
3313
bool use_master_clock;
3314
3315
kernel_ns = 0;
3316
host_tsc = 0;
3317
3318
/*
3319
* If the host uses TSC clock, then passthrough TSC as stable
3320
* to the guest.
3321
*/
3322
do {
3323
seq = read_seqcount_begin(&ka->pvclock_sc);
3324
use_master_clock = ka->use_master_clock;
3325
if (use_master_clock) {
3326
host_tsc = ka->master_cycle_now;
3327
kernel_ns = ka->master_kernel_ns;
3328
}
3329
} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3330
3331
/* Keep irq disabled to prevent changes to the clock */
3332
local_irq_save(flags);
3333
tgt_tsc_khz = get_cpu_tsc_khz();
3334
if (unlikely(tgt_tsc_khz == 0)) {
3335
local_irq_restore(flags);
3336
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3337
return 1;
3338
}
3339
if (!use_master_clock) {
3340
host_tsc = rdtsc();
3341
kernel_ns = get_kvmclock_base_ns();
3342
}
3343
3344
tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3345
3346
/*
3347
* We may have to catch up the TSC to match elapsed wall clock
3348
* time for two reasons, even if kvmclock is used.
3349
* 1) CPU could have been running below the maximum TSC rate
3350
* 2) Broken TSC compensation resets the base at each VCPU
3351
* entry to avoid unknown leaps of TSC even when running
3352
* again on the same CPU. This may cause apparent elapsed
3353
* time to disappear, and the guest to stand still or run
3354
* very slowly.
3355
*/
3356
if (vcpu->tsc_catchup) {
3357
u64 tsc = compute_guest_tsc(v, kernel_ns);
3358
if (tsc > tsc_timestamp) {
3359
adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3360
tsc_timestamp = tsc;
3361
}
3362
}
3363
3364
local_irq_restore(flags);
3365
3366
/* With all the info we got, fill in the values */
3367
3368
if (kvm_caps.has_tsc_control) {
3369
tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3370
v->arch.l1_tsc_scaling_ratio);
3371
tgt_tsc_khz = tgt_tsc_khz ? : 1;
3372
}
3373
3374
if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3375
kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3376
&vcpu->pvclock_tsc_shift,
3377
&vcpu->pvclock_tsc_mul);
3378
vcpu->hw_tsc_khz = tgt_tsc_khz;
3379
}
3380
3381
hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3382
hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3383
hv_clock.tsc_timestamp = tsc_timestamp;
3384
hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3385
vcpu->last_guest_tsc = tsc_timestamp;
3386
3387
/* If the host uses TSC clocksource, then it is stable */
3388
hv_clock.flags = 0;
3389
if (use_master_clock)
3390
hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3391
3392
if (vcpu->pv_time.active) {
3393
/*
3394
* GUEST_STOPPED is only supported by kvmclock, and KVM's
3395
* historic behavior is to only process the request if kvmclock
3396
* is active/enabled.
3397
*/
3398
if (vcpu->pvclock_set_guest_stopped_request) {
3399
hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3400
vcpu->pvclock_set_guest_stopped_request = false;
3401
}
3402
kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3403
3404
hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3405
}
3406
3407
kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3408
3409
#ifdef CONFIG_KVM_XEN
3410
/*
3411
* For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3412
* explicitly told to use TSC as its clocksource Xen will not set this bit.
3413
* This default behaviour led to bugs in some guest kernels which cause
3414
* problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3415
*
3416
* Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3417
*/
3418
if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3419
hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3420
3421
if (vcpu->xen.vcpu_info_cache.active)
3422
kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3423
offsetof(struct compat_vcpu_info, time));
3424
if (vcpu->xen.vcpu_time_info_cache.active)
3425
kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3426
#endif
3427
return 0;
3428
}
3429
3430
/*
3431
* The pvclock_wall_clock ABI tells the guest the wall clock time at
3432
* which it started (i.e. its epoch, when its kvmclock was zero).
3433
*
3434
* In fact those clocks are subtly different; wall clock frequency is
3435
* adjusted by NTP and has leap seconds, while the kvmclock is a
3436
* simple function of the TSC without any such adjustment.
3437
*
3438
* Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3439
* that and kvmclock, but even that would be subject to change over
3440
* time.
3441
*
3442
* Attempt to calculate the epoch at a given moment using the *same*
3443
* TSC reading via kvm_get_walltime_and_clockread() to obtain both
3444
* wallclock and kvmclock times, and subtracting one from the other.
3445
*
3446
* Fall back to using their values at slightly different moments by
3447
* calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3448
*/
3449
uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3450
{
3451
#ifdef CONFIG_X86_64
3452
struct pvclock_vcpu_time_info hv_clock;
3453
struct kvm_arch *ka = &kvm->arch;
3454
unsigned long seq, local_tsc_khz;
3455
struct timespec64 ts;
3456
uint64_t host_tsc;
3457
3458
do {
3459
seq = read_seqcount_begin(&ka->pvclock_sc);
3460
3461
local_tsc_khz = 0;
3462
if (!ka->use_master_clock)
3463
break;
3464
3465
/*
3466
* The TSC read and the call to get_cpu_tsc_khz() must happen
3467
* on the same CPU.
3468
*/
3469
get_cpu();
3470
3471
local_tsc_khz = get_cpu_tsc_khz();
3472
3473
if (local_tsc_khz &&
3474
!kvm_get_walltime_and_clockread(&ts, &host_tsc))
3475
local_tsc_khz = 0; /* Fall back to old method */
3476
3477
put_cpu();
3478
3479
/*
3480
* These values must be snapshotted within the seqcount loop.
3481
* After that, it's just mathematics which can happen on any
3482
* CPU at any time.
3483
*/
3484
hv_clock.tsc_timestamp = ka->master_cycle_now;
3485
hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3486
3487
} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3488
3489
/*
3490
* If the conditions were right, and obtaining the wallclock+TSC was
3491
* successful, calculate the KVM clock at the corresponding time and
3492
* subtract one from the other to get the guest's epoch in nanoseconds
3493
* since 1970-01-01.
3494
*/
3495
if (local_tsc_khz) {
3496
kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3497
&hv_clock.tsc_shift,
3498
&hv_clock.tsc_to_system_mul);
3499
return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3500
__pvclock_read_cycles(&hv_clock, host_tsc);
3501
}
3502
#endif
3503
return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3504
}
3505
3506
/*
3507
* kvmclock updates which are isolated to a given vcpu, such as
3508
* vcpu->cpu migration, should not allow system_timestamp from
3509
* the rest of the vcpus to remain static. Otherwise ntp frequency
3510
* correction applies to one vcpu's system_timestamp but not
3511
* the others.
3512
*
3513
* So in those cases, request a kvmclock update for all vcpus.
3514
* We need to rate-limit these requests though, as they can
3515
* considerably slow guests that have a large number of vcpus.
3516
* The time for a remote vcpu to update its kvmclock is bound
3517
* by the delay we use to rate-limit the updates.
3518
*/
3519
3520
#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3521
3522
static void kvmclock_update_fn(struct work_struct *work)
3523
{
3524
unsigned long i;
3525
struct delayed_work *dwork = to_delayed_work(work);
3526
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3527
kvmclock_update_work);
3528
struct kvm *kvm = container_of(ka, struct kvm, arch);
3529
struct kvm_vcpu *vcpu;
3530
3531
kvm_for_each_vcpu(i, vcpu, kvm) {
3532
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3533
kvm_vcpu_kick(vcpu);
3534
}
3535
}
3536
3537
static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3538
{
3539
struct kvm *kvm = v->kvm;
3540
3541
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3542
schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3543
KVMCLOCK_UPDATE_DELAY);
3544
}
3545
3546
#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3547
3548
static void kvmclock_sync_fn(struct work_struct *work)
3549
{
3550
struct delayed_work *dwork = to_delayed_work(work);
3551
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3552
kvmclock_sync_work);
3553
struct kvm *kvm = container_of(ka, struct kvm, arch);
3554
3555
schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3556
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3557
KVMCLOCK_SYNC_PERIOD);
3558
}
3559
3560
/* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3561
static bool is_mci_control_msr(u32 msr)
3562
{
3563
return (msr & 3) == 0;
3564
}
3565
static bool is_mci_status_msr(u32 msr)
3566
{
3567
return (msr & 3) == 1;
3568
}
3569
3570
/*
3571
* On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3572
*/
3573
static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3574
{
3575
/* McStatusWrEn enabled? */
3576
if (guest_cpuid_is_amd_compatible(vcpu))
3577
return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3578
3579
return false;
3580
}
3581
3582
static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3583
{
3584
u64 mcg_cap = vcpu->arch.mcg_cap;
3585
unsigned bank_num = mcg_cap & 0xff;
3586
u32 msr = msr_info->index;
3587
u64 data = msr_info->data;
3588
u32 offset, last_msr;
3589
3590
switch (msr) {
3591
case MSR_IA32_MCG_STATUS:
3592
vcpu->arch.mcg_status = data;
3593
break;
3594
case MSR_IA32_MCG_CTL:
3595
if (!(mcg_cap & MCG_CTL_P) &&
3596
(data || !msr_info->host_initiated))
3597
return 1;
3598
if (data != 0 && data != ~(u64)0)
3599
return 1;
3600
vcpu->arch.mcg_ctl = data;
3601
break;
3602
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3603
last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3604
if (msr > last_msr)
3605
return 1;
3606
3607
if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3608
return 1;
3609
/* An attempt to write a 1 to a reserved bit raises #GP */
3610
if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3611
return 1;
3612
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3613
last_msr + 1 - MSR_IA32_MC0_CTL2);
3614
vcpu->arch.mci_ctl2_banks[offset] = data;
3615
break;
3616
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3617
last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3618
if (msr > last_msr)
3619
return 1;
3620
3621
/*
3622
* Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3623
* values are architecturally undefined. But, some Linux
3624
* kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3625
* issue on AMD K8s, allow bit 10 to be clear when setting all
3626
* other bits in order to avoid an uncaught #GP in the guest.
3627
*
3628
* UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3629
* single-bit ECC data errors.
3630
*/
3631
if (is_mci_control_msr(msr) &&
3632
data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3633
return 1;
3634
3635
/*
3636
* All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3637
* AMD-based CPUs allow non-zero values, but if and only if
3638
* HWCR[McStatusWrEn] is set.
3639
*/
3640
if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3641
data != 0 && !can_set_mci_status(vcpu))
3642
return 1;
3643
3644
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3645
last_msr + 1 - MSR_IA32_MC0_CTL);
3646
vcpu->arch.mce_banks[offset] = data;
3647
break;
3648
default:
3649
return 1;
3650
}
3651
return 0;
3652
}
3653
3654
static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3655
{
3656
u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3657
3658
return (vcpu->arch.apf.msr_en_val & mask) == mask;
3659
}
3660
3661
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3662
{
3663
gpa_t gpa = data & ~0x3f;
3664
3665
/* Bits 4:5 are reserved, Should be zero */
3666
if (data & 0x30)
3667
return 1;
3668
3669
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3670
(data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3671
return 1;
3672
3673
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3674
(data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3675
return 1;
3676
3677
if (!lapic_in_kernel(vcpu))
3678
return data ? 1 : 0;
3679
3680
vcpu->arch.apf.msr_en_val = data;
3681
3682
if (!kvm_pv_async_pf_enabled(vcpu)) {
3683
kvm_clear_async_pf_completion_queue(vcpu);
3684
kvm_async_pf_hash_reset(vcpu);
3685
return 0;
3686
}
3687
3688
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3689
sizeof(u64)))
3690
return 1;
3691
3692
vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3693
vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3694
3695
kvm_async_pf_wakeup_all(vcpu);
3696
3697
return 0;
3698
}
3699
3700
static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3701
{
3702
/* Bits 8-63 are reserved */
3703
if (data >> 8)
3704
return 1;
3705
3706
if (!lapic_in_kernel(vcpu))
3707
return 1;
3708
3709
vcpu->arch.apf.msr_int_val = data;
3710
3711
vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3712
3713
return 0;
3714
}
3715
3716
static void kvmclock_reset(struct kvm_vcpu *vcpu)
3717
{
3718
kvm_gpc_deactivate(&vcpu->arch.pv_time);
3719
vcpu->arch.time = 0;
3720
}
3721
3722
static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3723
{
3724
++vcpu->stat.tlb_flush;
3725
kvm_x86_call(flush_tlb_all)(vcpu);
3726
3727
/* Flushing all ASIDs flushes the current ASID... */
3728
kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3729
}
3730
3731
static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3732
{
3733
++vcpu->stat.tlb_flush;
3734
3735
if (!tdp_enabled) {
3736
/*
3737
* A TLB flush on behalf of the guest is equivalent to
3738
* INVPCID(all), toggling CR4.PGE, etc., which requires
3739
* a forced sync of the shadow page tables. Ensure all the
3740
* roots are synced and the guest TLB in hardware is clean.
3741
*/
3742
kvm_mmu_sync_roots(vcpu);
3743
kvm_mmu_sync_prev_roots(vcpu);
3744
}
3745
3746
kvm_x86_call(flush_tlb_guest)(vcpu);
3747
3748
/*
3749
* Flushing all "guest" TLB is always a superset of Hyper-V's fine
3750
* grained flushing.
3751
*/
3752
kvm_hv_vcpu_purge_flush_tlb(vcpu);
3753
}
3754
3755
3756
static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3757
{
3758
++vcpu->stat.tlb_flush;
3759
kvm_x86_call(flush_tlb_current)(vcpu);
3760
}
3761
3762
/*
3763
* Service "local" TLB flush requests, which are specific to the current MMU
3764
* context. In addition to the generic event handling in vcpu_enter_guest(),
3765
* TLB flushes that are targeted at an MMU context also need to be serviced
3766
* prior before nested VM-Enter/VM-Exit.
3767
*/
3768
void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3769
{
3770
if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3771
kvm_vcpu_flush_tlb_current(vcpu);
3772
3773
if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3774
kvm_vcpu_flush_tlb_guest(vcpu);
3775
}
3776
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_service_local_tlb_flush_requests);
3777
3778
static void record_steal_time(struct kvm_vcpu *vcpu)
3779
{
3780
struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3781
struct kvm_steal_time __user *st;
3782
struct kvm_memslots *slots;
3783
gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3784
u64 steal;
3785
u32 version;
3786
3787
if (kvm_xen_msr_enabled(vcpu->kvm)) {
3788
kvm_xen_runstate_set_running(vcpu);
3789
return;
3790
}
3791
3792
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3793
return;
3794
3795
if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3796
return;
3797
3798
slots = kvm_memslots(vcpu->kvm);
3799
3800
if (unlikely(slots->generation != ghc->generation ||
3801
gpa != ghc->gpa ||
3802
kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3803
/* We rely on the fact that it fits in a single page. */
3804
BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3805
3806
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3807
kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3808
return;
3809
}
3810
3811
st = (struct kvm_steal_time __user *)ghc->hva;
3812
/*
3813
* Doing a TLB flush here, on the guest's behalf, can avoid
3814
* expensive IPIs.
3815
*/
3816
if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3817
u8 st_preempted = 0;
3818
int err = -EFAULT;
3819
3820
if (!user_access_begin(st, sizeof(*st)))
3821
return;
3822
3823
asm volatile("1: xchgb %0, %2\n"
3824
"xor %1, %1\n"
3825
"2:\n"
3826
_ASM_EXTABLE_UA(1b, 2b)
3827
: "+q" (st_preempted),
3828
"+&r" (err),
3829
"+m" (st->preempted));
3830
if (err)
3831
goto out;
3832
3833
user_access_end();
3834
3835
vcpu->arch.st.preempted = 0;
3836
3837
trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3838
st_preempted & KVM_VCPU_FLUSH_TLB);
3839
if (st_preempted & KVM_VCPU_FLUSH_TLB)
3840
kvm_vcpu_flush_tlb_guest(vcpu);
3841
3842
if (!user_access_begin(st, sizeof(*st)))
3843
goto dirty;
3844
} else {
3845
if (!user_access_begin(st, sizeof(*st)))
3846
return;
3847
3848
unsafe_put_user(0, &st->preempted, out);
3849
vcpu->arch.st.preempted = 0;
3850
}
3851
3852
unsafe_get_user(version, &st->version, out);
3853
if (version & 1)
3854
version += 1; /* first time write, random junk */
3855
3856
version += 1;
3857
unsafe_put_user(version, &st->version, out);
3858
3859
smp_wmb();
3860
3861
unsafe_get_user(steal, &st->steal, out);
3862
steal += current->sched_info.run_delay -
3863
vcpu->arch.st.last_steal;
3864
vcpu->arch.st.last_steal = current->sched_info.run_delay;
3865
unsafe_put_user(steal, &st->steal, out);
3866
3867
version += 1;
3868
unsafe_put_user(version, &st->version, out);
3869
3870
out:
3871
user_access_end();
3872
dirty:
3873
mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3874
}
3875
3876
/*
3877
* Returns true if the MSR in question is managed via XSTATE, i.e. is context
3878
* switched with the rest of guest FPU state. Note! S_CET is _not_ context
3879
* switched via XSTATE even though it _is_ saved/restored via XSAVES/XRSTORS.
3880
* Because S_CET is loaded on VM-Enter and VM-Exit via dedicated VMCS fields,
3881
* the value saved/restored via XSTATE is always the host's value. That detail
3882
* is _extremely_ important, as the guest's S_CET must _never_ be resident in
3883
* hardware while executing in the host. Loading guest values for U_CET and
3884
* PL[0-3]_SSP while executing in the kernel is safe, as U_CET is specific to
3885
* userspace, and PL[0-3]_SSP are only consumed when transitioning to lower
3886
* privilege levels, i.e. are effectively only consumed by userspace as well.
3887
*/
3888
static bool is_xstate_managed_msr(struct kvm_vcpu *vcpu, u32 msr)
3889
{
3890
if (!vcpu)
3891
return false;
3892
3893
switch (msr) {
3894
case MSR_IA32_U_CET:
3895
return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ||
3896
guest_cpu_cap_has(vcpu, X86_FEATURE_IBT);
3897
case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
3898
return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
3899
default:
3900
return false;
3901
}
3902
}
3903
3904
/*
3905
* Lock (and if necessary, re-load) the guest FPU, i.e. XSTATE, and access an
3906
* MSR that is managed via XSTATE. Note, the caller is responsible for doing
3907
* the initial FPU load, this helper only ensures that guest state is resident
3908
* in hardware (the kernel can load its FPU state in IRQ context).
3909
*/
3910
static __always_inline void kvm_access_xstate_msr(struct kvm_vcpu *vcpu,
3911
struct msr_data *msr_info,
3912
int access)
3913
{
3914
BUILD_BUG_ON(access != MSR_TYPE_R && access != MSR_TYPE_W);
3915
3916
KVM_BUG_ON(!is_xstate_managed_msr(vcpu, msr_info->index), vcpu->kvm);
3917
KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm);
3918
3919
kvm_fpu_get();
3920
if (access == MSR_TYPE_R)
3921
rdmsrq(msr_info->index, msr_info->data);
3922
else
3923
wrmsrq(msr_info->index, msr_info->data);
3924
kvm_fpu_put();
3925
}
3926
3927
static void kvm_set_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3928
{
3929
kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_W);
3930
}
3931
3932
static void kvm_get_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3933
{
3934
kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_R);
3935
}
3936
3937
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3938
{
3939
u32 msr = msr_info->index;
3940
u64 data = msr_info->data;
3941
3942
/*
3943
* Do not allow host-initiated writes to trigger the Xen hypercall
3944
* page setup; it could incur locking paths which are not expected
3945
* if userspace sets the MSR in an unusual location.
3946
*/
3947
if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3948
!msr_info->host_initiated)
3949
return kvm_xen_write_hypercall_page(vcpu, data);
3950
3951
switch (msr) {
3952
case MSR_AMD64_NB_CFG:
3953
case MSR_IA32_UCODE_WRITE:
3954
case MSR_VM_HSAVE_PA:
3955
case MSR_AMD64_PATCH_LOADER:
3956
case MSR_AMD64_BU_CFG2:
3957
case MSR_AMD64_DC_CFG:
3958
case MSR_AMD64_TW_CFG:
3959
case MSR_F15H_EX_CFG:
3960
break;
3961
3962
case MSR_IA32_UCODE_REV:
3963
if (msr_info->host_initiated)
3964
vcpu->arch.microcode_version = data;
3965
break;
3966
case MSR_IA32_ARCH_CAPABILITIES:
3967
if (!msr_info->host_initiated ||
3968
!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3969
return KVM_MSR_RET_UNSUPPORTED;
3970
vcpu->arch.arch_capabilities = data;
3971
break;
3972
case MSR_IA32_PERF_CAPABILITIES:
3973
if (!msr_info->host_initiated ||
3974
!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3975
return KVM_MSR_RET_UNSUPPORTED;
3976
3977
if (data & ~kvm_caps.supported_perf_cap)
3978
return 1;
3979
3980
/*
3981
* Note, this is not just a performance optimization! KVM
3982
* disallows changing feature MSRs after the vCPU has run; PMU
3983
* refresh will bug the VM if called after the vCPU has run.
3984
*/
3985
if (vcpu->arch.perf_capabilities == data)
3986
break;
3987
3988
vcpu->arch.perf_capabilities = data;
3989
kvm_pmu_refresh(vcpu);
3990
break;
3991
case MSR_IA32_PRED_CMD: {
3992
u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3993
3994
if (!msr_info->host_initiated) {
3995
if ((!guest_has_pred_cmd_msr(vcpu)))
3996
return 1;
3997
3998
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3999
!guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
4000
reserved_bits |= PRED_CMD_IBPB;
4001
4002
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
4003
reserved_bits |= PRED_CMD_SBPB;
4004
}
4005
4006
if (!boot_cpu_has(X86_FEATURE_IBPB))
4007
reserved_bits |= PRED_CMD_IBPB;
4008
4009
if (!boot_cpu_has(X86_FEATURE_SBPB))
4010
reserved_bits |= PRED_CMD_SBPB;
4011
4012
if (data & reserved_bits)
4013
return 1;
4014
4015
if (!data)
4016
break;
4017
4018
wrmsrq(MSR_IA32_PRED_CMD, data);
4019
break;
4020
}
4021
case MSR_IA32_FLUSH_CMD:
4022
if (!msr_info->host_initiated &&
4023
!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
4024
return 1;
4025
4026
if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
4027
return 1;
4028
if (!data)
4029
break;
4030
4031
wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
4032
break;
4033
case MSR_EFER:
4034
return set_efer(vcpu, msr_info);
4035
case MSR_K7_HWCR:
4036
data &= ~(u64)0x40; /* ignore flush filter disable */
4037
data &= ~(u64)0x100; /* ignore ignne emulation enable */
4038
data &= ~(u64)0x8; /* ignore TLB cache disable */
4039
4040
/*
4041
* Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
4042
* through at least v6.6 whine if TscFreqSel is clear,
4043
* depending on F/M/S.
4044
*/
4045
if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
4046
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4047
return 1;
4048
}
4049
vcpu->arch.msr_hwcr = data;
4050
break;
4051
case MSR_FAM10H_MMIO_CONF_BASE:
4052
if (data != 0) {
4053
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4054
return 1;
4055
}
4056
break;
4057
case MSR_IA32_CR_PAT:
4058
if (!kvm_pat_valid(data))
4059
return 1;
4060
4061
vcpu->arch.pat = data;
4062
break;
4063
case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4064
case MSR_MTRRdefType:
4065
return kvm_mtrr_set_msr(vcpu, msr, data);
4066
case MSR_IA32_APICBASE:
4067
return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
4068
case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4069
return kvm_x2apic_msr_write(vcpu, msr, data);
4070
case MSR_IA32_TSC_DEADLINE:
4071
kvm_set_lapic_tscdeadline_msr(vcpu, data);
4072
break;
4073
case MSR_IA32_TSC_ADJUST:
4074
if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
4075
if (!msr_info->host_initiated) {
4076
s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
4077
adjust_tsc_offset_guest(vcpu, adj);
4078
/* Before back to guest, tsc_timestamp must be adjusted
4079
* as well, otherwise guest's percpu pvclock time could jump.
4080
*/
4081
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4082
}
4083
vcpu->arch.ia32_tsc_adjust_msr = data;
4084
}
4085
break;
4086
case MSR_IA32_MISC_ENABLE: {
4087
u64 old_val = vcpu->arch.ia32_misc_enable_msr;
4088
4089
if (!msr_info->host_initiated) {
4090
/* RO bits */
4091
if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
4092
return 1;
4093
4094
/* R bits, i.e. writes are ignored, but don't fault. */
4095
data = data & ~MSR_IA32_MISC_ENABLE_EMON;
4096
data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
4097
}
4098
4099
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
4100
((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
4101
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
4102
return 1;
4103
vcpu->arch.ia32_misc_enable_msr = data;
4104
vcpu->arch.cpuid_dynamic_bits_dirty = true;
4105
} else {
4106
vcpu->arch.ia32_misc_enable_msr = data;
4107
}
4108
break;
4109
}
4110
case MSR_IA32_SMBASE:
4111
if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4112
return 1;
4113
vcpu->arch.smbase = data;
4114
break;
4115
case MSR_IA32_POWER_CTL:
4116
vcpu->arch.msr_ia32_power_ctl = data;
4117
break;
4118
case MSR_IA32_TSC:
4119
if (msr_info->host_initiated) {
4120
kvm_synchronize_tsc(vcpu, &data);
4121
} else if (!vcpu->arch.guest_tsc_protected) {
4122
u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
4123
adjust_tsc_offset_guest(vcpu, adj);
4124
vcpu->arch.ia32_tsc_adjust_msr += adj;
4125
}
4126
break;
4127
case MSR_IA32_XSS:
4128
if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4129
return KVM_MSR_RET_UNSUPPORTED;
4130
4131
if (data & ~vcpu->arch.guest_supported_xss)
4132
return 1;
4133
if (vcpu->arch.ia32_xss == data)
4134
break;
4135
vcpu->arch.ia32_xss = data;
4136
vcpu->arch.cpuid_dynamic_bits_dirty = true;
4137
break;
4138
case MSR_SMI_COUNT:
4139
if (!msr_info->host_initiated)
4140
return 1;
4141
vcpu->arch.smi_count = data;
4142
break;
4143
case MSR_KVM_WALL_CLOCK_NEW:
4144
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4145
return 1;
4146
4147
vcpu->kvm->arch.wall_clock = data;
4148
kvm_write_wall_clock(vcpu->kvm, data, 0);
4149
break;
4150
case MSR_KVM_WALL_CLOCK:
4151
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4152
return 1;
4153
4154
vcpu->kvm->arch.wall_clock = data;
4155
kvm_write_wall_clock(vcpu->kvm, data, 0);
4156
break;
4157
case MSR_KVM_SYSTEM_TIME_NEW:
4158
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4159
return 1;
4160
4161
kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4162
break;
4163
case MSR_KVM_SYSTEM_TIME:
4164
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4165
return 1;
4166
4167
kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
4168
break;
4169
case MSR_KVM_ASYNC_PF_EN:
4170
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4171
return 1;
4172
4173
if (kvm_pv_enable_async_pf(vcpu, data))
4174
return 1;
4175
break;
4176
case MSR_KVM_ASYNC_PF_INT:
4177
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4178
return 1;
4179
4180
if (kvm_pv_enable_async_pf_int(vcpu, data))
4181
return 1;
4182
break;
4183
case MSR_KVM_ASYNC_PF_ACK:
4184
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4185
return 1;
4186
if (data & 0x1) {
4187
vcpu->arch.apf.pageready_pending = false;
4188
kvm_check_async_pf_completion(vcpu);
4189
}
4190
break;
4191
case MSR_KVM_STEAL_TIME:
4192
if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4193
return 1;
4194
4195
if (unlikely(!sched_info_on()))
4196
return 1;
4197
4198
if (data & KVM_STEAL_RESERVED_MASK)
4199
return 1;
4200
4201
vcpu->arch.st.msr_val = data;
4202
4203
if (!(data & KVM_MSR_ENABLED))
4204
break;
4205
4206
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4207
4208
break;
4209
case MSR_KVM_PV_EOI_EN:
4210
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4211
return 1;
4212
4213
if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4214
return 1;
4215
break;
4216
4217
case MSR_KVM_POLL_CONTROL:
4218
if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4219
return 1;
4220
4221
/* only enable bit supported */
4222
if (data & (-1ULL << 1))
4223
return 1;
4224
4225
vcpu->arch.msr_kvm_poll_control = data;
4226
break;
4227
4228
case MSR_IA32_MCG_CTL:
4229
case MSR_IA32_MCG_STATUS:
4230
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4231
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4232
return set_msr_mce(vcpu, msr_info);
4233
4234
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4235
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4236
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4237
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4238
if (kvm_pmu_is_valid_msr(vcpu, msr))
4239
return kvm_pmu_set_msr(vcpu, msr_info);
4240
4241
if (data)
4242
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4243
break;
4244
case MSR_K7_CLK_CTL:
4245
/*
4246
* Ignore all writes to this no longer documented MSR.
4247
* Writes are only relevant for old K7 processors,
4248
* all pre-dating SVM, but a recommended workaround from
4249
* AMD for these chips. It is possible to specify the
4250
* affected processor models on the command line, hence
4251
* the need to ignore the workaround.
4252
*/
4253
break;
4254
#ifdef CONFIG_KVM_HYPERV
4255
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4256
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4257
case HV_X64_MSR_SYNDBG_OPTIONS:
4258
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4259
case HV_X64_MSR_CRASH_CTL:
4260
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4261
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4262
case HV_X64_MSR_TSC_EMULATION_CONTROL:
4263
case HV_X64_MSR_TSC_EMULATION_STATUS:
4264
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4265
return kvm_hv_set_msr_common(vcpu, msr, data,
4266
msr_info->host_initiated);
4267
#endif
4268
case MSR_IA32_BBL_CR_CTL3:
4269
/* Drop writes to this legacy MSR -- see rdmsr
4270
* counterpart for further detail.
4271
*/
4272
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4273
break;
4274
case MSR_AMD64_OSVW_ID_LENGTH:
4275
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4276
return 1;
4277
vcpu->arch.osvw.length = data;
4278
break;
4279
case MSR_AMD64_OSVW_STATUS:
4280
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4281
return 1;
4282
vcpu->arch.osvw.status = data;
4283
break;
4284
case MSR_PLATFORM_INFO:
4285
if (!msr_info->host_initiated)
4286
return 1;
4287
vcpu->arch.msr_platform_info = data;
4288
break;
4289
case MSR_MISC_FEATURES_ENABLES:
4290
if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4291
(data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4292
!supports_cpuid_fault(vcpu)))
4293
return 1;
4294
vcpu->arch.msr_misc_features_enables = data;
4295
break;
4296
#ifdef CONFIG_X86_64
4297
case MSR_IA32_XFD:
4298
if (!msr_info->host_initiated &&
4299
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4300
return 1;
4301
4302
if (data & ~kvm_guest_supported_xfd(vcpu))
4303
return 1;
4304
4305
fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4306
break;
4307
case MSR_IA32_XFD_ERR:
4308
if (!msr_info->host_initiated &&
4309
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4310
return 1;
4311
4312
if (data & ~kvm_guest_supported_xfd(vcpu))
4313
return 1;
4314
4315
vcpu->arch.guest_fpu.xfd_err = data;
4316
break;
4317
#endif
4318
case MSR_IA32_U_CET:
4319
case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4320
kvm_set_xstate_msr(vcpu, msr_info);
4321
break;
4322
default:
4323
if (kvm_pmu_is_valid_msr(vcpu, msr))
4324
return kvm_pmu_set_msr(vcpu, msr_info);
4325
4326
return KVM_MSR_RET_UNSUPPORTED;
4327
}
4328
return 0;
4329
}
4330
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_msr_common);
4331
4332
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4333
{
4334
u64 data;
4335
u64 mcg_cap = vcpu->arch.mcg_cap;
4336
unsigned bank_num = mcg_cap & 0xff;
4337
u32 offset, last_msr;
4338
4339
switch (msr) {
4340
case MSR_IA32_P5_MC_ADDR:
4341
case MSR_IA32_P5_MC_TYPE:
4342
data = 0;
4343
break;
4344
case MSR_IA32_MCG_CAP:
4345
data = vcpu->arch.mcg_cap;
4346
break;
4347
case MSR_IA32_MCG_CTL:
4348
if (!(mcg_cap & MCG_CTL_P) && !host)
4349
return 1;
4350
data = vcpu->arch.mcg_ctl;
4351
break;
4352
case MSR_IA32_MCG_STATUS:
4353
data = vcpu->arch.mcg_status;
4354
break;
4355
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4356
last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4357
if (msr > last_msr)
4358
return 1;
4359
4360
if (!(mcg_cap & MCG_CMCI_P) && !host)
4361
return 1;
4362
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4363
last_msr + 1 - MSR_IA32_MC0_CTL2);
4364
data = vcpu->arch.mci_ctl2_banks[offset];
4365
break;
4366
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4367
last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4368
if (msr > last_msr)
4369
return 1;
4370
4371
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4372
last_msr + 1 - MSR_IA32_MC0_CTL);
4373
data = vcpu->arch.mce_banks[offset];
4374
break;
4375
default:
4376
return 1;
4377
}
4378
*pdata = data;
4379
return 0;
4380
}
4381
4382
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4383
{
4384
switch (msr_info->index) {
4385
case MSR_IA32_PLATFORM_ID:
4386
case MSR_IA32_EBL_CR_POWERON:
4387
case MSR_IA32_LASTBRANCHFROMIP:
4388
case MSR_IA32_LASTBRANCHTOIP:
4389
case MSR_IA32_LASTINTFROMIP:
4390
case MSR_IA32_LASTINTTOIP:
4391
case MSR_AMD64_SYSCFG:
4392
case MSR_K8_TSEG_ADDR:
4393
case MSR_K8_TSEG_MASK:
4394
case MSR_VM_HSAVE_PA:
4395
case MSR_K8_INT_PENDING_MSG:
4396
case MSR_AMD64_NB_CFG:
4397
case MSR_FAM10H_MMIO_CONF_BASE:
4398
case MSR_AMD64_BU_CFG2:
4399
case MSR_IA32_PERF_CTL:
4400
case MSR_AMD64_DC_CFG:
4401
case MSR_AMD64_TW_CFG:
4402
case MSR_F15H_EX_CFG:
4403
/*
4404
* Intel Sandy Bridge CPUs must support the RAPL (running average power
4405
* limit) MSRs. Just return 0, as we do not want to expose the host
4406
* data here. Do not conditionalize this on CPUID, as KVM does not do
4407
* so for existing CPU-specific MSRs.
4408
*/
4409
case MSR_RAPL_POWER_UNIT:
4410
case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4411
case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4412
case MSR_PKG_ENERGY_STATUS: /* Total package */
4413
case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4414
msr_info->data = 0;
4415
break;
4416
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4417
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4418
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4419
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4420
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4421
return kvm_pmu_get_msr(vcpu, msr_info);
4422
msr_info->data = 0;
4423
break;
4424
case MSR_IA32_UCODE_REV:
4425
msr_info->data = vcpu->arch.microcode_version;
4426
break;
4427
case MSR_IA32_ARCH_CAPABILITIES:
4428
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4429
return KVM_MSR_RET_UNSUPPORTED;
4430
msr_info->data = vcpu->arch.arch_capabilities;
4431
break;
4432
case MSR_IA32_PERF_CAPABILITIES:
4433
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4434
return KVM_MSR_RET_UNSUPPORTED;
4435
msr_info->data = vcpu->arch.perf_capabilities;
4436
break;
4437
case MSR_IA32_POWER_CTL:
4438
msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4439
break;
4440
case MSR_IA32_TSC: {
4441
/*
4442
* Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4443
* even when not intercepted. AMD manual doesn't explicitly
4444
* state this but appears to behave the same.
4445
*
4446
* On userspace reads and writes, however, we unconditionally
4447
* return L1's TSC value to ensure backwards-compatible
4448
* behavior for migration.
4449
*/
4450
u64 offset, ratio;
4451
4452
if (msr_info->host_initiated) {
4453
offset = vcpu->arch.l1_tsc_offset;
4454
ratio = vcpu->arch.l1_tsc_scaling_ratio;
4455
} else {
4456
offset = vcpu->arch.tsc_offset;
4457
ratio = vcpu->arch.tsc_scaling_ratio;
4458
}
4459
4460
msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4461
break;
4462
}
4463
case MSR_IA32_CR_PAT:
4464
msr_info->data = vcpu->arch.pat;
4465
break;
4466
case MSR_MTRRcap:
4467
case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4468
case MSR_MTRRdefType:
4469
return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4470
case 0xcd: /* fsb frequency */
4471
msr_info->data = 3;
4472
break;
4473
/*
4474
* MSR_EBC_FREQUENCY_ID
4475
* Conservative value valid for even the basic CPU models.
4476
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
4477
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4478
* and 266MHz for model 3, or 4. Set Core Clock
4479
* Frequency to System Bus Frequency Ratio to 1 (bits
4480
* 31:24) even though these are only valid for CPU
4481
* models > 2, however guests may end up dividing or
4482
* multiplying by zero otherwise.
4483
*/
4484
case MSR_EBC_FREQUENCY_ID:
4485
msr_info->data = 1 << 24;
4486
break;
4487
case MSR_IA32_APICBASE:
4488
msr_info->data = vcpu->arch.apic_base;
4489
break;
4490
case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4491
return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4492
case MSR_IA32_TSC_DEADLINE:
4493
msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4494
break;
4495
case MSR_IA32_TSC_ADJUST:
4496
msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4497
break;
4498
case MSR_IA32_MISC_ENABLE:
4499
msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4500
break;
4501
case MSR_IA32_SMBASE:
4502
if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4503
return 1;
4504
msr_info->data = vcpu->arch.smbase;
4505
break;
4506
case MSR_SMI_COUNT:
4507
msr_info->data = vcpu->arch.smi_count;
4508
break;
4509
case MSR_IA32_PERF_STATUS:
4510
/* TSC increment by tick */
4511
msr_info->data = 1000ULL;
4512
/* CPU multiplier */
4513
msr_info->data |= (((uint64_t)4ULL) << 40);
4514
break;
4515
case MSR_EFER:
4516
msr_info->data = vcpu->arch.efer;
4517
break;
4518
case MSR_KVM_WALL_CLOCK:
4519
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4520
return 1;
4521
4522
msr_info->data = vcpu->kvm->arch.wall_clock;
4523
break;
4524
case MSR_KVM_WALL_CLOCK_NEW:
4525
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4526
return 1;
4527
4528
msr_info->data = vcpu->kvm->arch.wall_clock;
4529
break;
4530
case MSR_KVM_SYSTEM_TIME:
4531
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4532
return 1;
4533
4534
msr_info->data = vcpu->arch.time;
4535
break;
4536
case MSR_KVM_SYSTEM_TIME_NEW:
4537
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4538
return 1;
4539
4540
msr_info->data = vcpu->arch.time;
4541
break;
4542
case MSR_KVM_ASYNC_PF_EN:
4543
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4544
return 1;
4545
4546
msr_info->data = vcpu->arch.apf.msr_en_val;
4547
break;
4548
case MSR_KVM_ASYNC_PF_INT:
4549
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4550
return 1;
4551
4552
msr_info->data = vcpu->arch.apf.msr_int_val;
4553
break;
4554
case MSR_KVM_ASYNC_PF_ACK:
4555
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4556
return 1;
4557
4558
msr_info->data = 0;
4559
break;
4560
case MSR_KVM_STEAL_TIME:
4561
if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4562
return 1;
4563
4564
msr_info->data = vcpu->arch.st.msr_val;
4565
break;
4566
case MSR_KVM_PV_EOI_EN:
4567
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4568
return 1;
4569
4570
msr_info->data = vcpu->arch.pv_eoi.msr_val;
4571
break;
4572
case MSR_KVM_POLL_CONTROL:
4573
if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4574
return 1;
4575
4576
msr_info->data = vcpu->arch.msr_kvm_poll_control;
4577
break;
4578
case MSR_IA32_P5_MC_ADDR:
4579
case MSR_IA32_P5_MC_TYPE:
4580
case MSR_IA32_MCG_CAP:
4581
case MSR_IA32_MCG_CTL:
4582
case MSR_IA32_MCG_STATUS:
4583
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4584
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4585
return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4586
msr_info->host_initiated);
4587
case MSR_IA32_XSS:
4588
if (!msr_info->host_initiated &&
4589
!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4590
return 1;
4591
msr_info->data = vcpu->arch.ia32_xss;
4592
break;
4593
case MSR_K7_CLK_CTL:
4594
/*
4595
* Provide expected ramp-up count for K7. All other
4596
* are set to zero, indicating minimum divisors for
4597
* every field.
4598
*
4599
* This prevents guest kernels on AMD host with CPU
4600
* type 6, model 8 and higher from exploding due to
4601
* the rdmsr failing.
4602
*/
4603
msr_info->data = 0x20000000;
4604
break;
4605
#ifdef CONFIG_KVM_HYPERV
4606
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4607
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4608
case HV_X64_MSR_SYNDBG_OPTIONS:
4609
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4610
case HV_X64_MSR_CRASH_CTL:
4611
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4612
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4613
case HV_X64_MSR_TSC_EMULATION_CONTROL:
4614
case HV_X64_MSR_TSC_EMULATION_STATUS:
4615
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4616
return kvm_hv_get_msr_common(vcpu,
4617
msr_info->index, &msr_info->data,
4618
msr_info->host_initiated);
4619
#endif
4620
case MSR_IA32_BBL_CR_CTL3:
4621
/* This legacy MSR exists but isn't fully documented in current
4622
* silicon. It is however accessed by winxp in very narrow
4623
* scenarios where it sets bit #19, itself documented as
4624
* a "reserved" bit. Best effort attempt to source coherent
4625
* read data here should the balance of the register be
4626
* interpreted by the guest:
4627
*
4628
* L2 cache control register 3: 64GB range, 256KB size,
4629
* enabled, latency 0x1, configured
4630
*/
4631
msr_info->data = 0xbe702111;
4632
break;
4633
case MSR_AMD64_OSVW_ID_LENGTH:
4634
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4635
return 1;
4636
msr_info->data = vcpu->arch.osvw.length;
4637
break;
4638
case MSR_AMD64_OSVW_STATUS:
4639
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4640
return 1;
4641
msr_info->data = vcpu->arch.osvw.status;
4642
break;
4643
case MSR_PLATFORM_INFO:
4644
if (!msr_info->host_initiated &&
4645
!vcpu->kvm->arch.guest_can_read_msr_platform_info)
4646
return 1;
4647
msr_info->data = vcpu->arch.msr_platform_info;
4648
break;
4649
case MSR_MISC_FEATURES_ENABLES:
4650
msr_info->data = vcpu->arch.msr_misc_features_enables;
4651
break;
4652
case MSR_K7_HWCR:
4653
msr_info->data = vcpu->arch.msr_hwcr;
4654
break;
4655
#ifdef CONFIG_X86_64
4656
case MSR_IA32_XFD:
4657
if (!msr_info->host_initiated &&
4658
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4659
return 1;
4660
4661
msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4662
break;
4663
case MSR_IA32_XFD_ERR:
4664
if (!msr_info->host_initiated &&
4665
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4666
return 1;
4667
4668
msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4669
break;
4670
#endif
4671
case MSR_IA32_U_CET:
4672
case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4673
kvm_get_xstate_msr(vcpu, msr_info);
4674
break;
4675
default:
4676
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4677
return kvm_pmu_get_msr(vcpu, msr_info);
4678
4679
return KVM_MSR_RET_UNSUPPORTED;
4680
}
4681
return 0;
4682
}
4683
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_msr_common);
4684
4685
/*
4686
* Read or write a bunch of msrs. All parameters are kernel addresses.
4687
*
4688
* @return number of msrs set successfully.
4689
*/
4690
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4691
struct kvm_msr_entry *entries,
4692
int (*do_msr)(struct kvm_vcpu *vcpu,
4693
unsigned index, u64 *data))
4694
{
4695
bool fpu_loaded = false;
4696
int i;
4697
4698
for (i = 0; i < msrs->nmsrs; ++i) {
4699
/*
4700
* If userspace is accessing one or more XSTATE-managed MSRs,
4701
* temporarily load the guest's FPU state so that the guest's
4702
* MSR value(s) is resident in hardware and thus can be accessed
4703
* via RDMSR/WRMSR.
4704
*/
4705
if (!fpu_loaded && is_xstate_managed_msr(vcpu, entries[i].index)) {
4706
kvm_load_guest_fpu(vcpu);
4707
fpu_loaded = true;
4708
}
4709
if (do_msr(vcpu, entries[i].index, &entries[i].data))
4710
break;
4711
}
4712
if (fpu_loaded)
4713
kvm_put_guest_fpu(vcpu);
4714
4715
return i;
4716
}
4717
4718
/*
4719
* Read or write a bunch of msrs. Parameters are user addresses.
4720
*
4721
* @return number of msrs set successfully.
4722
*/
4723
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4724
int (*do_msr)(struct kvm_vcpu *vcpu,
4725
unsigned index, u64 *data),
4726
int writeback)
4727
{
4728
struct kvm_msrs msrs;
4729
struct kvm_msr_entry *entries;
4730
unsigned size;
4731
int r;
4732
4733
r = -EFAULT;
4734
if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4735
goto out;
4736
4737
r = -E2BIG;
4738
if (msrs.nmsrs >= MAX_IO_MSRS)
4739
goto out;
4740
4741
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4742
entries = memdup_user(user_msrs->entries, size);
4743
if (IS_ERR(entries)) {
4744
r = PTR_ERR(entries);
4745
goto out;
4746
}
4747
4748
r = __msr_io(vcpu, &msrs, entries, do_msr);
4749
4750
if (writeback && copy_to_user(user_msrs->entries, entries, size))
4751
r = -EFAULT;
4752
4753
kfree(entries);
4754
out:
4755
return r;
4756
}
4757
4758
static inline bool kvm_can_mwait_in_guest(void)
4759
{
4760
return boot_cpu_has(X86_FEATURE_MWAIT) &&
4761
!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4762
boot_cpu_has(X86_FEATURE_ARAT);
4763
}
4764
4765
static u64 kvm_get_allowed_disable_exits(void)
4766
{
4767
u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4768
4769
if (boot_cpu_has(X86_FEATURE_APERFMPERF))
4770
r |= KVM_X86_DISABLE_EXITS_APERFMPERF;
4771
4772
if (!mitigate_smt_rsb) {
4773
r |= KVM_X86_DISABLE_EXITS_HLT |
4774
KVM_X86_DISABLE_EXITS_CSTATE;
4775
4776
if (kvm_can_mwait_in_guest())
4777
r |= KVM_X86_DISABLE_EXITS_MWAIT;
4778
}
4779
return r;
4780
}
4781
4782
#ifdef CONFIG_KVM_HYPERV
4783
static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4784
struct kvm_cpuid2 __user *cpuid_arg)
4785
{
4786
struct kvm_cpuid2 cpuid;
4787
int r;
4788
4789
r = -EFAULT;
4790
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4791
return r;
4792
4793
r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4794
if (r)
4795
return r;
4796
4797
r = -EFAULT;
4798
if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4799
return r;
4800
4801
return 0;
4802
}
4803
#endif
4804
4805
static bool kvm_is_vm_type_supported(unsigned long type)
4806
{
4807
return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4808
}
4809
4810
static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4811
{
4812
return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4813
}
4814
4815
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4816
{
4817
int r = 0;
4818
4819
switch (ext) {
4820
case KVM_CAP_IRQCHIP:
4821
case KVM_CAP_HLT:
4822
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4823
case KVM_CAP_SET_TSS_ADDR:
4824
case KVM_CAP_EXT_CPUID:
4825
case KVM_CAP_EXT_EMUL_CPUID:
4826
case KVM_CAP_CLOCKSOURCE:
4827
#ifdef CONFIG_KVM_IOAPIC
4828
case KVM_CAP_PIT:
4829
case KVM_CAP_PIT2:
4830
case KVM_CAP_PIT_STATE2:
4831
case KVM_CAP_REINJECT_CONTROL:
4832
#endif
4833
case KVM_CAP_NOP_IO_DELAY:
4834
case KVM_CAP_MP_STATE:
4835
case KVM_CAP_SYNC_MMU:
4836
case KVM_CAP_USER_NMI:
4837
case KVM_CAP_IRQ_INJECT_STATUS:
4838
case KVM_CAP_IOEVENTFD:
4839
case KVM_CAP_IOEVENTFD_NO_LENGTH:
4840
4841
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4842
case KVM_CAP_VCPU_EVENTS:
4843
#ifdef CONFIG_KVM_HYPERV
4844
case KVM_CAP_HYPERV:
4845
case KVM_CAP_HYPERV_VAPIC:
4846
case KVM_CAP_HYPERV_SPIN:
4847
case KVM_CAP_HYPERV_TIME:
4848
case KVM_CAP_HYPERV_SYNIC:
4849
case KVM_CAP_HYPERV_SYNIC2:
4850
case KVM_CAP_HYPERV_VP_INDEX:
4851
case KVM_CAP_HYPERV_EVENTFD:
4852
case KVM_CAP_HYPERV_TLBFLUSH:
4853
case KVM_CAP_HYPERV_SEND_IPI:
4854
case KVM_CAP_HYPERV_CPUID:
4855
case KVM_CAP_HYPERV_ENFORCE_CPUID:
4856
case KVM_CAP_SYS_HYPERV_CPUID:
4857
#endif
4858
case KVM_CAP_PCI_SEGMENT:
4859
case KVM_CAP_DEBUGREGS:
4860
case KVM_CAP_X86_ROBUST_SINGLESTEP:
4861
case KVM_CAP_XSAVE:
4862
case KVM_CAP_ASYNC_PF:
4863
case KVM_CAP_ASYNC_PF_INT:
4864
case KVM_CAP_GET_TSC_KHZ:
4865
case KVM_CAP_KVMCLOCK_CTRL:
4866
case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4867
case KVM_CAP_TSC_DEADLINE_TIMER:
4868
case KVM_CAP_DISABLE_QUIRKS:
4869
case KVM_CAP_SET_BOOT_CPU_ID:
4870
case KVM_CAP_SPLIT_IRQCHIP:
4871
case KVM_CAP_IMMEDIATE_EXIT:
4872
case KVM_CAP_PMU_EVENT_FILTER:
4873
case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4874
case KVM_CAP_GET_MSR_FEATURES:
4875
case KVM_CAP_MSR_PLATFORM_INFO:
4876
case KVM_CAP_EXCEPTION_PAYLOAD:
4877
case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4878
case KVM_CAP_SET_GUEST_DEBUG:
4879
case KVM_CAP_LAST_CPU:
4880
case KVM_CAP_X86_USER_SPACE_MSR:
4881
case KVM_CAP_X86_MSR_FILTER:
4882
case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4883
#ifdef CONFIG_X86_SGX_KVM
4884
case KVM_CAP_SGX_ATTRIBUTE:
4885
#endif
4886
case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4887
case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4888
case KVM_CAP_SREGS2:
4889
case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4890
case KVM_CAP_VCPU_ATTRIBUTES:
4891
case KVM_CAP_SYS_ATTRIBUTES:
4892
case KVM_CAP_VAPIC:
4893
case KVM_CAP_ENABLE_CAP:
4894
case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4895
case KVM_CAP_IRQFD_RESAMPLE:
4896
case KVM_CAP_MEMORY_FAULT_INFO:
4897
case KVM_CAP_X86_GUEST_MODE:
4898
case KVM_CAP_ONE_REG:
4899
r = 1;
4900
break;
4901
case KVM_CAP_PRE_FAULT_MEMORY:
4902
r = tdp_enabled;
4903
break;
4904
case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4905
r = APIC_BUS_CYCLE_NS_DEFAULT;
4906
break;
4907
case KVM_CAP_EXIT_HYPERCALL:
4908
r = KVM_EXIT_HYPERCALL_VALID_MASK;
4909
break;
4910
case KVM_CAP_SET_GUEST_DEBUG2:
4911
return KVM_GUESTDBG_VALID_MASK;
4912
#ifdef CONFIG_KVM_XEN
4913
case KVM_CAP_XEN_HVM:
4914
r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4915
KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4916
KVM_XEN_HVM_CONFIG_SHARED_INFO |
4917
KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4918
KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4919
KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4920
KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4921
if (sched_info_on())
4922
r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4923
KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4924
break;
4925
#endif
4926
case KVM_CAP_SYNC_REGS:
4927
r = kvm_sync_valid_fields(kvm);
4928
break;
4929
case KVM_CAP_ADJUST_CLOCK:
4930
r = KVM_CLOCK_VALID_FLAGS;
4931
break;
4932
case KVM_CAP_X86_DISABLE_EXITS:
4933
r = kvm_get_allowed_disable_exits();
4934
break;
4935
case KVM_CAP_X86_SMM:
4936
if (!IS_ENABLED(CONFIG_KVM_SMM))
4937
break;
4938
4939
/* SMBASE is usually relocated above 1M on modern chipsets,
4940
* and SMM handlers might indeed rely on 4G segment limits,
4941
* so do not report SMM to be available if real mode is
4942
* emulated via vm86 mode. Still, do not go to great lengths
4943
* to avoid userspace's usage of the feature, because it is a
4944
* fringe case that is not enabled except via specific settings
4945
* of the module parameters.
4946
*/
4947
r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4948
break;
4949
case KVM_CAP_NR_VCPUS:
4950
r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4951
break;
4952
case KVM_CAP_MAX_VCPUS:
4953
r = KVM_MAX_VCPUS;
4954
if (kvm)
4955
r = kvm->max_vcpus;
4956
break;
4957
case KVM_CAP_MAX_VCPU_ID:
4958
r = KVM_MAX_VCPU_IDS;
4959
break;
4960
case KVM_CAP_PV_MMU: /* obsolete */
4961
r = 0;
4962
break;
4963
case KVM_CAP_MCE:
4964
r = KVM_MAX_MCE_BANKS;
4965
break;
4966
case KVM_CAP_XCRS:
4967
r = boot_cpu_has(X86_FEATURE_XSAVE);
4968
break;
4969
case KVM_CAP_TSC_CONTROL:
4970
case KVM_CAP_VM_TSC_CONTROL:
4971
r = kvm_caps.has_tsc_control;
4972
break;
4973
case KVM_CAP_X2APIC_API:
4974
r = KVM_X2APIC_API_VALID_FLAGS;
4975
break;
4976
case KVM_CAP_NESTED_STATE:
4977
r = kvm_x86_ops.nested_ops->get_state ?
4978
kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4979
break;
4980
#ifdef CONFIG_KVM_HYPERV
4981
case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4982
r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4983
break;
4984
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4985
r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4986
break;
4987
#endif
4988
case KVM_CAP_SMALLER_MAXPHYADDR:
4989
r = (int) allow_smaller_maxphyaddr;
4990
break;
4991
case KVM_CAP_STEAL_TIME:
4992
r = sched_info_on();
4993
break;
4994
case KVM_CAP_X86_BUS_LOCK_EXIT:
4995
if (kvm_caps.has_bus_lock_exit)
4996
r = KVM_BUS_LOCK_DETECTION_OFF |
4997
KVM_BUS_LOCK_DETECTION_EXIT;
4998
else
4999
r = 0;
5000
break;
5001
case KVM_CAP_XSAVE2: {
5002
r = xstate_required_size(kvm_get_filtered_xcr0(), false);
5003
if (r < sizeof(struct kvm_xsave))
5004
r = sizeof(struct kvm_xsave);
5005
break;
5006
}
5007
case KVM_CAP_PMU_CAPABILITY:
5008
r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
5009
break;
5010
case KVM_CAP_DISABLE_QUIRKS2:
5011
r = kvm_caps.supported_quirks;
5012
break;
5013
case KVM_CAP_X86_NOTIFY_VMEXIT:
5014
r = kvm_caps.has_notify_vmexit;
5015
break;
5016
case KVM_CAP_VM_TYPES:
5017
r = kvm_caps.supported_vm_types;
5018
break;
5019
case KVM_CAP_READONLY_MEM:
5020
r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
5021
break;
5022
default:
5023
break;
5024
}
5025
return r;
5026
}
5027
5028
static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
5029
{
5030
if (attr->group) {
5031
if (kvm_x86_ops.dev_get_attr)
5032
return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
5033
return -ENXIO;
5034
}
5035
5036
switch (attr->attr) {
5037
case KVM_X86_XCOMP_GUEST_SUPP:
5038
*val = kvm_caps.supported_xcr0;
5039
return 0;
5040
default:
5041
return -ENXIO;
5042
}
5043
}
5044
5045
static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
5046
{
5047
u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5048
int r;
5049
u64 val;
5050
5051
r = __kvm_x86_dev_get_attr(attr, &val);
5052
if (r < 0)
5053
return r;
5054
5055
if (put_user(val, uaddr))
5056
return -EFAULT;
5057
5058
return 0;
5059
}
5060
5061
static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
5062
{
5063
u64 val;
5064
5065
return __kvm_x86_dev_get_attr(attr, &val);
5066
}
5067
5068
long kvm_arch_dev_ioctl(struct file *filp,
5069
unsigned int ioctl, unsigned long arg)
5070
{
5071
void __user *argp = (void __user *)arg;
5072
long r;
5073
5074
switch (ioctl) {
5075
case KVM_GET_MSR_INDEX_LIST: {
5076
struct kvm_msr_list __user *user_msr_list = argp;
5077
struct kvm_msr_list msr_list;
5078
unsigned n;
5079
5080
r = -EFAULT;
5081
if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5082
goto out;
5083
n = msr_list.nmsrs;
5084
msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
5085
if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5086
goto out;
5087
r = -E2BIG;
5088
if (n < msr_list.nmsrs)
5089
goto out;
5090
r = -EFAULT;
5091
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
5092
num_msrs_to_save * sizeof(u32)))
5093
goto out;
5094
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
5095
&emulated_msrs,
5096
num_emulated_msrs * sizeof(u32)))
5097
goto out;
5098
r = 0;
5099
break;
5100
}
5101
case KVM_GET_SUPPORTED_CPUID:
5102
case KVM_GET_EMULATED_CPUID: {
5103
struct kvm_cpuid2 __user *cpuid_arg = argp;
5104
struct kvm_cpuid2 cpuid;
5105
5106
r = -EFAULT;
5107
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5108
goto out;
5109
5110
r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
5111
ioctl);
5112
if (r)
5113
goto out;
5114
5115
r = -EFAULT;
5116
if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5117
goto out;
5118
r = 0;
5119
break;
5120
}
5121
case KVM_X86_GET_MCE_CAP_SUPPORTED:
5122
r = -EFAULT;
5123
if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
5124
sizeof(kvm_caps.supported_mce_cap)))
5125
goto out;
5126
r = 0;
5127
break;
5128
case KVM_GET_MSR_FEATURE_INDEX_LIST: {
5129
struct kvm_msr_list __user *user_msr_list = argp;
5130
struct kvm_msr_list msr_list;
5131
unsigned int n;
5132
5133
r = -EFAULT;
5134
if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5135
goto out;
5136
n = msr_list.nmsrs;
5137
msr_list.nmsrs = num_msr_based_features;
5138
if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5139
goto out;
5140
r = -E2BIG;
5141
if (n < msr_list.nmsrs)
5142
goto out;
5143
r = -EFAULT;
5144
if (copy_to_user(user_msr_list->indices, &msr_based_features,
5145
num_msr_based_features * sizeof(u32)))
5146
goto out;
5147
r = 0;
5148
break;
5149
}
5150
case KVM_GET_MSRS:
5151
r = msr_io(NULL, argp, do_get_feature_msr, 1);
5152
break;
5153
#ifdef CONFIG_KVM_HYPERV
5154
case KVM_GET_SUPPORTED_HV_CPUID:
5155
r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
5156
break;
5157
#endif
5158
case KVM_GET_DEVICE_ATTR: {
5159
struct kvm_device_attr attr;
5160
r = -EFAULT;
5161
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5162
break;
5163
r = kvm_x86_dev_get_attr(&attr);
5164
break;
5165
}
5166
case KVM_HAS_DEVICE_ATTR: {
5167
struct kvm_device_attr attr;
5168
r = -EFAULT;
5169
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5170
break;
5171
r = kvm_x86_dev_has_attr(&attr);
5172
break;
5173
}
5174
default:
5175
r = -EINVAL;
5176
break;
5177
}
5178
out:
5179
return r;
5180
}
5181
5182
static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5183
{
5184
return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5185
}
5186
5187
static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
5188
5189
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5190
{
5191
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
5192
5193
vcpu->arch.l1tf_flush_l1d = true;
5194
5195
if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
5196
pmu->need_cleanup = true;
5197
kvm_make_request(KVM_REQ_PMU, vcpu);
5198
}
5199
5200
/* Address WBINVD may be executed by guest */
5201
if (need_emulate_wbinvd(vcpu)) {
5202
if (kvm_x86_call(has_wbinvd_exit)())
5203
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5204
else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5205
wbinvd_on_cpu(vcpu->cpu);
5206
}
5207
5208
kvm_x86_call(vcpu_load)(vcpu, cpu);
5209
5210
if (vcpu != per_cpu(last_vcpu, cpu)) {
5211
/*
5212
* Flush the branch predictor when switching vCPUs on the same
5213
* physical CPU, as each vCPU needs its own branch prediction
5214
* domain. No IBPB is needed when switching between L1 and L2
5215
* on the same vCPU unless IBRS is advertised to the vCPU; that
5216
* is handled on the nested VM-Exit path.
5217
*/
5218
if (static_branch_likely(&switch_vcpu_ibpb))
5219
indirect_branch_prediction_barrier();
5220
per_cpu(last_vcpu, cpu) = vcpu;
5221
}
5222
5223
/* Save host pkru register if supported */
5224
vcpu->arch.host_pkru = read_pkru();
5225
5226
/* Apply any externally detected TSC adjustments (due to suspend) */
5227
if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5228
adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5229
vcpu->arch.tsc_offset_adjustment = 0;
5230
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5231
}
5232
5233
if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5234
s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5235
rdtsc() - vcpu->arch.last_host_tsc;
5236
if (tsc_delta < 0)
5237
mark_tsc_unstable("KVM discovered backwards TSC");
5238
5239
if (kvm_check_tsc_unstable()) {
5240
u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5241
vcpu->arch.last_guest_tsc);
5242
kvm_vcpu_write_tsc_offset(vcpu, offset);
5243
if (!vcpu->arch.guest_tsc_protected)
5244
vcpu->arch.tsc_catchup = 1;
5245
}
5246
5247
if (kvm_lapic_hv_timer_in_use(vcpu))
5248
kvm_lapic_restart_hv_timer(vcpu);
5249
5250
/*
5251
* On a host with synchronized TSC, there is no need to update
5252
* kvmclock on vcpu->cpu migration
5253
*/
5254
if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5255
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5256
if (vcpu->cpu != cpu)
5257
kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5258
vcpu->cpu = cpu;
5259
}
5260
5261
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5262
}
5263
5264
static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5265
{
5266
struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5267
struct kvm_steal_time __user *st;
5268
struct kvm_memslots *slots;
5269
static const u8 preempted = KVM_VCPU_PREEMPTED;
5270
gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5271
5272
/*
5273
* The vCPU can be marked preempted if and only if the VM-Exit was on
5274
* an instruction boundary and will not trigger guest emulation of any
5275
* kind (see vcpu_run). Vendor specific code controls (conservatively)
5276
* when this is true, for example allowing the vCPU to be marked
5277
* preempted if and only if the VM-Exit was due to a host interrupt.
5278
*/
5279
if (!vcpu->arch.at_instruction_boundary) {
5280
vcpu->stat.preemption_other++;
5281
return;
5282
}
5283
5284
vcpu->stat.preemption_reported++;
5285
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5286
return;
5287
5288
if (vcpu->arch.st.preempted)
5289
return;
5290
5291
/* This happens on process exit */
5292
if (unlikely(current->mm != vcpu->kvm->mm))
5293
return;
5294
5295
slots = kvm_memslots(vcpu->kvm);
5296
5297
if (unlikely(slots->generation != ghc->generation ||
5298
gpa != ghc->gpa ||
5299
kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5300
return;
5301
5302
st = (struct kvm_steal_time __user *)ghc->hva;
5303
BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5304
5305
if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5306
vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5307
5308
mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5309
}
5310
5311
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5312
{
5313
int idx;
5314
5315
if (vcpu->preempted) {
5316
/*
5317
* Assume protected guests are in-kernel. Inefficient yielding
5318
* due to false positives is preferable to never yielding due
5319
* to false negatives.
5320
*/
5321
vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5322
!kvm_x86_call(get_cpl_no_cache)(vcpu);
5323
5324
/*
5325
* Take the srcu lock as memslots will be accessed to check the gfn
5326
* cache generation against the memslots generation.
5327
*/
5328
idx = srcu_read_lock(&vcpu->kvm->srcu);
5329
if (kvm_xen_msr_enabled(vcpu->kvm))
5330
kvm_xen_runstate_set_preempted(vcpu);
5331
else
5332
kvm_steal_time_set_preempted(vcpu);
5333
srcu_read_unlock(&vcpu->kvm->srcu, idx);
5334
}
5335
5336
kvm_x86_call(vcpu_put)(vcpu);
5337
vcpu->arch.last_host_tsc = rdtsc();
5338
}
5339
5340
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5341
struct kvm_lapic_state *s)
5342
{
5343
if (vcpu->arch.apic->guest_apic_protected)
5344
return -EINVAL;
5345
5346
kvm_x86_call(sync_pir_to_irr)(vcpu);
5347
5348
return kvm_apic_get_state(vcpu, s);
5349
}
5350
5351
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5352
struct kvm_lapic_state *s)
5353
{
5354
int r;
5355
5356
if (vcpu->arch.apic->guest_apic_protected)
5357
return -EINVAL;
5358
5359
r = kvm_apic_set_state(vcpu, s);
5360
if (r)
5361
return r;
5362
update_cr8_intercept(vcpu);
5363
5364
return 0;
5365
}
5366
5367
static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5368
{
5369
/*
5370
* We can accept userspace's request for interrupt injection
5371
* as long as we have a place to store the interrupt number.
5372
* The actual injection will happen when the CPU is able to
5373
* deliver the interrupt.
5374
*/
5375
if (kvm_cpu_has_extint(vcpu))
5376
return false;
5377
5378
/* Acknowledging ExtINT does not happen if LINT0 is masked. */
5379
return (!lapic_in_kernel(vcpu) ||
5380
kvm_apic_accept_pic_intr(vcpu));
5381
}
5382
5383
static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5384
{
5385
/*
5386
* Do not cause an interrupt window exit if an exception
5387
* is pending or an event needs reinjection; userspace
5388
* might want to inject the interrupt manually using KVM_SET_REGS
5389
* or KVM_SET_SREGS. For that to work, we must be at an
5390
* instruction boundary and with no events half-injected.
5391
*/
5392
return (kvm_arch_interrupt_allowed(vcpu) &&
5393
kvm_cpu_accept_dm_intr(vcpu) &&
5394
!kvm_event_needs_reinjection(vcpu) &&
5395
!kvm_is_exception_pending(vcpu));
5396
}
5397
5398
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5399
struct kvm_interrupt *irq)
5400
{
5401
if (irq->irq >= KVM_NR_INTERRUPTS)
5402
return -EINVAL;
5403
5404
if (!irqchip_in_kernel(vcpu->kvm)) {
5405
kvm_queue_interrupt(vcpu, irq->irq, false);
5406
kvm_make_request(KVM_REQ_EVENT, vcpu);
5407
return 0;
5408
}
5409
5410
/*
5411
* With in-kernel LAPIC, we only use this to inject EXTINT, so
5412
* fail for in-kernel 8259.
5413
*/
5414
if (pic_in_kernel(vcpu->kvm))
5415
return -ENXIO;
5416
5417
if (vcpu->arch.pending_external_vector != -1)
5418
return -EEXIST;
5419
5420
vcpu->arch.pending_external_vector = irq->irq;
5421
kvm_make_request(KVM_REQ_EVENT, vcpu);
5422
return 0;
5423
}
5424
5425
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5426
{
5427
kvm_inject_nmi(vcpu);
5428
5429
return 0;
5430
}
5431
5432
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5433
struct kvm_tpr_access_ctl *tac)
5434
{
5435
if (tac->flags)
5436
return -EINVAL;
5437
vcpu->arch.tpr_access_reporting = !!tac->enabled;
5438
return 0;
5439
}
5440
5441
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5442
u64 mcg_cap)
5443
{
5444
int r;
5445
unsigned bank_num = mcg_cap & 0xff, bank;
5446
5447
r = -EINVAL;
5448
if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5449
goto out;
5450
if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5451
goto out;
5452
r = 0;
5453
vcpu->arch.mcg_cap = mcg_cap;
5454
/* Init IA32_MCG_CTL to all 1s */
5455
if (mcg_cap & MCG_CTL_P)
5456
vcpu->arch.mcg_ctl = ~(u64)0;
5457
/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5458
for (bank = 0; bank < bank_num; bank++) {
5459
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5460
if (mcg_cap & MCG_CMCI_P)
5461
vcpu->arch.mci_ctl2_banks[bank] = 0;
5462
}
5463
5464
kvm_apic_after_set_mcg_cap(vcpu);
5465
5466
kvm_x86_call(setup_mce)(vcpu);
5467
out:
5468
return r;
5469
}
5470
5471
/*
5472
* Validate this is an UCNA (uncorrectable no action) error by checking the
5473
* MCG_STATUS and MCi_STATUS registers:
5474
* - none of the bits for Machine Check Exceptions are set
5475
* - both the VAL (valid) and UC (uncorrectable) bits are set
5476
* MCI_STATUS_PCC - Processor Context Corrupted
5477
* MCI_STATUS_S - Signaled as a Machine Check Exception
5478
* MCI_STATUS_AR - Software recoverable Action Required
5479
*/
5480
static bool is_ucna(struct kvm_x86_mce *mce)
5481
{
5482
return !mce->mcg_status &&
5483
!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5484
(mce->status & MCI_STATUS_VAL) &&
5485
(mce->status & MCI_STATUS_UC);
5486
}
5487
5488
static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5489
{
5490
u64 mcg_cap = vcpu->arch.mcg_cap;
5491
5492
banks[1] = mce->status;
5493
banks[2] = mce->addr;
5494
banks[3] = mce->misc;
5495
vcpu->arch.mcg_status = mce->mcg_status;
5496
5497
if (!(mcg_cap & MCG_CMCI_P) ||
5498
!(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5499
return 0;
5500
5501
if (lapic_in_kernel(vcpu))
5502
kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5503
5504
return 0;
5505
}
5506
5507
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5508
struct kvm_x86_mce *mce)
5509
{
5510
u64 mcg_cap = vcpu->arch.mcg_cap;
5511
unsigned bank_num = mcg_cap & 0xff;
5512
u64 *banks = vcpu->arch.mce_banks;
5513
5514
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5515
return -EINVAL;
5516
5517
banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5518
5519
if (is_ucna(mce))
5520
return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5521
5522
/*
5523
* if IA32_MCG_CTL is not all 1s, the uncorrected error
5524
* reporting is disabled
5525
*/
5526
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5527
vcpu->arch.mcg_ctl != ~(u64)0)
5528
return 0;
5529
/*
5530
* if IA32_MCi_CTL is not all 1s, the uncorrected error
5531
* reporting is disabled for the bank
5532
*/
5533
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5534
return 0;
5535
if (mce->status & MCI_STATUS_UC) {
5536
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5537
!kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5538
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5539
return 0;
5540
}
5541
if (banks[1] & MCI_STATUS_VAL)
5542
mce->status |= MCI_STATUS_OVER;
5543
banks[2] = mce->addr;
5544
banks[3] = mce->misc;
5545
vcpu->arch.mcg_status = mce->mcg_status;
5546
banks[1] = mce->status;
5547
kvm_queue_exception(vcpu, MC_VECTOR);
5548
} else if (!(banks[1] & MCI_STATUS_VAL)
5549
|| !(banks[1] & MCI_STATUS_UC)) {
5550
if (banks[1] & MCI_STATUS_VAL)
5551
mce->status |= MCI_STATUS_OVER;
5552
banks[2] = mce->addr;
5553
banks[3] = mce->misc;
5554
banks[1] = mce->status;
5555
} else
5556
banks[1] |= MCI_STATUS_OVER;
5557
return 0;
5558
}
5559
5560
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5561
struct kvm_vcpu_events *events)
5562
{
5563
struct kvm_queued_exception *ex;
5564
5565
process_nmi(vcpu);
5566
5567
#ifdef CONFIG_KVM_SMM
5568
if (kvm_check_request(KVM_REQ_SMI, vcpu))
5569
process_smi(vcpu);
5570
#endif
5571
5572
/*
5573
* KVM's ABI only allows for one exception to be migrated. Luckily,
5574
* the only time there can be two queued exceptions is if there's a
5575
* non-exiting _injected_ exception, and a pending exiting exception.
5576
* In that case, ignore the VM-Exiting exception as it's an extension
5577
* of the injected exception.
5578
*/
5579
if (vcpu->arch.exception_vmexit.pending &&
5580
!vcpu->arch.exception.pending &&
5581
!vcpu->arch.exception.injected)
5582
ex = &vcpu->arch.exception_vmexit;
5583
else
5584
ex = &vcpu->arch.exception;
5585
5586
/*
5587
* In guest mode, payload delivery should be deferred if the exception
5588
* will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5589
* intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5590
* KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5591
* propagate the payload and so it cannot be safely deferred. Deliver
5592
* the payload if the capability hasn't been requested.
5593
*/
5594
if (!vcpu->kvm->arch.exception_payload_enabled &&
5595
ex->pending && ex->has_payload)
5596
kvm_deliver_exception_payload(vcpu, ex);
5597
5598
memset(events, 0, sizeof(*events));
5599
5600
/*
5601
* The API doesn't provide the instruction length for software
5602
* exceptions, so don't report them. As long as the guest RIP
5603
* isn't advanced, we should expect to encounter the exception
5604
* again.
5605
*/
5606
if (!kvm_exception_is_soft(ex->vector)) {
5607
events->exception.injected = ex->injected;
5608
events->exception.pending = ex->pending;
5609
/*
5610
* For ABI compatibility, deliberately conflate
5611
* pending and injected exceptions when
5612
* KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5613
*/
5614
if (!vcpu->kvm->arch.exception_payload_enabled)
5615
events->exception.injected |= ex->pending;
5616
}
5617
events->exception.nr = ex->vector;
5618
events->exception.has_error_code = ex->has_error_code;
5619
events->exception.error_code = ex->error_code;
5620
events->exception_has_payload = ex->has_payload;
5621
events->exception_payload = ex->payload;
5622
5623
events->interrupt.injected =
5624
vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5625
events->interrupt.nr = vcpu->arch.interrupt.nr;
5626
events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5627
5628
events->nmi.injected = vcpu->arch.nmi_injected;
5629
events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5630
events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5631
5632
/* events->sipi_vector is never valid when reporting to user space */
5633
5634
#ifdef CONFIG_KVM_SMM
5635
events->smi.smm = is_smm(vcpu);
5636
events->smi.pending = vcpu->arch.smi_pending;
5637
events->smi.smm_inside_nmi =
5638
!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5639
#endif
5640
events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5641
5642
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5643
| KVM_VCPUEVENT_VALID_SHADOW
5644
| KVM_VCPUEVENT_VALID_SMM);
5645
if (vcpu->kvm->arch.exception_payload_enabled)
5646
events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5647
if (vcpu->kvm->arch.triple_fault_event) {
5648
events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5649
events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5650
}
5651
}
5652
5653
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5654
struct kvm_vcpu_events *events)
5655
{
5656
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5657
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
5658
| KVM_VCPUEVENT_VALID_SHADOW
5659
| KVM_VCPUEVENT_VALID_SMM
5660
| KVM_VCPUEVENT_VALID_PAYLOAD
5661
| KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5662
return -EINVAL;
5663
5664
if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5665
if (!vcpu->kvm->arch.exception_payload_enabled)
5666
return -EINVAL;
5667
if (events->exception.pending)
5668
events->exception.injected = 0;
5669
else
5670
events->exception_has_payload = 0;
5671
} else {
5672
events->exception.pending = 0;
5673
events->exception_has_payload = 0;
5674
}
5675
5676
if ((events->exception.injected || events->exception.pending) &&
5677
(events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5678
return -EINVAL;
5679
5680
process_nmi(vcpu);
5681
5682
/*
5683
* Flag that userspace is stuffing an exception, the next KVM_RUN will
5684
* morph the exception to a VM-Exit if appropriate. Do this only for
5685
* pending exceptions, already-injected exceptions are not subject to
5686
* intercpetion. Note, userspace that conflates pending and injected
5687
* is hosed, and will incorrectly convert an injected exception into a
5688
* pending exception, which in turn may cause a spurious VM-Exit.
5689
*/
5690
vcpu->arch.exception_from_userspace = events->exception.pending;
5691
5692
vcpu->arch.exception_vmexit.pending = false;
5693
5694
vcpu->arch.exception.injected = events->exception.injected;
5695
vcpu->arch.exception.pending = events->exception.pending;
5696
vcpu->arch.exception.vector = events->exception.nr;
5697
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5698
vcpu->arch.exception.error_code = events->exception.error_code;
5699
vcpu->arch.exception.has_payload = events->exception_has_payload;
5700
vcpu->arch.exception.payload = events->exception_payload;
5701
5702
vcpu->arch.interrupt.injected = events->interrupt.injected;
5703
vcpu->arch.interrupt.nr = events->interrupt.nr;
5704
vcpu->arch.interrupt.soft = events->interrupt.soft;
5705
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5706
kvm_x86_call(set_interrupt_shadow)(vcpu,
5707
events->interrupt.shadow);
5708
5709
vcpu->arch.nmi_injected = events->nmi.injected;
5710
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5711
vcpu->arch.nmi_pending = 0;
5712
atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5713
if (events->nmi.pending)
5714
kvm_make_request(KVM_REQ_NMI, vcpu);
5715
}
5716
kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5717
5718
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5719
lapic_in_kernel(vcpu))
5720
vcpu->arch.apic->sipi_vector = events->sipi_vector;
5721
5722
if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5723
#ifdef CONFIG_KVM_SMM
5724
if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5725
kvm_leave_nested(vcpu);
5726
kvm_smm_changed(vcpu, events->smi.smm);
5727
}
5728
5729
vcpu->arch.smi_pending = events->smi.pending;
5730
5731
if (events->smi.smm) {
5732
if (events->smi.smm_inside_nmi)
5733
vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5734
else
5735
vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5736
}
5737
5738
#else
5739
if (events->smi.smm || events->smi.pending ||
5740
events->smi.smm_inside_nmi)
5741
return -EINVAL;
5742
#endif
5743
5744
if (lapic_in_kernel(vcpu)) {
5745
if (events->smi.latched_init)
5746
set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5747
else
5748
clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5749
}
5750
}
5751
5752
if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5753
if (!vcpu->kvm->arch.triple_fault_event)
5754
return -EINVAL;
5755
if (events->triple_fault.pending)
5756
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5757
else
5758
kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5759
}
5760
5761
kvm_make_request(KVM_REQ_EVENT, vcpu);
5762
5763
return 0;
5764
}
5765
5766
static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5767
struct kvm_debugregs *dbgregs)
5768
{
5769
unsigned int i;
5770
5771
if (vcpu->kvm->arch.has_protected_state &&
5772
vcpu->arch.guest_state_protected)
5773
return -EINVAL;
5774
5775
memset(dbgregs, 0, sizeof(*dbgregs));
5776
5777
BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5778
for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5779
dbgregs->db[i] = vcpu->arch.db[i];
5780
5781
dbgregs->dr6 = vcpu->arch.dr6;
5782
dbgregs->dr7 = vcpu->arch.dr7;
5783
return 0;
5784
}
5785
5786
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5787
struct kvm_debugregs *dbgregs)
5788
{
5789
unsigned int i;
5790
5791
if (vcpu->kvm->arch.has_protected_state &&
5792
vcpu->arch.guest_state_protected)
5793
return -EINVAL;
5794
5795
if (dbgregs->flags)
5796
return -EINVAL;
5797
5798
if (!kvm_dr6_valid(dbgregs->dr6))
5799
return -EINVAL;
5800
if (!kvm_dr7_valid(dbgregs->dr7))
5801
return -EINVAL;
5802
5803
for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5804
vcpu->arch.db[i] = dbgregs->db[i];
5805
5806
kvm_update_dr0123(vcpu);
5807
vcpu->arch.dr6 = dbgregs->dr6;
5808
vcpu->arch.dr7 = dbgregs->dr7;
5809
kvm_update_dr7(vcpu);
5810
5811
return 0;
5812
}
5813
5814
5815
static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5816
u8 *state, unsigned int size)
5817
{
5818
/*
5819
* Only copy state for features that are enabled for the guest. The
5820
* state itself isn't problematic, but setting bits in the header for
5821
* features that are supported in *this* host but not exposed to the
5822
* guest can result in KVM_SET_XSAVE failing when live migrating to a
5823
* compatible host without the features that are NOT exposed to the
5824
* guest.
5825
*
5826
* FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5827
* XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5828
* supported by the host.
5829
*/
5830
u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5831
XFEATURE_MASK_FPSSE;
5832
5833
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5834
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5835
5836
fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5837
supported_xcr0, vcpu->arch.pkru);
5838
return 0;
5839
}
5840
5841
static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5842
struct kvm_xsave *guest_xsave)
5843
{
5844
return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5845
sizeof(guest_xsave->region));
5846
}
5847
5848
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5849
struct kvm_xsave *guest_xsave)
5850
{
5851
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5852
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5853
5854
return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5855
guest_xsave->region,
5856
kvm_caps.supported_xcr0,
5857
&vcpu->arch.pkru);
5858
}
5859
5860
static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5861
struct kvm_xcrs *guest_xcrs)
5862
{
5863
if (vcpu->kvm->arch.has_protected_state &&
5864
vcpu->arch.guest_state_protected)
5865
return -EINVAL;
5866
5867
if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5868
guest_xcrs->nr_xcrs = 0;
5869
return 0;
5870
}
5871
5872
guest_xcrs->nr_xcrs = 1;
5873
guest_xcrs->flags = 0;
5874
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5875
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5876
return 0;
5877
}
5878
5879
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5880
struct kvm_xcrs *guest_xcrs)
5881
{
5882
int i, r = 0;
5883
5884
if (vcpu->kvm->arch.has_protected_state &&
5885
vcpu->arch.guest_state_protected)
5886
return -EINVAL;
5887
5888
if (!boot_cpu_has(X86_FEATURE_XSAVE))
5889
return -EINVAL;
5890
5891
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5892
return -EINVAL;
5893
5894
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5895
/* Only support XCR0 currently */
5896
if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5897
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5898
guest_xcrs->xcrs[i].value);
5899
break;
5900
}
5901
if (r)
5902
r = -EINVAL;
5903
return r;
5904
}
5905
5906
/*
5907
* kvm_set_guest_paused() indicates to the guest kernel that it has been
5908
* stopped by the hypervisor. This function will be called from the host only.
5909
* EINVAL is returned when the host attempts to set the flag for a guest that
5910
* does not support pv clocks.
5911
*/
5912
static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5913
{
5914
if (!vcpu->arch.pv_time.active)
5915
return -EINVAL;
5916
vcpu->arch.pvclock_set_guest_stopped_request = true;
5917
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5918
return 0;
5919
}
5920
5921
static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5922
struct kvm_device_attr *attr)
5923
{
5924
int r;
5925
5926
switch (attr->attr) {
5927
case KVM_VCPU_TSC_OFFSET:
5928
r = 0;
5929
break;
5930
default:
5931
r = -ENXIO;
5932
}
5933
5934
return r;
5935
}
5936
5937
static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5938
struct kvm_device_attr *attr)
5939
{
5940
u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5941
int r;
5942
5943
switch (attr->attr) {
5944
case KVM_VCPU_TSC_OFFSET:
5945
r = -EFAULT;
5946
if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5947
break;
5948
r = 0;
5949
break;
5950
default:
5951
r = -ENXIO;
5952
}
5953
5954
return r;
5955
}
5956
5957
static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5958
struct kvm_device_attr *attr)
5959
{
5960
u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5961
struct kvm *kvm = vcpu->kvm;
5962
int r;
5963
5964
switch (attr->attr) {
5965
case KVM_VCPU_TSC_OFFSET: {
5966
u64 offset, tsc, ns;
5967
unsigned long flags;
5968
bool matched;
5969
5970
r = -EFAULT;
5971
if (get_user(offset, uaddr))
5972
break;
5973
5974
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5975
5976
matched = (vcpu->arch.virtual_tsc_khz &&
5977
kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5978
kvm->arch.last_tsc_offset == offset);
5979
5980
tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5981
ns = get_kvmclock_base_ns();
5982
5983
__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5984
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5985
5986
r = 0;
5987
break;
5988
}
5989
default:
5990
r = -ENXIO;
5991
}
5992
5993
return r;
5994
}
5995
5996
static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5997
unsigned int ioctl,
5998
void __user *argp)
5999
{
6000
struct kvm_device_attr attr;
6001
int r;
6002
6003
if (copy_from_user(&attr, argp, sizeof(attr)))
6004
return -EFAULT;
6005
6006
if (attr.group != KVM_VCPU_TSC_CTRL)
6007
return -ENXIO;
6008
6009
switch (ioctl) {
6010
case KVM_HAS_DEVICE_ATTR:
6011
r = kvm_arch_tsc_has_attr(vcpu, &attr);
6012
break;
6013
case KVM_GET_DEVICE_ATTR:
6014
r = kvm_arch_tsc_get_attr(vcpu, &attr);
6015
break;
6016
case KVM_SET_DEVICE_ATTR:
6017
r = kvm_arch_tsc_set_attr(vcpu, &attr);
6018
break;
6019
}
6020
6021
return r;
6022
}
6023
6024
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
6025
struct kvm_enable_cap *cap)
6026
{
6027
if (cap->flags)
6028
return -EINVAL;
6029
6030
switch (cap->cap) {
6031
#ifdef CONFIG_KVM_HYPERV
6032
case KVM_CAP_HYPERV_SYNIC2:
6033
if (cap->args[0])
6034
return -EINVAL;
6035
fallthrough;
6036
6037
case KVM_CAP_HYPERV_SYNIC:
6038
if (!irqchip_in_kernel(vcpu->kvm))
6039
return -EINVAL;
6040
return kvm_hv_activate_synic(vcpu, cap->cap ==
6041
KVM_CAP_HYPERV_SYNIC2);
6042
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
6043
{
6044
int r;
6045
uint16_t vmcs_version;
6046
void __user *user_ptr;
6047
6048
if (!kvm_x86_ops.nested_ops->enable_evmcs)
6049
return -ENOTTY;
6050
r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
6051
if (!r) {
6052
user_ptr = (void __user *)(uintptr_t)cap->args[0];
6053
if (copy_to_user(user_ptr, &vmcs_version,
6054
sizeof(vmcs_version)))
6055
r = -EFAULT;
6056
}
6057
return r;
6058
}
6059
case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
6060
if (!kvm_x86_ops.enable_l2_tlb_flush)
6061
return -ENOTTY;
6062
6063
return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
6064
6065
case KVM_CAP_HYPERV_ENFORCE_CPUID:
6066
return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
6067
#endif
6068
6069
case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
6070
vcpu->arch.pv_cpuid.enforce = cap->args[0];
6071
return 0;
6072
default:
6073
return -EINVAL;
6074
}
6075
}
6076
6077
struct kvm_x86_reg_id {
6078
__u32 index;
6079
__u8 type;
6080
__u8 rsvd1;
6081
__u8 rsvd2:4;
6082
__u8 size:4;
6083
__u8 x86;
6084
};
6085
6086
static int kvm_translate_kvm_reg(struct kvm_vcpu *vcpu,
6087
struct kvm_x86_reg_id *reg)
6088
{
6089
switch (reg->index) {
6090
case KVM_REG_GUEST_SSP:
6091
/*
6092
* FIXME: If host-initiated accesses are ever exempted from
6093
* ignore_msrs (in kvm_do_msr_access()), drop this manual check
6094
* and rely on KVM's standard checks to reject accesses to regs
6095
* that don't exist.
6096
*/
6097
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
6098
return -EINVAL;
6099
6100
reg->type = KVM_X86_REG_TYPE_MSR;
6101
reg->index = MSR_KVM_INTERNAL_GUEST_SSP;
6102
break;
6103
default:
6104
return -EINVAL;
6105
}
6106
return 0;
6107
}
6108
6109
static int kvm_get_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6110
{
6111
u64 val;
6112
6113
if (do_get_msr(vcpu, msr, &val))
6114
return -EINVAL;
6115
6116
if (put_user(val, user_val))
6117
return -EFAULT;
6118
6119
return 0;
6120
}
6121
6122
static int kvm_set_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6123
{
6124
u64 val;
6125
6126
if (get_user(val, user_val))
6127
return -EFAULT;
6128
6129
if (do_set_msr(vcpu, msr, &val))
6130
return -EINVAL;
6131
6132
return 0;
6133
}
6134
6135
static int kvm_get_set_one_reg(struct kvm_vcpu *vcpu, unsigned int ioctl,
6136
void __user *argp)
6137
{
6138
struct kvm_one_reg one_reg;
6139
struct kvm_x86_reg_id *reg;
6140
u64 __user *user_val;
6141
bool load_fpu;
6142
int r;
6143
6144
if (copy_from_user(&one_reg, argp, sizeof(one_reg)))
6145
return -EFAULT;
6146
6147
if ((one_reg.id & KVM_REG_ARCH_MASK) != KVM_REG_X86)
6148
return -EINVAL;
6149
6150
reg = (struct kvm_x86_reg_id *)&one_reg.id;
6151
if (reg->rsvd1 || reg->rsvd2)
6152
return -EINVAL;
6153
6154
if (reg->type == KVM_X86_REG_TYPE_KVM) {
6155
r = kvm_translate_kvm_reg(vcpu, reg);
6156
if (r)
6157
return r;
6158
}
6159
6160
if (reg->type != KVM_X86_REG_TYPE_MSR)
6161
return -EINVAL;
6162
6163
if ((one_reg.id & KVM_REG_SIZE_MASK) != KVM_REG_SIZE_U64)
6164
return -EINVAL;
6165
6166
guard(srcu)(&vcpu->kvm->srcu);
6167
6168
load_fpu = is_xstate_managed_msr(vcpu, reg->index);
6169
if (load_fpu)
6170
kvm_load_guest_fpu(vcpu);
6171
6172
user_val = u64_to_user_ptr(one_reg.addr);
6173
if (ioctl == KVM_GET_ONE_REG)
6174
r = kvm_get_one_msr(vcpu, reg->index, user_val);
6175
else
6176
r = kvm_set_one_msr(vcpu, reg->index, user_val);
6177
6178
if (load_fpu)
6179
kvm_put_guest_fpu(vcpu);
6180
return r;
6181
}
6182
6183
static int kvm_get_reg_list(struct kvm_vcpu *vcpu,
6184
struct kvm_reg_list __user *user_list)
6185
{
6186
u64 nr_regs = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ? 1 : 0;
6187
u64 user_nr_regs;
6188
6189
if (get_user(user_nr_regs, &user_list->n))
6190
return -EFAULT;
6191
6192
if (put_user(nr_regs, &user_list->n))
6193
return -EFAULT;
6194
6195
if (user_nr_regs < nr_regs)
6196
return -E2BIG;
6197
6198
if (nr_regs &&
6199
put_user(KVM_X86_REG_KVM(KVM_REG_GUEST_SSP), &user_list->reg[0]))
6200
return -EFAULT;
6201
6202
return 0;
6203
}
6204
6205
long kvm_arch_vcpu_ioctl(struct file *filp,
6206
unsigned int ioctl, unsigned long arg)
6207
{
6208
struct kvm_vcpu *vcpu = filp->private_data;
6209
void __user *argp = (void __user *)arg;
6210
int r;
6211
union {
6212
struct kvm_sregs2 *sregs2;
6213
struct kvm_lapic_state *lapic;
6214
struct kvm_xsave *xsave;
6215
struct kvm_xcrs *xcrs;
6216
void *buffer;
6217
} u;
6218
6219
vcpu_load(vcpu);
6220
6221
u.buffer = NULL;
6222
switch (ioctl) {
6223
case KVM_GET_LAPIC: {
6224
r = -EINVAL;
6225
if (!lapic_in_kernel(vcpu))
6226
goto out;
6227
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
6228
6229
r = -ENOMEM;
6230
if (!u.lapic)
6231
goto out;
6232
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
6233
if (r)
6234
goto out;
6235
r = -EFAULT;
6236
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
6237
goto out;
6238
r = 0;
6239
break;
6240
}
6241
case KVM_SET_LAPIC: {
6242
r = -EINVAL;
6243
if (!lapic_in_kernel(vcpu))
6244
goto out;
6245
u.lapic = memdup_user(argp, sizeof(*u.lapic));
6246
if (IS_ERR(u.lapic)) {
6247
r = PTR_ERR(u.lapic);
6248
goto out_nofree;
6249
}
6250
6251
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
6252
break;
6253
}
6254
case KVM_INTERRUPT: {
6255
struct kvm_interrupt irq;
6256
6257
r = -EFAULT;
6258
if (copy_from_user(&irq, argp, sizeof(irq)))
6259
goto out;
6260
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
6261
break;
6262
}
6263
case KVM_NMI: {
6264
r = kvm_vcpu_ioctl_nmi(vcpu);
6265
break;
6266
}
6267
case KVM_SMI: {
6268
r = kvm_inject_smi(vcpu);
6269
break;
6270
}
6271
case KVM_SET_CPUID: {
6272
struct kvm_cpuid __user *cpuid_arg = argp;
6273
struct kvm_cpuid cpuid;
6274
6275
r = -EFAULT;
6276
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6277
goto out;
6278
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
6279
break;
6280
}
6281
case KVM_SET_CPUID2: {
6282
struct kvm_cpuid2 __user *cpuid_arg = argp;
6283
struct kvm_cpuid2 cpuid;
6284
6285
r = -EFAULT;
6286
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6287
goto out;
6288
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
6289
cpuid_arg->entries);
6290
break;
6291
}
6292
case KVM_GET_CPUID2: {
6293
struct kvm_cpuid2 __user *cpuid_arg = argp;
6294
struct kvm_cpuid2 cpuid;
6295
6296
r = -EFAULT;
6297
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6298
goto out;
6299
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
6300
cpuid_arg->entries);
6301
if (r)
6302
goto out;
6303
r = -EFAULT;
6304
if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
6305
goto out;
6306
r = 0;
6307
break;
6308
}
6309
case KVM_GET_MSRS: {
6310
int idx = srcu_read_lock(&vcpu->kvm->srcu);
6311
r = msr_io(vcpu, argp, do_get_msr, 1);
6312
srcu_read_unlock(&vcpu->kvm->srcu, idx);
6313
break;
6314
}
6315
case KVM_SET_MSRS: {
6316
int idx = srcu_read_lock(&vcpu->kvm->srcu);
6317
r = msr_io(vcpu, argp, do_set_msr, 0);
6318
srcu_read_unlock(&vcpu->kvm->srcu, idx);
6319
break;
6320
}
6321
case KVM_GET_ONE_REG:
6322
case KVM_SET_ONE_REG:
6323
r = kvm_get_set_one_reg(vcpu, ioctl, argp);
6324
break;
6325
case KVM_GET_REG_LIST:
6326
r = kvm_get_reg_list(vcpu, argp);
6327
break;
6328
case KVM_TPR_ACCESS_REPORTING: {
6329
struct kvm_tpr_access_ctl tac;
6330
6331
r = -EFAULT;
6332
if (copy_from_user(&tac, argp, sizeof(tac)))
6333
goto out;
6334
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
6335
if (r)
6336
goto out;
6337
r = -EFAULT;
6338
if (copy_to_user(argp, &tac, sizeof(tac)))
6339
goto out;
6340
r = 0;
6341
break;
6342
};
6343
case KVM_SET_VAPIC_ADDR: {
6344
struct kvm_vapic_addr va;
6345
int idx;
6346
6347
r = -EINVAL;
6348
if (!lapic_in_kernel(vcpu))
6349
goto out;
6350
r = -EFAULT;
6351
if (copy_from_user(&va, argp, sizeof(va)))
6352
goto out;
6353
idx = srcu_read_lock(&vcpu->kvm->srcu);
6354
r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6355
srcu_read_unlock(&vcpu->kvm->srcu, idx);
6356
break;
6357
}
6358
case KVM_X86_SETUP_MCE: {
6359
u64 mcg_cap;
6360
6361
r = -EFAULT;
6362
if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6363
goto out;
6364
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6365
break;
6366
}
6367
case KVM_X86_SET_MCE: {
6368
struct kvm_x86_mce mce;
6369
6370
r = -EFAULT;
6371
if (copy_from_user(&mce, argp, sizeof(mce)))
6372
goto out;
6373
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6374
break;
6375
}
6376
case KVM_GET_VCPU_EVENTS: {
6377
struct kvm_vcpu_events events;
6378
6379
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6380
6381
r = -EFAULT;
6382
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6383
break;
6384
r = 0;
6385
break;
6386
}
6387
case KVM_SET_VCPU_EVENTS: {
6388
struct kvm_vcpu_events events;
6389
6390
r = -EFAULT;
6391
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6392
break;
6393
6394
kvm_vcpu_srcu_read_lock(vcpu);
6395
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6396
kvm_vcpu_srcu_read_unlock(vcpu);
6397
break;
6398
}
6399
case KVM_GET_DEBUGREGS: {
6400
struct kvm_debugregs dbgregs;
6401
6402
r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6403
if (r < 0)
6404
break;
6405
6406
r = -EFAULT;
6407
if (copy_to_user(argp, &dbgregs,
6408
sizeof(struct kvm_debugregs)))
6409
break;
6410
r = 0;
6411
break;
6412
}
6413
case KVM_SET_DEBUGREGS: {
6414
struct kvm_debugregs dbgregs;
6415
6416
r = -EFAULT;
6417
if (copy_from_user(&dbgregs, argp,
6418
sizeof(struct kvm_debugregs)))
6419
break;
6420
6421
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6422
break;
6423
}
6424
case KVM_GET_XSAVE: {
6425
r = -EINVAL;
6426
if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6427
break;
6428
6429
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6430
r = -ENOMEM;
6431
if (!u.xsave)
6432
break;
6433
6434
r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6435
if (r < 0)
6436
break;
6437
6438
r = -EFAULT;
6439
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6440
break;
6441
r = 0;
6442
break;
6443
}
6444
case KVM_SET_XSAVE: {
6445
int size = vcpu->arch.guest_fpu.uabi_size;
6446
6447
u.xsave = memdup_user(argp, size);
6448
if (IS_ERR(u.xsave)) {
6449
r = PTR_ERR(u.xsave);
6450
goto out_nofree;
6451
}
6452
6453
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6454
break;
6455
}
6456
6457
case KVM_GET_XSAVE2: {
6458
int size = vcpu->arch.guest_fpu.uabi_size;
6459
6460
u.xsave = kzalloc(size, GFP_KERNEL);
6461
r = -ENOMEM;
6462
if (!u.xsave)
6463
break;
6464
6465
r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6466
if (r < 0)
6467
break;
6468
6469
r = -EFAULT;
6470
if (copy_to_user(argp, u.xsave, size))
6471
break;
6472
6473
r = 0;
6474
break;
6475
}
6476
6477
case KVM_GET_XCRS: {
6478
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6479
r = -ENOMEM;
6480
if (!u.xcrs)
6481
break;
6482
6483
r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6484
if (r < 0)
6485
break;
6486
6487
r = -EFAULT;
6488
if (copy_to_user(argp, u.xcrs,
6489
sizeof(struct kvm_xcrs)))
6490
break;
6491
r = 0;
6492
break;
6493
}
6494
case KVM_SET_XCRS: {
6495
u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6496
if (IS_ERR(u.xcrs)) {
6497
r = PTR_ERR(u.xcrs);
6498
goto out_nofree;
6499
}
6500
6501
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6502
break;
6503
}
6504
case KVM_SET_TSC_KHZ: {
6505
u32 user_tsc_khz;
6506
6507
r = -EINVAL;
6508
6509
if (vcpu->arch.guest_tsc_protected)
6510
goto out;
6511
6512
user_tsc_khz = (u32)arg;
6513
6514
if (kvm_caps.has_tsc_control &&
6515
user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6516
goto out;
6517
6518
if (user_tsc_khz == 0)
6519
user_tsc_khz = tsc_khz;
6520
6521
if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6522
r = 0;
6523
6524
goto out;
6525
}
6526
case KVM_GET_TSC_KHZ: {
6527
r = vcpu->arch.virtual_tsc_khz;
6528
goto out;
6529
}
6530
case KVM_KVMCLOCK_CTRL: {
6531
r = kvm_set_guest_paused(vcpu);
6532
goto out;
6533
}
6534
case KVM_ENABLE_CAP: {
6535
struct kvm_enable_cap cap;
6536
6537
r = -EFAULT;
6538
if (copy_from_user(&cap, argp, sizeof(cap)))
6539
goto out;
6540
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6541
break;
6542
}
6543
case KVM_GET_NESTED_STATE: {
6544
struct kvm_nested_state __user *user_kvm_nested_state = argp;
6545
u32 user_data_size;
6546
6547
r = -EINVAL;
6548
if (!kvm_x86_ops.nested_ops->get_state)
6549
break;
6550
6551
BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6552
r = -EFAULT;
6553
if (get_user(user_data_size, &user_kvm_nested_state->size))
6554
break;
6555
6556
r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6557
user_data_size);
6558
if (r < 0)
6559
break;
6560
6561
if (r > user_data_size) {
6562
if (put_user(r, &user_kvm_nested_state->size))
6563
r = -EFAULT;
6564
else
6565
r = -E2BIG;
6566
break;
6567
}
6568
6569
r = 0;
6570
break;
6571
}
6572
case KVM_SET_NESTED_STATE: {
6573
struct kvm_nested_state __user *user_kvm_nested_state = argp;
6574
struct kvm_nested_state kvm_state;
6575
int idx;
6576
6577
r = -EINVAL;
6578
if (!kvm_x86_ops.nested_ops->set_state)
6579
break;
6580
6581
r = -EFAULT;
6582
if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6583
break;
6584
6585
r = -EINVAL;
6586
if (kvm_state.size < sizeof(kvm_state))
6587
break;
6588
6589
if (kvm_state.flags &
6590
~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6591
| KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6592
| KVM_STATE_NESTED_GIF_SET))
6593
break;
6594
6595
/* nested_run_pending implies guest_mode. */
6596
if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6597
&& !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6598
break;
6599
6600
idx = srcu_read_lock(&vcpu->kvm->srcu);
6601
r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6602
srcu_read_unlock(&vcpu->kvm->srcu, idx);
6603
break;
6604
}
6605
#ifdef CONFIG_KVM_HYPERV
6606
case KVM_GET_SUPPORTED_HV_CPUID:
6607
r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6608
break;
6609
#endif
6610
#ifdef CONFIG_KVM_XEN
6611
case KVM_XEN_VCPU_GET_ATTR: {
6612
struct kvm_xen_vcpu_attr xva;
6613
6614
r = -EFAULT;
6615
if (copy_from_user(&xva, argp, sizeof(xva)))
6616
goto out;
6617
r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6618
if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6619
r = -EFAULT;
6620
break;
6621
}
6622
case KVM_XEN_VCPU_SET_ATTR: {
6623
struct kvm_xen_vcpu_attr xva;
6624
6625
r = -EFAULT;
6626
if (copy_from_user(&xva, argp, sizeof(xva)))
6627
goto out;
6628
r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6629
break;
6630
}
6631
#endif
6632
case KVM_GET_SREGS2: {
6633
r = -EINVAL;
6634
if (vcpu->kvm->arch.has_protected_state &&
6635
vcpu->arch.guest_state_protected)
6636
goto out;
6637
6638
u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6639
r = -ENOMEM;
6640
if (!u.sregs2)
6641
goto out;
6642
__get_sregs2(vcpu, u.sregs2);
6643
r = -EFAULT;
6644
if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6645
goto out;
6646
r = 0;
6647
break;
6648
}
6649
case KVM_SET_SREGS2: {
6650
r = -EINVAL;
6651
if (vcpu->kvm->arch.has_protected_state &&
6652
vcpu->arch.guest_state_protected)
6653
goto out;
6654
6655
u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6656
if (IS_ERR(u.sregs2)) {
6657
r = PTR_ERR(u.sregs2);
6658
u.sregs2 = NULL;
6659
goto out;
6660
}
6661
r = __set_sregs2(vcpu, u.sregs2);
6662
break;
6663
}
6664
case KVM_HAS_DEVICE_ATTR:
6665
case KVM_GET_DEVICE_ATTR:
6666
case KVM_SET_DEVICE_ATTR:
6667
r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6668
break;
6669
case KVM_MEMORY_ENCRYPT_OP:
6670
r = -ENOTTY;
6671
if (!kvm_x86_ops.vcpu_mem_enc_ioctl)
6672
goto out;
6673
r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp);
6674
break;
6675
default:
6676
r = -EINVAL;
6677
}
6678
out:
6679
kfree(u.buffer);
6680
out_nofree:
6681
vcpu_put(vcpu);
6682
return r;
6683
}
6684
6685
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6686
{
6687
return VM_FAULT_SIGBUS;
6688
}
6689
6690
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6691
{
6692
int ret;
6693
6694
if (addr > (unsigned int)(-3 * PAGE_SIZE))
6695
return -EINVAL;
6696
ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6697
return ret;
6698
}
6699
6700
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6701
u64 ident_addr)
6702
{
6703
return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6704
}
6705
6706
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6707
unsigned long kvm_nr_mmu_pages)
6708
{
6709
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6710
return -EINVAL;
6711
6712
mutex_lock(&kvm->slots_lock);
6713
6714
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6715
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6716
6717
mutex_unlock(&kvm->slots_lock);
6718
return 0;
6719
}
6720
6721
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6722
{
6723
6724
/*
6725
* Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6726
* before reporting dirty_bitmap to userspace. KVM flushes the buffers
6727
* on all VM-Exits, thus we only need to kick running vCPUs to force a
6728
* VM-Exit.
6729
*/
6730
struct kvm_vcpu *vcpu;
6731
unsigned long i;
6732
6733
if (!kvm->arch.cpu_dirty_log_size)
6734
return;
6735
6736
kvm_for_each_vcpu(i, vcpu, kvm)
6737
kvm_vcpu_kick(vcpu);
6738
}
6739
6740
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6741
struct kvm_enable_cap *cap)
6742
{
6743
int r;
6744
6745
if (cap->flags)
6746
return -EINVAL;
6747
6748
switch (cap->cap) {
6749
case KVM_CAP_DISABLE_QUIRKS2:
6750
r = -EINVAL;
6751
if (cap->args[0] & ~kvm_caps.supported_quirks)
6752
break;
6753
fallthrough;
6754
case KVM_CAP_DISABLE_QUIRKS:
6755
kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks;
6756
r = 0;
6757
break;
6758
case KVM_CAP_SPLIT_IRQCHIP: {
6759
mutex_lock(&kvm->lock);
6760
r = -EINVAL;
6761
if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6762
goto split_irqchip_unlock;
6763
r = -EEXIST;
6764
if (irqchip_in_kernel(kvm))
6765
goto split_irqchip_unlock;
6766
if (kvm->created_vcpus)
6767
goto split_irqchip_unlock;
6768
/* Pairs with irqchip_in_kernel. */
6769
smp_wmb();
6770
kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6771
kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6772
kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6773
r = 0;
6774
split_irqchip_unlock:
6775
mutex_unlock(&kvm->lock);
6776
break;
6777
}
6778
case KVM_CAP_X2APIC_API:
6779
r = -EINVAL;
6780
if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6781
break;
6782
6783
if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6784
kvm->arch.x2apic_format = true;
6785
if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6786
kvm->arch.x2apic_broadcast_quirk_disabled = true;
6787
6788
r = 0;
6789
break;
6790
case KVM_CAP_X86_DISABLE_EXITS:
6791
r = -EINVAL;
6792
if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6793
break;
6794
6795
mutex_lock(&kvm->lock);
6796
if (kvm->created_vcpus)
6797
goto disable_exits_unlock;
6798
6799
#define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6800
"KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6801
6802
if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6803
cpu_smt_possible() &&
6804
(cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE |
6805
KVM_X86_DISABLE_EXITS_APERFMPERF)))
6806
pr_warn_once(SMT_RSB_MSG);
6807
6808
kvm_disable_exits(kvm, cap->args[0]);
6809
r = 0;
6810
disable_exits_unlock:
6811
mutex_unlock(&kvm->lock);
6812
break;
6813
case KVM_CAP_MSR_PLATFORM_INFO:
6814
kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6815
r = 0;
6816
break;
6817
case KVM_CAP_EXCEPTION_PAYLOAD:
6818
kvm->arch.exception_payload_enabled = cap->args[0];
6819
r = 0;
6820
break;
6821
case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6822
kvm->arch.triple_fault_event = cap->args[0];
6823
r = 0;
6824
break;
6825
case KVM_CAP_X86_USER_SPACE_MSR:
6826
r = -EINVAL;
6827
if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6828
break;
6829
kvm->arch.user_space_msr_mask = cap->args[0];
6830
r = 0;
6831
break;
6832
case KVM_CAP_X86_BUS_LOCK_EXIT:
6833
r = -EINVAL;
6834
if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6835
break;
6836
6837
if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6838
(cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6839
break;
6840
6841
if (kvm_caps.has_bus_lock_exit &&
6842
cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6843
kvm->arch.bus_lock_detection_enabled = true;
6844
r = 0;
6845
break;
6846
#ifdef CONFIG_X86_SGX_KVM
6847
case KVM_CAP_SGX_ATTRIBUTE: {
6848
unsigned long allowed_attributes = 0;
6849
6850
r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6851
if (r)
6852
break;
6853
6854
/* KVM only supports the PROVISIONKEY privileged attribute. */
6855
if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6856
!(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6857
kvm->arch.sgx_provisioning_allowed = true;
6858
else
6859
r = -EINVAL;
6860
break;
6861
}
6862
#endif
6863
case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6864
r = -EINVAL;
6865
if (!kvm_x86_ops.vm_copy_enc_context_from)
6866
break;
6867
6868
r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6869
break;
6870
case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6871
r = -EINVAL;
6872
if (!kvm_x86_ops.vm_move_enc_context_from)
6873
break;
6874
6875
r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6876
break;
6877
case KVM_CAP_EXIT_HYPERCALL:
6878
if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6879
r = -EINVAL;
6880
break;
6881
}
6882
kvm->arch.hypercall_exit_enabled = cap->args[0];
6883
r = 0;
6884
break;
6885
case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6886
r = -EINVAL;
6887
if (cap->args[0] & ~1)
6888
break;
6889
kvm->arch.exit_on_emulation_error = cap->args[0];
6890
r = 0;
6891
break;
6892
case KVM_CAP_PMU_CAPABILITY:
6893
r = -EINVAL;
6894
if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6895
break;
6896
6897
mutex_lock(&kvm->lock);
6898
if (!kvm->created_vcpus) {
6899
kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6900
r = 0;
6901
}
6902
mutex_unlock(&kvm->lock);
6903
break;
6904
case KVM_CAP_MAX_VCPU_ID:
6905
r = -EINVAL;
6906
if (cap->args[0] > KVM_MAX_VCPU_IDS)
6907
break;
6908
6909
mutex_lock(&kvm->lock);
6910
if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6911
;
6912
} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6913
r = 0;
6914
} else if (!kvm->arch.max_vcpu_ids) {
6915
kvm->arch.max_vcpu_ids = cap->args[0];
6916
r = 0;
6917
}
6918
mutex_unlock(&kvm->lock);
6919
break;
6920
case KVM_CAP_X86_NOTIFY_VMEXIT:
6921
r = -EINVAL;
6922
if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6923
break;
6924
if (!kvm_caps.has_notify_vmexit)
6925
break;
6926
if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6927
break;
6928
mutex_lock(&kvm->lock);
6929
if (!kvm->created_vcpus) {
6930
kvm->arch.notify_window = cap->args[0] >> 32;
6931
kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6932
r = 0;
6933
}
6934
mutex_unlock(&kvm->lock);
6935
break;
6936
case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6937
r = -EINVAL;
6938
6939
/*
6940
* Since the risk of disabling NX hugepages is a guest crashing
6941
* the system, ensure the userspace process has permission to
6942
* reboot the system.
6943
*
6944
* Note that unlike the reboot() syscall, the process must have
6945
* this capability in the root namespace because exposing
6946
* /dev/kvm into a container does not limit the scope of the
6947
* iTLB multihit bug to that container. In other words,
6948
* this must use capable(), not ns_capable().
6949
*/
6950
if (!capable(CAP_SYS_BOOT)) {
6951
r = -EPERM;
6952
break;
6953
}
6954
6955
if (cap->args[0])
6956
break;
6957
6958
mutex_lock(&kvm->lock);
6959
if (!kvm->created_vcpus) {
6960
kvm->arch.disable_nx_huge_pages = true;
6961
r = 0;
6962
}
6963
mutex_unlock(&kvm->lock);
6964
break;
6965
case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6966
u64 bus_cycle_ns = cap->args[0];
6967
u64 unused;
6968
6969
/*
6970
* Guard against overflow in tmict_to_ns(). 128 is the highest
6971
* divide value that can be programmed in APIC_TDCR.
6972
*/
6973
r = -EINVAL;
6974
if (!bus_cycle_ns ||
6975
check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6976
break;
6977
6978
r = 0;
6979
mutex_lock(&kvm->lock);
6980
if (!irqchip_in_kernel(kvm))
6981
r = -ENXIO;
6982
else if (kvm->created_vcpus)
6983
r = -EINVAL;
6984
else
6985
kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6986
mutex_unlock(&kvm->lock);
6987
break;
6988
}
6989
default:
6990
r = -EINVAL;
6991
break;
6992
}
6993
return r;
6994
}
6995
6996
static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6997
{
6998
struct kvm_x86_msr_filter *msr_filter;
6999
7000
msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
7001
if (!msr_filter)
7002
return NULL;
7003
7004
msr_filter->default_allow = default_allow;
7005
return msr_filter;
7006
}
7007
7008
static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
7009
{
7010
u32 i;
7011
7012
if (!msr_filter)
7013
return;
7014
7015
for (i = 0; i < msr_filter->count; i++)
7016
kfree(msr_filter->ranges[i].bitmap);
7017
7018
kfree(msr_filter);
7019
}
7020
7021
static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
7022
struct kvm_msr_filter_range *user_range)
7023
{
7024
unsigned long *bitmap;
7025
size_t bitmap_size;
7026
7027
if (!user_range->nmsrs)
7028
return 0;
7029
7030
if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
7031
return -EINVAL;
7032
7033
if (!user_range->flags)
7034
return -EINVAL;
7035
7036
bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
7037
if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
7038
return -EINVAL;
7039
7040
bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
7041
if (IS_ERR(bitmap))
7042
return PTR_ERR(bitmap);
7043
7044
msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
7045
.flags = user_range->flags,
7046
.base = user_range->base,
7047
.nmsrs = user_range->nmsrs,
7048
.bitmap = bitmap,
7049
};
7050
7051
msr_filter->count++;
7052
return 0;
7053
}
7054
7055
static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
7056
struct kvm_msr_filter *filter)
7057
{
7058
struct kvm_x86_msr_filter *new_filter, *old_filter;
7059
bool default_allow;
7060
bool empty = true;
7061
int r;
7062
u32 i;
7063
7064
if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
7065
return -EINVAL;
7066
7067
for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
7068
empty &= !filter->ranges[i].nmsrs;
7069
7070
default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
7071
if (empty && !default_allow)
7072
return -EINVAL;
7073
7074
new_filter = kvm_alloc_msr_filter(default_allow);
7075
if (!new_filter)
7076
return -ENOMEM;
7077
7078
for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
7079
r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
7080
if (r) {
7081
kvm_free_msr_filter(new_filter);
7082
return r;
7083
}
7084
}
7085
7086
mutex_lock(&kvm->lock);
7087
old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
7088
mutex_is_locked(&kvm->lock));
7089
mutex_unlock(&kvm->lock);
7090
synchronize_srcu(&kvm->srcu);
7091
7092
kvm_free_msr_filter(old_filter);
7093
7094
/*
7095
* Recalc MSR intercepts as userspace may want to intercept accesses to
7096
* MSRs that KVM would otherwise pass through to the guest.
7097
*/
7098
kvm_make_all_cpus_request(kvm, KVM_REQ_RECALC_INTERCEPTS);
7099
7100
return 0;
7101
}
7102
7103
#ifdef CONFIG_KVM_COMPAT
7104
/* for KVM_X86_SET_MSR_FILTER */
7105
struct kvm_msr_filter_range_compat {
7106
__u32 flags;
7107
__u32 nmsrs;
7108
__u32 base;
7109
__u32 bitmap;
7110
};
7111
7112
struct kvm_msr_filter_compat {
7113
__u32 flags;
7114
struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
7115
};
7116
7117
#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
7118
7119
long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
7120
unsigned long arg)
7121
{
7122
void __user *argp = (void __user *)arg;
7123
struct kvm *kvm = filp->private_data;
7124
long r = -ENOTTY;
7125
7126
switch (ioctl) {
7127
case KVM_X86_SET_MSR_FILTER_COMPAT: {
7128
struct kvm_msr_filter __user *user_msr_filter = argp;
7129
struct kvm_msr_filter_compat filter_compat;
7130
struct kvm_msr_filter filter;
7131
int i;
7132
7133
if (copy_from_user(&filter_compat, user_msr_filter,
7134
sizeof(filter_compat)))
7135
return -EFAULT;
7136
7137
filter.flags = filter_compat.flags;
7138
for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
7139
struct kvm_msr_filter_range_compat *cr;
7140
7141
cr = &filter_compat.ranges[i];
7142
filter.ranges[i] = (struct kvm_msr_filter_range) {
7143
.flags = cr->flags,
7144
.nmsrs = cr->nmsrs,
7145
.base = cr->base,
7146
.bitmap = (__u8 *)(ulong)cr->bitmap,
7147
};
7148
}
7149
7150
r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7151
break;
7152
}
7153
}
7154
7155
return r;
7156
}
7157
#endif
7158
7159
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
7160
static int kvm_arch_suspend_notifier(struct kvm *kvm)
7161
{
7162
struct kvm_vcpu *vcpu;
7163
unsigned long i;
7164
7165
/*
7166
* Ignore the return, marking the guest paused only "fails" if the vCPU
7167
* isn't using kvmclock; continuing on is correct and desirable.
7168
*/
7169
kvm_for_each_vcpu(i, vcpu, kvm)
7170
(void)kvm_set_guest_paused(vcpu);
7171
7172
return NOTIFY_DONE;
7173
}
7174
7175
int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
7176
{
7177
switch (state) {
7178
case PM_HIBERNATION_PREPARE:
7179
case PM_SUSPEND_PREPARE:
7180
return kvm_arch_suspend_notifier(kvm);
7181
}
7182
7183
return NOTIFY_DONE;
7184
}
7185
#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
7186
7187
static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
7188
{
7189
struct kvm_clock_data data = { 0 };
7190
7191
get_kvmclock(kvm, &data);
7192
if (copy_to_user(argp, &data, sizeof(data)))
7193
return -EFAULT;
7194
7195
return 0;
7196
}
7197
7198
static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
7199
{
7200
struct kvm_arch *ka = &kvm->arch;
7201
struct kvm_clock_data data;
7202
u64 now_raw_ns;
7203
7204
if (copy_from_user(&data, argp, sizeof(data)))
7205
return -EFAULT;
7206
7207
/*
7208
* Only KVM_CLOCK_REALTIME is used, but allow passing the
7209
* result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7210
*/
7211
if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7212
return -EINVAL;
7213
7214
kvm_hv_request_tsc_page_update(kvm);
7215
kvm_start_pvclock_update(kvm);
7216
pvclock_update_vm_gtod_copy(kvm);
7217
7218
/*
7219
* This pairs with kvm_guest_time_update(): when masterclock is
7220
* in use, we use master_kernel_ns + kvmclock_offset to set
7221
* unsigned 'system_time' so if we use get_kvmclock_ns() (which
7222
* is slightly ahead) here we risk going negative on unsigned
7223
* 'system_time' when 'data.clock' is very small.
7224
*/
7225
if (data.flags & KVM_CLOCK_REALTIME) {
7226
u64 now_real_ns = ktime_get_real_ns();
7227
7228
/*
7229
* Avoid stepping the kvmclock backwards.
7230
*/
7231
if (now_real_ns > data.realtime)
7232
data.clock += now_real_ns - data.realtime;
7233
}
7234
7235
if (ka->use_master_clock)
7236
now_raw_ns = ka->master_kernel_ns;
7237
else
7238
now_raw_ns = get_kvmclock_base_ns();
7239
ka->kvmclock_offset = data.clock - now_raw_ns;
7240
kvm_end_pvclock_update(kvm);
7241
return 0;
7242
}
7243
7244
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7245
{
7246
struct kvm *kvm = filp->private_data;
7247
void __user *argp = (void __user *)arg;
7248
int r = -ENOTTY;
7249
7250
#ifdef CONFIG_KVM_IOAPIC
7251
/*
7252
* This union makes it completely explicit to gcc-3.x
7253
* that these three variables' stack usage should be
7254
* combined, not added together.
7255
*/
7256
union {
7257
struct kvm_pit_state ps;
7258
struct kvm_pit_state2 ps2;
7259
struct kvm_pit_config pit_config;
7260
} u;
7261
#endif
7262
7263
switch (ioctl) {
7264
case KVM_SET_TSS_ADDR:
7265
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7266
break;
7267
case KVM_SET_IDENTITY_MAP_ADDR: {
7268
u64 ident_addr;
7269
7270
mutex_lock(&kvm->lock);
7271
r = -EINVAL;
7272
if (kvm->created_vcpus)
7273
goto set_identity_unlock;
7274
r = -EFAULT;
7275
if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7276
goto set_identity_unlock;
7277
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7278
set_identity_unlock:
7279
mutex_unlock(&kvm->lock);
7280
break;
7281
}
7282
case KVM_SET_NR_MMU_PAGES:
7283
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7284
break;
7285
#ifdef CONFIG_KVM_IOAPIC
7286
case KVM_CREATE_IRQCHIP: {
7287
mutex_lock(&kvm->lock);
7288
7289
r = -EEXIST;
7290
if (irqchip_in_kernel(kvm))
7291
goto create_irqchip_unlock;
7292
7293
/*
7294
* Disallow an in-kernel I/O APIC if the VM has protected EOIs,
7295
* i.e. if KVM can't intercept EOIs and thus can't properly
7296
* emulate level-triggered interrupts.
7297
*/
7298
r = -ENOTTY;
7299
if (kvm->arch.has_protected_eoi)
7300
goto create_irqchip_unlock;
7301
7302
r = -EINVAL;
7303
if (kvm->created_vcpus)
7304
goto create_irqchip_unlock;
7305
7306
r = kvm_pic_init(kvm);
7307
if (r)
7308
goto create_irqchip_unlock;
7309
7310
r = kvm_ioapic_init(kvm);
7311
if (r) {
7312
kvm_pic_destroy(kvm);
7313
goto create_irqchip_unlock;
7314
}
7315
7316
r = kvm_setup_default_ioapic_and_pic_routing(kvm);
7317
if (r) {
7318
kvm_ioapic_destroy(kvm);
7319
kvm_pic_destroy(kvm);
7320
goto create_irqchip_unlock;
7321
}
7322
/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7323
smp_wmb();
7324
kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7325
kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7326
create_irqchip_unlock:
7327
mutex_unlock(&kvm->lock);
7328
break;
7329
}
7330
case KVM_CREATE_PIT:
7331
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7332
goto create_pit;
7333
case KVM_CREATE_PIT2:
7334
r = -EFAULT;
7335
if (copy_from_user(&u.pit_config, argp,
7336
sizeof(struct kvm_pit_config)))
7337
goto out;
7338
create_pit:
7339
mutex_lock(&kvm->lock);
7340
r = -EEXIST;
7341
if (kvm->arch.vpit)
7342
goto create_pit_unlock;
7343
r = -ENOENT;
7344
if (!pic_in_kernel(kvm))
7345
goto create_pit_unlock;
7346
r = -ENOMEM;
7347
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7348
if (kvm->arch.vpit)
7349
r = 0;
7350
create_pit_unlock:
7351
mutex_unlock(&kvm->lock);
7352
break;
7353
case KVM_GET_IRQCHIP: {
7354
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7355
struct kvm_irqchip *chip;
7356
7357
chip = memdup_user(argp, sizeof(*chip));
7358
if (IS_ERR(chip)) {
7359
r = PTR_ERR(chip);
7360
goto out;
7361
}
7362
7363
r = -ENXIO;
7364
if (!irqchip_full(kvm))
7365
goto get_irqchip_out;
7366
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7367
if (r)
7368
goto get_irqchip_out;
7369
r = -EFAULT;
7370
if (copy_to_user(argp, chip, sizeof(*chip)))
7371
goto get_irqchip_out;
7372
r = 0;
7373
get_irqchip_out:
7374
kfree(chip);
7375
break;
7376
}
7377
case KVM_SET_IRQCHIP: {
7378
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7379
struct kvm_irqchip *chip;
7380
7381
chip = memdup_user(argp, sizeof(*chip));
7382
if (IS_ERR(chip)) {
7383
r = PTR_ERR(chip);
7384
goto out;
7385
}
7386
7387
r = -ENXIO;
7388
if (!irqchip_full(kvm))
7389
goto set_irqchip_out;
7390
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7391
set_irqchip_out:
7392
kfree(chip);
7393
break;
7394
}
7395
case KVM_GET_PIT: {
7396
r = -EFAULT;
7397
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7398
goto out;
7399
r = -ENXIO;
7400
if (!kvm->arch.vpit)
7401
goto out;
7402
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7403
if (r)
7404
goto out;
7405
r = -EFAULT;
7406
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7407
goto out;
7408
r = 0;
7409
break;
7410
}
7411
case KVM_SET_PIT: {
7412
r = -EFAULT;
7413
if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7414
goto out;
7415
mutex_lock(&kvm->lock);
7416
r = -ENXIO;
7417
if (!kvm->arch.vpit)
7418
goto set_pit_out;
7419
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7420
set_pit_out:
7421
mutex_unlock(&kvm->lock);
7422
break;
7423
}
7424
case KVM_GET_PIT2: {
7425
r = -ENXIO;
7426
if (!kvm->arch.vpit)
7427
goto out;
7428
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7429
if (r)
7430
goto out;
7431
r = -EFAULT;
7432
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7433
goto out;
7434
r = 0;
7435
break;
7436
}
7437
case KVM_SET_PIT2: {
7438
r = -EFAULT;
7439
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7440
goto out;
7441
mutex_lock(&kvm->lock);
7442
r = -ENXIO;
7443
if (!kvm->arch.vpit)
7444
goto set_pit2_out;
7445
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7446
set_pit2_out:
7447
mutex_unlock(&kvm->lock);
7448
break;
7449
}
7450
case KVM_REINJECT_CONTROL: {
7451
struct kvm_reinject_control control;
7452
r = -EFAULT;
7453
if (copy_from_user(&control, argp, sizeof(control)))
7454
goto out;
7455
r = -ENXIO;
7456
if (!kvm->arch.vpit)
7457
goto out;
7458
r = kvm_vm_ioctl_reinject(kvm, &control);
7459
break;
7460
}
7461
#endif
7462
case KVM_SET_BOOT_CPU_ID:
7463
r = 0;
7464
mutex_lock(&kvm->lock);
7465
if (kvm->created_vcpus)
7466
r = -EBUSY;
7467
else if (arg > KVM_MAX_VCPU_IDS ||
7468
(kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7469
r = -EINVAL;
7470
else
7471
kvm->arch.bsp_vcpu_id = arg;
7472
mutex_unlock(&kvm->lock);
7473
break;
7474
#ifdef CONFIG_KVM_XEN
7475
case KVM_XEN_HVM_CONFIG: {
7476
struct kvm_xen_hvm_config xhc;
7477
r = -EFAULT;
7478
if (copy_from_user(&xhc, argp, sizeof(xhc)))
7479
goto out;
7480
r = kvm_xen_hvm_config(kvm, &xhc);
7481
break;
7482
}
7483
case KVM_XEN_HVM_GET_ATTR: {
7484
struct kvm_xen_hvm_attr xha;
7485
7486
r = -EFAULT;
7487
if (copy_from_user(&xha, argp, sizeof(xha)))
7488
goto out;
7489
r = kvm_xen_hvm_get_attr(kvm, &xha);
7490
if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7491
r = -EFAULT;
7492
break;
7493
}
7494
case KVM_XEN_HVM_SET_ATTR: {
7495
struct kvm_xen_hvm_attr xha;
7496
7497
r = -EFAULT;
7498
if (copy_from_user(&xha, argp, sizeof(xha)))
7499
goto out;
7500
r = kvm_xen_hvm_set_attr(kvm, &xha);
7501
break;
7502
}
7503
case KVM_XEN_HVM_EVTCHN_SEND: {
7504
struct kvm_irq_routing_xen_evtchn uxe;
7505
7506
r = -EFAULT;
7507
if (copy_from_user(&uxe, argp, sizeof(uxe)))
7508
goto out;
7509
r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7510
break;
7511
}
7512
#endif
7513
case KVM_SET_CLOCK:
7514
r = kvm_vm_ioctl_set_clock(kvm, argp);
7515
break;
7516
case KVM_GET_CLOCK:
7517
r = kvm_vm_ioctl_get_clock(kvm, argp);
7518
break;
7519
case KVM_SET_TSC_KHZ: {
7520
u32 user_tsc_khz;
7521
7522
r = -EINVAL;
7523
user_tsc_khz = (u32)arg;
7524
7525
if (kvm_caps.has_tsc_control &&
7526
user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7527
goto out;
7528
7529
if (user_tsc_khz == 0)
7530
user_tsc_khz = tsc_khz;
7531
7532
mutex_lock(&kvm->lock);
7533
if (!kvm->created_vcpus) {
7534
WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7535
r = 0;
7536
}
7537
mutex_unlock(&kvm->lock);
7538
goto out;
7539
}
7540
case KVM_GET_TSC_KHZ: {
7541
r = READ_ONCE(kvm->arch.default_tsc_khz);
7542
goto out;
7543
}
7544
case KVM_MEMORY_ENCRYPT_OP:
7545
r = -ENOTTY;
7546
if (!kvm_x86_ops.mem_enc_ioctl)
7547
goto out;
7548
7549
r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7550
break;
7551
case KVM_MEMORY_ENCRYPT_REG_REGION: {
7552
struct kvm_enc_region region;
7553
7554
r = -EFAULT;
7555
if (copy_from_user(&region, argp, sizeof(region)))
7556
goto out;
7557
7558
r = -ENOTTY;
7559
if (!kvm_x86_ops.mem_enc_register_region)
7560
goto out;
7561
7562
r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7563
break;
7564
}
7565
case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7566
struct kvm_enc_region region;
7567
7568
r = -EFAULT;
7569
if (copy_from_user(&region, argp, sizeof(region)))
7570
goto out;
7571
7572
r = -ENOTTY;
7573
if (!kvm_x86_ops.mem_enc_unregister_region)
7574
goto out;
7575
7576
r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7577
break;
7578
}
7579
#ifdef CONFIG_KVM_HYPERV
7580
case KVM_HYPERV_EVENTFD: {
7581
struct kvm_hyperv_eventfd hvevfd;
7582
7583
r = -EFAULT;
7584
if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7585
goto out;
7586
r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7587
break;
7588
}
7589
#endif
7590
case KVM_SET_PMU_EVENT_FILTER:
7591
r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7592
break;
7593
case KVM_X86_SET_MSR_FILTER: {
7594
struct kvm_msr_filter __user *user_msr_filter = argp;
7595
struct kvm_msr_filter filter;
7596
7597
if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7598
return -EFAULT;
7599
7600
r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7601
break;
7602
}
7603
default:
7604
r = -ENOTTY;
7605
}
7606
out:
7607
return r;
7608
}
7609
7610
static void kvm_probe_feature_msr(u32 msr_index)
7611
{
7612
u64 data;
7613
7614
if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7615
return;
7616
7617
msr_based_features[num_msr_based_features++] = msr_index;
7618
}
7619
7620
static void kvm_probe_msr_to_save(u32 msr_index)
7621
{
7622
u32 dummy[2];
7623
7624
if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7625
return;
7626
7627
/*
7628
* Even MSRs that are valid in the host may not be exposed to guests in
7629
* some cases.
7630
*/
7631
switch (msr_index) {
7632
case MSR_IA32_BNDCFGS:
7633
if (!kvm_mpx_supported())
7634
return;
7635
break;
7636
case MSR_TSC_AUX:
7637
if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7638
!kvm_cpu_cap_has(X86_FEATURE_RDPID))
7639
return;
7640
break;
7641
case MSR_IA32_UMWAIT_CONTROL:
7642
if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7643
return;
7644
break;
7645
case MSR_IA32_RTIT_CTL:
7646
case MSR_IA32_RTIT_STATUS:
7647
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7648
return;
7649
break;
7650
case MSR_IA32_RTIT_CR3_MATCH:
7651
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7652
!intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7653
return;
7654
break;
7655
case MSR_IA32_RTIT_OUTPUT_BASE:
7656
case MSR_IA32_RTIT_OUTPUT_MASK:
7657
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7658
(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7659
!intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7660
return;
7661
break;
7662
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7663
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7664
(msr_index - MSR_IA32_RTIT_ADDR0_A >=
7665
intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7666
return;
7667
break;
7668
case MSR_ARCH_PERFMON_PERFCTR0 ...
7669
MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7670
if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7671
kvm_pmu_cap.num_counters_gp)
7672
return;
7673
break;
7674
case MSR_ARCH_PERFMON_EVENTSEL0 ...
7675
MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7676
if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7677
kvm_pmu_cap.num_counters_gp)
7678
return;
7679
break;
7680
case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7681
MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7682
if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7683
kvm_pmu_cap.num_counters_fixed)
7684
return;
7685
break;
7686
case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7687
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7688
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7689
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
7690
if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7691
return;
7692
break;
7693
case MSR_IA32_XFD:
7694
case MSR_IA32_XFD_ERR:
7695
if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7696
return;
7697
break;
7698
case MSR_IA32_TSX_CTRL:
7699
if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7700
return;
7701
break;
7702
case MSR_IA32_XSS:
7703
if (!kvm_caps.supported_xss)
7704
return;
7705
break;
7706
case MSR_IA32_U_CET:
7707
case MSR_IA32_S_CET:
7708
if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7709
!kvm_cpu_cap_has(X86_FEATURE_IBT))
7710
return;
7711
break;
7712
case MSR_IA32_INT_SSP_TAB:
7713
if (!kvm_cpu_cap_has(X86_FEATURE_LM))
7714
return;
7715
fallthrough;
7716
case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
7717
if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK))
7718
return;
7719
break;
7720
default:
7721
break;
7722
}
7723
7724
msrs_to_save[num_msrs_to_save++] = msr_index;
7725
}
7726
7727
static void kvm_init_msr_lists(void)
7728
{
7729
unsigned i;
7730
7731
BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7732
"Please update the fixed PMCs in msrs_to_save_pmu[]");
7733
7734
num_msrs_to_save = 0;
7735
num_emulated_msrs = 0;
7736
num_msr_based_features = 0;
7737
7738
for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7739
kvm_probe_msr_to_save(msrs_to_save_base[i]);
7740
7741
if (enable_pmu) {
7742
for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7743
kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7744
}
7745
7746
for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7747
if (!kvm_x86_call(has_emulated_msr)(NULL,
7748
emulated_msrs_all[i]))
7749
continue;
7750
7751
emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7752
}
7753
7754
for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7755
kvm_probe_feature_msr(i);
7756
7757
for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7758
kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7759
}
7760
7761
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7762
const void *v)
7763
{
7764
int handled = 0;
7765
int n;
7766
7767
do {
7768
n = min(len, 8);
7769
if (!(lapic_in_kernel(vcpu) &&
7770
!kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7771
&& kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7772
break;
7773
handled += n;
7774
addr += n;
7775
len -= n;
7776
v += n;
7777
} while (len);
7778
7779
return handled;
7780
}
7781
7782
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7783
{
7784
int handled = 0;
7785
int n;
7786
7787
do {
7788
n = min(len, 8);
7789
if (!(lapic_in_kernel(vcpu) &&
7790
!kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7791
addr, n, v))
7792
&& kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7793
break;
7794
trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7795
handled += n;
7796
addr += n;
7797
len -= n;
7798
v += n;
7799
} while (len);
7800
7801
return handled;
7802
}
7803
7804
void kvm_set_segment(struct kvm_vcpu *vcpu,
7805
struct kvm_segment *var, int seg)
7806
{
7807
kvm_x86_call(set_segment)(vcpu, var, seg);
7808
}
7809
7810
void kvm_get_segment(struct kvm_vcpu *vcpu,
7811
struct kvm_segment *var, int seg)
7812
{
7813
kvm_x86_call(get_segment)(vcpu, var, seg);
7814
}
7815
7816
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7817
struct x86_exception *exception)
7818
{
7819
struct kvm_mmu *mmu = vcpu->arch.mmu;
7820
gpa_t t_gpa;
7821
7822
BUG_ON(!mmu_is_nested(vcpu));
7823
7824
/* NPT walks are always user-walks */
7825
access |= PFERR_USER_MASK;
7826
t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7827
7828
return t_gpa;
7829
}
7830
7831
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7832
struct x86_exception *exception)
7833
{
7834
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7835
7836
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7837
return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7838
}
7839
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_read);
7840
7841
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7842
struct x86_exception *exception)
7843
{
7844
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7845
7846
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7847
access |= PFERR_WRITE_MASK;
7848
return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7849
}
7850
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_write);
7851
7852
/* uses this to access any guest's mapped memory without checking CPL */
7853
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7854
struct x86_exception *exception)
7855
{
7856
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7857
7858
return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7859
}
7860
7861
static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7862
struct kvm_vcpu *vcpu, u64 access,
7863
struct x86_exception *exception)
7864
{
7865
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7866
void *data = val;
7867
int r = X86EMUL_CONTINUE;
7868
7869
while (bytes) {
7870
gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7871
unsigned offset = addr & (PAGE_SIZE-1);
7872
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7873
int ret;
7874
7875
if (gpa == INVALID_GPA)
7876
return X86EMUL_PROPAGATE_FAULT;
7877
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7878
offset, toread);
7879
if (ret < 0) {
7880
r = X86EMUL_IO_NEEDED;
7881
goto out;
7882
}
7883
7884
bytes -= toread;
7885
data += toread;
7886
addr += toread;
7887
}
7888
out:
7889
return r;
7890
}
7891
7892
/* used for instruction fetching */
7893
static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7894
gva_t addr, void *val, unsigned int bytes,
7895
struct x86_exception *exception)
7896
{
7897
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7898
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7899
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7900
unsigned offset;
7901
int ret;
7902
7903
/* Inline kvm_read_guest_virt_helper for speed. */
7904
gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7905
exception);
7906
if (unlikely(gpa == INVALID_GPA))
7907
return X86EMUL_PROPAGATE_FAULT;
7908
7909
offset = addr & (PAGE_SIZE-1);
7910
if (WARN_ON(offset + bytes > PAGE_SIZE))
7911
bytes = (unsigned)PAGE_SIZE - offset;
7912
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7913
offset, bytes);
7914
if (unlikely(ret < 0))
7915
return X86EMUL_IO_NEEDED;
7916
7917
return X86EMUL_CONTINUE;
7918
}
7919
7920
int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7921
gva_t addr, void *val, unsigned int bytes,
7922
struct x86_exception *exception)
7923
{
7924
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7925
7926
/*
7927
* FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7928
* is returned, but our callers are not ready for that and they blindly
7929
* call kvm_inject_page_fault. Ensure that they at least do not leak
7930
* uninitialized kernel stack memory into cr2 and error code.
7931
*/
7932
memset(exception, 0, sizeof(*exception));
7933
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7934
exception);
7935
}
7936
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_virt);
7937
7938
static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7939
gva_t addr, void *val, unsigned int bytes,
7940
struct x86_exception *exception, bool system)
7941
{
7942
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7943
u64 access = 0;
7944
7945
if (system)
7946
access |= PFERR_IMPLICIT_ACCESS;
7947
else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7948
access |= PFERR_USER_MASK;
7949
7950
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7951
}
7952
7953
static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7954
struct kvm_vcpu *vcpu, u64 access,
7955
struct x86_exception *exception)
7956
{
7957
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7958
void *data = val;
7959
int r = X86EMUL_CONTINUE;
7960
7961
while (bytes) {
7962
gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7963
unsigned offset = addr & (PAGE_SIZE-1);
7964
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7965
int ret;
7966
7967
if (gpa == INVALID_GPA)
7968
return X86EMUL_PROPAGATE_FAULT;
7969
ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7970
if (ret < 0) {
7971
r = X86EMUL_IO_NEEDED;
7972
goto out;
7973
}
7974
7975
bytes -= towrite;
7976
data += towrite;
7977
addr += towrite;
7978
}
7979
out:
7980
return r;
7981
}
7982
7983
static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7984
unsigned int bytes, struct x86_exception *exception,
7985
bool system)
7986
{
7987
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7988
u64 access = PFERR_WRITE_MASK;
7989
7990
if (system)
7991
access |= PFERR_IMPLICIT_ACCESS;
7992
else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7993
access |= PFERR_USER_MASK;
7994
7995
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7996
access, exception);
7997
}
7998
7999
int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
8000
unsigned int bytes, struct x86_exception *exception)
8001
{
8002
/* kvm_write_guest_virt_system can pull in tons of pages. */
8003
vcpu->arch.l1tf_flush_l1d = true;
8004
8005
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
8006
PFERR_WRITE_MASK, exception);
8007
}
8008
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_virt_system);
8009
8010
static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
8011
void *insn, int insn_len)
8012
{
8013
return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
8014
insn, insn_len);
8015
}
8016
8017
int handle_ud(struct kvm_vcpu *vcpu)
8018
{
8019
static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
8020
int fep_flags = READ_ONCE(force_emulation_prefix);
8021
int emul_type = EMULTYPE_TRAP_UD;
8022
char sig[5]; /* ud2; .ascii "kvm" */
8023
struct x86_exception e;
8024
int r;
8025
8026
r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
8027
if (r != X86EMUL_CONTINUE)
8028
return 1;
8029
8030
if (fep_flags &&
8031
kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
8032
sig, sizeof(sig), &e) == 0 &&
8033
memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
8034
if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
8035
kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
8036
kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
8037
emul_type = EMULTYPE_TRAP_UD_FORCED;
8038
}
8039
8040
return kvm_emulate_instruction(vcpu, emul_type);
8041
}
8042
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_ud);
8043
8044
static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8045
gpa_t gpa, bool write)
8046
{
8047
/* For APIC access vmexit */
8048
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8049
return 1;
8050
8051
if (vcpu_match_mmio_gpa(vcpu, gpa)) {
8052
trace_vcpu_match_mmio(gva, gpa, write, true);
8053
return 1;
8054
}
8055
8056
return 0;
8057
}
8058
8059
static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8060
gpa_t *gpa, struct x86_exception *exception,
8061
bool write)
8062
{
8063
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8064
u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
8065
| (write ? PFERR_WRITE_MASK : 0);
8066
8067
/*
8068
* currently PKRU is only applied to ept enabled guest so
8069
* there is no pkey in EPT page table for L1 guest or EPT
8070
* shadow page table for L2 guest.
8071
*/
8072
if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
8073
!permission_fault(vcpu, vcpu->arch.walk_mmu,
8074
vcpu->arch.mmio_access, 0, access))) {
8075
*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
8076
(gva & (PAGE_SIZE - 1));
8077
trace_vcpu_match_mmio(gva, *gpa, write, false);
8078
return 1;
8079
}
8080
8081
*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
8082
8083
if (*gpa == INVALID_GPA)
8084
return -1;
8085
8086
return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
8087
}
8088
8089
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
8090
const void *val, int bytes)
8091
{
8092
int ret;
8093
8094
ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
8095
if (ret < 0)
8096
return 0;
8097
kvm_page_track_write(vcpu, gpa, val, bytes);
8098
return 1;
8099
}
8100
8101
struct read_write_emulator_ops {
8102
int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
8103
int bytes);
8104
int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
8105
void *val, int bytes);
8106
int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8107
int bytes, void *val);
8108
int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8109
void *val, int bytes);
8110
bool write;
8111
};
8112
8113
static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
8114
{
8115
if (vcpu->mmio_read_completed) {
8116
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
8117
vcpu->mmio_fragments[0].gpa, val);
8118
vcpu->mmio_read_completed = 0;
8119
return 1;
8120
}
8121
8122
return 0;
8123
}
8124
8125
static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8126
void *val, int bytes)
8127
{
8128
return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
8129
}
8130
8131
static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8132
void *val, int bytes)
8133
{
8134
return emulator_write_phys(vcpu, gpa, val, bytes);
8135
}
8136
8137
static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
8138
{
8139
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
8140
return vcpu_mmio_write(vcpu, gpa, bytes, val);
8141
}
8142
8143
static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8144
void *val, int bytes)
8145
{
8146
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
8147
return X86EMUL_IO_NEEDED;
8148
}
8149
8150
static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8151
void *val, int bytes)
8152
{
8153
struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
8154
8155
memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
8156
return X86EMUL_CONTINUE;
8157
}
8158
8159
static const struct read_write_emulator_ops read_emultor = {
8160
.read_write_prepare = read_prepare,
8161
.read_write_emulate = read_emulate,
8162
.read_write_mmio = vcpu_mmio_read,
8163
.read_write_exit_mmio = read_exit_mmio,
8164
};
8165
8166
static const struct read_write_emulator_ops write_emultor = {
8167
.read_write_emulate = write_emulate,
8168
.read_write_mmio = write_mmio,
8169
.read_write_exit_mmio = write_exit_mmio,
8170
.write = true,
8171
};
8172
8173
static int emulator_read_write_onepage(unsigned long addr, void *val,
8174
unsigned int bytes,
8175
struct x86_exception *exception,
8176
struct kvm_vcpu *vcpu,
8177
const struct read_write_emulator_ops *ops)
8178
{
8179
gpa_t gpa;
8180
int handled, ret;
8181
bool write = ops->write;
8182
struct kvm_mmio_fragment *frag;
8183
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8184
8185
/*
8186
* If the exit was due to a NPF we may already have a GPA.
8187
* If the GPA is present, use it to avoid the GVA to GPA table walk.
8188
* Note, this cannot be used on string operations since string
8189
* operation using rep will only have the initial GPA from the NPF
8190
* occurred.
8191
*/
8192
if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
8193
(addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
8194
gpa = ctxt->gpa_val;
8195
ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
8196
} else {
8197
ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
8198
if (ret < 0)
8199
return X86EMUL_PROPAGATE_FAULT;
8200
}
8201
8202
if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
8203
return X86EMUL_CONTINUE;
8204
8205
/*
8206
* Is this MMIO handled locally?
8207
*/
8208
handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
8209
if (handled == bytes)
8210
return X86EMUL_CONTINUE;
8211
8212
gpa += handled;
8213
bytes -= handled;
8214
val += handled;
8215
8216
WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
8217
frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
8218
frag->gpa = gpa;
8219
frag->data = val;
8220
frag->len = bytes;
8221
return X86EMUL_CONTINUE;
8222
}
8223
8224
static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
8225
unsigned long addr,
8226
void *val, unsigned int bytes,
8227
struct x86_exception *exception,
8228
const struct read_write_emulator_ops *ops)
8229
{
8230
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8231
gpa_t gpa;
8232
int rc;
8233
8234
if (ops->read_write_prepare &&
8235
ops->read_write_prepare(vcpu, val, bytes))
8236
return X86EMUL_CONTINUE;
8237
8238
vcpu->mmio_nr_fragments = 0;
8239
8240
/* Crossing a page boundary? */
8241
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
8242
int now;
8243
8244
now = -addr & ~PAGE_MASK;
8245
rc = emulator_read_write_onepage(addr, val, now, exception,
8246
vcpu, ops);
8247
8248
if (rc != X86EMUL_CONTINUE)
8249
return rc;
8250
addr += now;
8251
if (ctxt->mode != X86EMUL_MODE_PROT64)
8252
addr = (u32)addr;
8253
val += now;
8254
bytes -= now;
8255
}
8256
8257
rc = emulator_read_write_onepage(addr, val, bytes, exception,
8258
vcpu, ops);
8259
if (rc != X86EMUL_CONTINUE)
8260
return rc;
8261
8262
if (!vcpu->mmio_nr_fragments)
8263
return X86EMUL_CONTINUE;
8264
8265
gpa = vcpu->mmio_fragments[0].gpa;
8266
8267
vcpu->mmio_needed = 1;
8268
vcpu->mmio_cur_fragment = 0;
8269
8270
vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8271
vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8272
vcpu->run->exit_reason = KVM_EXIT_MMIO;
8273
vcpu->run->mmio.phys_addr = gpa;
8274
8275
return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8276
}
8277
8278
static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8279
unsigned long addr,
8280
void *val,
8281
unsigned int bytes,
8282
struct x86_exception *exception)
8283
{
8284
return emulator_read_write(ctxt, addr, val, bytes,
8285
exception, &read_emultor);
8286
}
8287
8288
static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8289
unsigned long addr,
8290
const void *val,
8291
unsigned int bytes,
8292
struct x86_exception *exception)
8293
{
8294
return emulator_read_write(ctxt, addr, (void *)val, bytes,
8295
exception, &write_emultor);
8296
}
8297
8298
#define emulator_try_cmpxchg_user(t, ptr, old, new) \
8299
(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8300
8301
static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8302
unsigned long addr,
8303
const void *old,
8304
const void *new,
8305
unsigned int bytes,
8306
struct x86_exception *exception)
8307
{
8308
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8309
u64 page_line_mask;
8310
unsigned long hva;
8311
gpa_t gpa;
8312
int r;
8313
8314
/* guests cmpxchg8b have to be emulated atomically */
8315
if (bytes > 8 || (bytes & (bytes - 1)))
8316
goto emul_write;
8317
8318
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8319
8320
if (gpa == INVALID_GPA ||
8321
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8322
goto emul_write;
8323
8324
/*
8325
* Emulate the atomic as a straight write to avoid #AC if SLD is
8326
* enabled in the host and the access splits a cache line.
8327
*/
8328
if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8329
page_line_mask = ~(cache_line_size() - 1);
8330
else
8331
page_line_mask = PAGE_MASK;
8332
8333
if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8334
goto emul_write;
8335
8336
hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8337
if (kvm_is_error_hva(hva))
8338
goto emul_write;
8339
8340
hva += offset_in_page(gpa);
8341
8342
switch (bytes) {
8343
case 1:
8344
r = emulator_try_cmpxchg_user(u8, hva, old, new);
8345
break;
8346
case 2:
8347
r = emulator_try_cmpxchg_user(u16, hva, old, new);
8348
break;
8349
case 4:
8350
r = emulator_try_cmpxchg_user(u32, hva, old, new);
8351
break;
8352
case 8:
8353
r = emulator_try_cmpxchg_user(u64, hva, old, new);
8354
break;
8355
default:
8356
BUG();
8357
}
8358
8359
if (r < 0)
8360
return X86EMUL_UNHANDLEABLE;
8361
8362
/*
8363
* Mark the page dirty _before_ checking whether or not the CMPXCHG was
8364
* successful, as the old value is written back on failure. Note, for
8365
* live migration, this is unnecessarily conservative as CMPXCHG writes
8366
* back the original value and the access is atomic, but KVM's ABI is
8367
* that all writes are dirty logged, regardless of the value written.
8368
*/
8369
kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8370
8371
if (r)
8372
return X86EMUL_CMPXCHG_FAILED;
8373
8374
kvm_page_track_write(vcpu, gpa, new, bytes);
8375
8376
return X86EMUL_CONTINUE;
8377
8378
emul_write:
8379
pr_warn_once("emulating exchange as write\n");
8380
8381
return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8382
}
8383
8384
static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8385
unsigned short port, void *data,
8386
unsigned int count, bool in)
8387
{
8388
unsigned i;
8389
int r;
8390
8391
WARN_ON_ONCE(vcpu->arch.pio.count);
8392
for (i = 0; i < count; i++) {
8393
if (in)
8394
r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8395
else
8396
r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8397
8398
if (r) {
8399
if (i == 0)
8400
goto userspace_io;
8401
8402
/*
8403
* Userspace must have unregistered the device while PIO
8404
* was running. Drop writes / read as 0.
8405
*/
8406
if (in)
8407
memset(data, 0, size * (count - i));
8408
break;
8409
}
8410
8411
data += size;
8412
}
8413
return 1;
8414
8415
userspace_io:
8416
vcpu->arch.pio.port = port;
8417
vcpu->arch.pio.in = in;
8418
vcpu->arch.pio.count = count;
8419
vcpu->arch.pio.size = size;
8420
8421
if (in)
8422
memset(vcpu->arch.pio_data, 0, size * count);
8423
else
8424
memcpy(vcpu->arch.pio_data, data, size * count);
8425
8426
vcpu->run->exit_reason = KVM_EXIT_IO;
8427
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8428
vcpu->run->io.size = size;
8429
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8430
vcpu->run->io.count = count;
8431
vcpu->run->io.port = port;
8432
return 0;
8433
}
8434
8435
static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8436
unsigned short port, void *val, unsigned int count)
8437
{
8438
int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8439
if (r)
8440
trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8441
8442
return r;
8443
}
8444
8445
static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8446
{
8447
int size = vcpu->arch.pio.size;
8448
unsigned int count = vcpu->arch.pio.count;
8449
memcpy(val, vcpu->arch.pio_data, size * count);
8450
trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8451
vcpu->arch.pio.count = 0;
8452
}
8453
8454
static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8455
int size, unsigned short port, void *val,
8456
unsigned int count)
8457
{
8458
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8459
if (vcpu->arch.pio.count) {
8460
/*
8461
* Complete a previous iteration that required userspace I/O.
8462
* Note, @count isn't guaranteed to match pio.count as userspace
8463
* can modify ECX before rerunning the vCPU. Ignore any such
8464
* shenanigans as KVM doesn't support modifying the rep count,
8465
* and the emulator ensures @count doesn't overflow the buffer.
8466
*/
8467
complete_emulator_pio_in(vcpu, val);
8468
return 1;
8469
}
8470
8471
return emulator_pio_in(vcpu, size, port, val, count);
8472
}
8473
8474
static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8475
unsigned short port, const void *val,
8476
unsigned int count)
8477
{
8478
trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8479
return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8480
}
8481
8482
static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8483
int size, unsigned short port,
8484
const void *val, unsigned int count)
8485
{
8486
return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8487
}
8488
8489
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8490
{
8491
return kvm_x86_call(get_segment_base)(vcpu, seg);
8492
}
8493
8494
static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8495
{
8496
kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8497
}
8498
8499
static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8500
{
8501
if (!need_emulate_wbinvd(vcpu))
8502
return X86EMUL_CONTINUE;
8503
8504
if (kvm_x86_call(has_wbinvd_exit)()) {
8505
int cpu = get_cpu();
8506
8507
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8508
wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask);
8509
put_cpu();
8510
cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8511
} else
8512
wbinvd();
8513
return X86EMUL_CONTINUE;
8514
}
8515
8516
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8517
{
8518
kvm_emulate_wbinvd_noskip(vcpu);
8519
return kvm_skip_emulated_instruction(vcpu);
8520
}
8521
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wbinvd);
8522
8523
8524
8525
static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8526
{
8527
kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8528
}
8529
8530
static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8531
{
8532
return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8533
}
8534
8535
static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8536
unsigned long value)
8537
{
8538
8539
return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8540
}
8541
8542
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8543
{
8544
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8545
}
8546
8547
static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8548
{
8549
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8550
unsigned long value;
8551
8552
switch (cr) {
8553
case 0:
8554
value = kvm_read_cr0(vcpu);
8555
break;
8556
case 2:
8557
value = vcpu->arch.cr2;
8558
break;
8559
case 3:
8560
value = kvm_read_cr3(vcpu);
8561
break;
8562
case 4:
8563
value = kvm_read_cr4(vcpu);
8564
break;
8565
case 8:
8566
value = kvm_get_cr8(vcpu);
8567
break;
8568
default:
8569
kvm_err("%s: unexpected cr %u\n", __func__, cr);
8570
return 0;
8571
}
8572
8573
return value;
8574
}
8575
8576
static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8577
{
8578
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8579
int res = 0;
8580
8581
switch (cr) {
8582
case 0:
8583
res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8584
break;
8585
case 2:
8586
vcpu->arch.cr2 = val;
8587
break;
8588
case 3:
8589
res = kvm_set_cr3(vcpu, val);
8590
break;
8591
case 4:
8592
res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8593
break;
8594
case 8:
8595
res = kvm_set_cr8(vcpu, val);
8596
break;
8597
default:
8598
kvm_err("%s: unexpected cr %u\n", __func__, cr);
8599
res = -1;
8600
}
8601
8602
return res;
8603
}
8604
8605
static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8606
{
8607
return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8608
}
8609
8610
static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8611
{
8612
kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8613
}
8614
8615
static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8616
{
8617
kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8618
}
8619
8620
static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8621
{
8622
kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8623
}
8624
8625
static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8626
{
8627
kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8628
}
8629
8630
static unsigned long emulator_get_cached_segment_base(
8631
struct x86_emulate_ctxt *ctxt, int seg)
8632
{
8633
return get_segment_base(emul_to_vcpu(ctxt), seg);
8634
}
8635
8636
static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8637
struct desc_struct *desc, u32 *base3,
8638
int seg)
8639
{
8640
struct kvm_segment var;
8641
8642
kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8643
*selector = var.selector;
8644
8645
if (var.unusable) {
8646
memset(desc, 0, sizeof(*desc));
8647
if (base3)
8648
*base3 = 0;
8649
return false;
8650
}
8651
8652
if (var.g)
8653
var.limit >>= 12;
8654
set_desc_limit(desc, var.limit);
8655
set_desc_base(desc, (unsigned long)var.base);
8656
#ifdef CONFIG_X86_64
8657
if (base3)
8658
*base3 = var.base >> 32;
8659
#endif
8660
desc->type = var.type;
8661
desc->s = var.s;
8662
desc->dpl = var.dpl;
8663
desc->p = var.present;
8664
desc->avl = var.avl;
8665
desc->l = var.l;
8666
desc->d = var.db;
8667
desc->g = var.g;
8668
8669
return true;
8670
}
8671
8672
static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8673
struct desc_struct *desc, u32 base3,
8674
int seg)
8675
{
8676
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8677
struct kvm_segment var;
8678
8679
var.selector = selector;
8680
var.base = get_desc_base(desc);
8681
#ifdef CONFIG_X86_64
8682
var.base |= ((u64)base3) << 32;
8683
#endif
8684
var.limit = get_desc_limit(desc);
8685
if (desc->g)
8686
var.limit = (var.limit << 12) | 0xfff;
8687
var.type = desc->type;
8688
var.dpl = desc->dpl;
8689
var.db = desc->d;
8690
var.s = desc->s;
8691
var.l = desc->l;
8692
var.g = desc->g;
8693
var.avl = desc->avl;
8694
var.present = desc->p;
8695
var.unusable = !var.present;
8696
var.padding = 0;
8697
8698
kvm_set_segment(vcpu, &var, seg);
8699
return;
8700
}
8701
8702
static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8703
u32 msr_index, u64 *pdata)
8704
{
8705
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8706
int r;
8707
8708
r = kvm_emulate_msr_read(vcpu, msr_index, pdata);
8709
if (r < 0)
8710
return X86EMUL_UNHANDLEABLE;
8711
8712
if (r) {
8713
if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8714
complete_emulated_rdmsr, r))
8715
return X86EMUL_IO_NEEDED;
8716
8717
trace_kvm_msr_read_ex(msr_index);
8718
return X86EMUL_PROPAGATE_FAULT;
8719
}
8720
8721
trace_kvm_msr_read(msr_index, *pdata);
8722
return X86EMUL_CONTINUE;
8723
}
8724
8725
static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8726
u32 msr_index, u64 data)
8727
{
8728
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8729
int r;
8730
8731
r = kvm_emulate_msr_write(vcpu, msr_index, data);
8732
if (r < 0)
8733
return X86EMUL_UNHANDLEABLE;
8734
8735
if (r) {
8736
if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8737
complete_emulated_msr_access, r))
8738
return X86EMUL_IO_NEEDED;
8739
8740
trace_kvm_msr_write_ex(msr_index, data);
8741
return X86EMUL_PROPAGATE_FAULT;
8742
}
8743
8744
trace_kvm_msr_write(msr_index, data);
8745
return X86EMUL_CONTINUE;
8746
}
8747
8748
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8749
u32 msr_index, u64 *pdata)
8750
{
8751
/*
8752
* Treat emulator accesses to the current shadow stack pointer as host-
8753
* initiated, as they aren't true MSR accesses (SSP is a "just a reg"),
8754
* and this API is used only for implicit accesses, i.e. not RDMSR, and
8755
* so the index is fully KVM-controlled.
8756
*/
8757
if (unlikely(msr_index == MSR_KVM_INTERNAL_GUEST_SSP))
8758
return kvm_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8759
8760
return __kvm_emulate_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8761
}
8762
8763
static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8764
{
8765
return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8766
}
8767
8768
static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8769
u32 pmc, u64 *pdata)
8770
{
8771
return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8772
}
8773
8774
static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8775
{
8776
emul_to_vcpu(ctxt)->arch.halt_request = 1;
8777
}
8778
8779
static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8780
struct x86_instruction_info *info,
8781
enum x86_intercept_stage stage)
8782
{
8783
return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8784
&ctxt->exception);
8785
}
8786
8787
static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8788
u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8789
bool exact_only)
8790
{
8791
return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8792
}
8793
8794
static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8795
{
8796
return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8797
}
8798
8799
static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8800
{
8801
return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8802
}
8803
8804
static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8805
{
8806
return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8807
}
8808
8809
static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8810
{
8811
return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8812
}
8813
8814
static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8815
{
8816
return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8817
}
8818
8819
static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8820
{
8821
kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8822
}
8823
8824
static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8825
{
8826
kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8827
}
8828
8829
static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8830
{
8831
return is_smm(emul_to_vcpu(ctxt));
8832
}
8833
8834
#ifndef CONFIG_KVM_SMM
8835
static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8836
{
8837
WARN_ON_ONCE(1);
8838
return X86EMUL_UNHANDLEABLE;
8839
}
8840
#endif
8841
8842
static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8843
{
8844
kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8845
}
8846
8847
static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8848
{
8849
return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8850
}
8851
8852
static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8853
{
8854
struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8855
8856
if (!kvm->vm_bugged)
8857
kvm_vm_bugged(kvm);
8858
}
8859
8860
static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8861
gva_t addr, unsigned int flags)
8862
{
8863
if (!kvm_x86_ops.get_untagged_addr)
8864
return addr;
8865
8866
return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8867
addr, flags);
8868
}
8869
8870
static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8871
gva_t addr, unsigned int flags)
8872
{
8873
return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8874
}
8875
8876
static const struct x86_emulate_ops emulate_ops = {
8877
.vm_bugged = emulator_vm_bugged,
8878
.read_gpr = emulator_read_gpr,
8879
.write_gpr = emulator_write_gpr,
8880
.read_std = emulator_read_std,
8881
.write_std = emulator_write_std,
8882
.fetch = kvm_fetch_guest_virt,
8883
.read_emulated = emulator_read_emulated,
8884
.write_emulated = emulator_write_emulated,
8885
.cmpxchg_emulated = emulator_cmpxchg_emulated,
8886
.invlpg = emulator_invlpg,
8887
.pio_in_emulated = emulator_pio_in_emulated,
8888
.pio_out_emulated = emulator_pio_out_emulated,
8889
.get_segment = emulator_get_segment,
8890
.set_segment = emulator_set_segment,
8891
.get_cached_segment_base = emulator_get_cached_segment_base,
8892
.get_gdt = emulator_get_gdt,
8893
.get_idt = emulator_get_idt,
8894
.set_gdt = emulator_set_gdt,
8895
.set_idt = emulator_set_idt,
8896
.get_cr = emulator_get_cr,
8897
.set_cr = emulator_set_cr,
8898
.cpl = emulator_get_cpl,
8899
.get_dr = emulator_get_dr,
8900
.set_dr = emulator_set_dr,
8901
.set_msr_with_filter = emulator_set_msr_with_filter,
8902
.get_msr_with_filter = emulator_get_msr_with_filter,
8903
.get_msr = emulator_get_msr,
8904
.check_rdpmc_early = emulator_check_rdpmc_early,
8905
.read_pmc = emulator_read_pmc,
8906
.halt = emulator_halt,
8907
.wbinvd = emulator_wbinvd,
8908
.fix_hypercall = emulator_fix_hypercall,
8909
.intercept = emulator_intercept,
8910
.get_cpuid = emulator_get_cpuid,
8911
.guest_has_movbe = emulator_guest_has_movbe,
8912
.guest_has_fxsr = emulator_guest_has_fxsr,
8913
.guest_has_rdpid = emulator_guest_has_rdpid,
8914
.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8915
.set_nmi_mask = emulator_set_nmi_mask,
8916
.is_smm = emulator_is_smm,
8917
.leave_smm = emulator_leave_smm,
8918
.triple_fault = emulator_triple_fault,
8919
.set_xcr = emulator_set_xcr,
8920
.get_untagged_addr = emulator_get_untagged_addr,
8921
.is_canonical_addr = emulator_is_canonical_addr,
8922
};
8923
8924
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8925
{
8926
u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8927
/*
8928
* an sti; sti; sequence only disable interrupts for the first
8929
* instruction. So, if the last instruction, be it emulated or
8930
* not, left the system with the INT_STI flag enabled, it
8931
* means that the last instruction is an sti. We should not
8932
* leave the flag on in this case. The same goes for mov ss
8933
*/
8934
if (int_shadow & mask)
8935
mask = 0;
8936
if (unlikely(int_shadow || mask)) {
8937
kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8938
if (!mask)
8939
kvm_make_request(KVM_REQ_EVENT, vcpu);
8940
}
8941
}
8942
8943
static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8944
{
8945
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8946
8947
if (ctxt->exception.vector == PF_VECTOR)
8948
kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8949
else if (ctxt->exception.error_code_valid)
8950
kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8951
ctxt->exception.error_code);
8952
else
8953
kvm_queue_exception(vcpu, ctxt->exception.vector);
8954
}
8955
8956
static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8957
{
8958
struct x86_emulate_ctxt *ctxt;
8959
8960
ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8961
if (!ctxt) {
8962
pr_err("failed to allocate vcpu's emulator\n");
8963
return NULL;
8964
}
8965
8966
ctxt->vcpu = vcpu;
8967
ctxt->ops = &emulate_ops;
8968
vcpu->arch.emulate_ctxt = ctxt;
8969
8970
return ctxt;
8971
}
8972
8973
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8974
{
8975
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8976
int cs_db, cs_l;
8977
8978
kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8979
8980
ctxt->gpa_available = false;
8981
ctxt->eflags = kvm_get_rflags(vcpu);
8982
ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8983
8984
ctxt->eip = kvm_rip_read(vcpu);
8985
ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8986
(ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8987
(cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8988
cs_db ? X86EMUL_MODE_PROT32 :
8989
X86EMUL_MODE_PROT16;
8990
ctxt->interruptibility = 0;
8991
ctxt->have_exception = false;
8992
ctxt->exception.vector = -1;
8993
ctxt->perm_ok = false;
8994
8995
init_decode_cache(ctxt);
8996
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8997
}
8998
8999
void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
9000
{
9001
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9002
int ret;
9003
9004
init_emulate_ctxt(vcpu);
9005
9006
ctxt->op_bytes = 2;
9007
ctxt->ad_bytes = 2;
9008
ctxt->_eip = ctxt->eip + inc_eip;
9009
ret = emulate_int_real(ctxt, irq);
9010
9011
if (ret != X86EMUL_CONTINUE) {
9012
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
9013
} else {
9014
ctxt->eip = ctxt->_eip;
9015
kvm_rip_write(vcpu, ctxt->eip);
9016
kvm_set_rflags(vcpu, ctxt->eflags);
9017
}
9018
}
9019
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_realmode_interrupt);
9020
9021
static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9022
u8 ndata, u8 *insn_bytes, u8 insn_size)
9023
{
9024
struct kvm_run *run = vcpu->run;
9025
u64 info[5];
9026
u8 info_start;
9027
9028
/*
9029
* Zero the whole array used to retrieve the exit info, as casting to
9030
* u32 for select entries will leave some chunks uninitialized.
9031
*/
9032
memset(&info, 0, sizeof(info));
9033
9034
kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
9035
(u32 *)&info[3], (u32 *)&info[4]);
9036
9037
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9038
run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
9039
9040
/*
9041
* There's currently space for 13 entries, but 5 are used for the exit
9042
* reason and info. Restrict to 4 to reduce the maintenance burden
9043
* when expanding kvm_run.emulation_failure in the future.
9044
*/
9045
if (WARN_ON_ONCE(ndata > 4))
9046
ndata = 4;
9047
9048
/* Always include the flags as a 'data' entry. */
9049
info_start = 1;
9050
run->emulation_failure.flags = 0;
9051
9052
if (insn_size) {
9053
BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
9054
sizeof(run->emulation_failure.insn_bytes) != 16));
9055
info_start += 2;
9056
run->emulation_failure.flags |=
9057
KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
9058
run->emulation_failure.insn_size = insn_size;
9059
memset(run->emulation_failure.insn_bytes, 0x90,
9060
sizeof(run->emulation_failure.insn_bytes));
9061
memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
9062
}
9063
9064
memcpy(&run->internal.data[info_start], info, sizeof(info));
9065
memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
9066
ndata * sizeof(data[0]));
9067
9068
run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
9069
}
9070
9071
static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
9072
{
9073
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9074
9075
prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
9076
ctxt->fetch.end - ctxt->fetch.data);
9077
}
9078
9079
void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9080
u8 ndata)
9081
{
9082
prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
9083
}
9084
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_prepare_emulation_failure_exit);
9085
9086
void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
9087
{
9088
__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
9089
}
9090
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_emulation_failure_exit);
9091
9092
void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
9093
{
9094
u32 reason, intr_info, error_code;
9095
struct kvm_run *run = vcpu->run;
9096
u64 info1, info2;
9097
int ndata = 0;
9098
9099
kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
9100
&intr_info, &error_code);
9101
9102
run->internal.data[ndata++] = info2;
9103
run->internal.data[ndata++] = reason;
9104
run->internal.data[ndata++] = info1;
9105
run->internal.data[ndata++] = gpa;
9106
run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
9107
9108
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9109
run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
9110
run->internal.ndata = ndata;
9111
}
9112
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_event_vectoring_exit);
9113
9114
static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
9115
{
9116
struct kvm *kvm = vcpu->kvm;
9117
9118
++vcpu->stat.insn_emulation_fail;
9119
trace_kvm_emulate_insn_failed(vcpu);
9120
9121
if (emulation_type & EMULTYPE_VMWARE_GP) {
9122
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9123
return 1;
9124
}
9125
9126
if (kvm->arch.exit_on_emulation_error ||
9127
(emulation_type & EMULTYPE_SKIP)) {
9128
prepare_emulation_ctxt_failure_exit(vcpu);
9129
return 0;
9130
}
9131
9132
kvm_queue_exception(vcpu, UD_VECTOR);
9133
9134
if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
9135
prepare_emulation_ctxt_failure_exit(vcpu);
9136
return 0;
9137
}
9138
9139
return 1;
9140
}
9141
9142
static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
9143
gpa_t cr2_or_gpa,
9144
int emulation_type)
9145
{
9146
if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
9147
return false;
9148
9149
/*
9150
* If the failed instruction faulted on an access to page tables that
9151
* are used to translate any part of the instruction, KVM can't resolve
9152
* the issue by unprotecting the gfn, as zapping the shadow page will
9153
* result in the instruction taking a !PRESENT page fault and thus put
9154
* the vCPU into an infinite loop of page faults. E.g. KVM will create
9155
* a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
9156
* then zap the SPTE to unprotect the gfn, and then do it all over
9157
* again. Report the error to userspace.
9158
*/
9159
if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
9160
return false;
9161
9162
/*
9163
* If emulation may have been triggered by a write to a shadowed page
9164
* table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
9165
* guest to let the CPU re-execute the instruction in the hope that the
9166
* CPU can cleanly execute the instruction that KVM failed to emulate.
9167
*/
9168
__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
9169
9170
/*
9171
* Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
9172
* all SPTEs were already zapped by a different task. The alternative
9173
* is to report the error to userspace and likely terminate the guest,
9174
* and the last_retry_{eip,addr} checks will prevent retrying the page
9175
* fault indefinitely, i.e. there's nothing to lose by retrying.
9176
*/
9177
return true;
9178
}
9179
9180
static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
9181
static int complete_emulated_pio(struct kvm_vcpu *vcpu);
9182
9183
static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
9184
unsigned long *db)
9185
{
9186
u32 dr6 = 0;
9187
int i;
9188
u32 enable, rwlen;
9189
9190
enable = dr7;
9191
rwlen = dr7 >> 16;
9192
for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
9193
if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
9194
dr6 |= (1 << i);
9195
return dr6;
9196
}
9197
9198
static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
9199
{
9200
struct kvm_run *kvm_run = vcpu->run;
9201
9202
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
9203
kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
9204
kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
9205
kvm_run->debug.arch.exception = DB_VECTOR;
9206
kvm_run->exit_reason = KVM_EXIT_DEBUG;
9207
return 0;
9208
}
9209
kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
9210
return 1;
9211
}
9212
9213
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
9214
{
9215
unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9216
int r;
9217
9218
r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9219
if (unlikely(!r))
9220
return 0;
9221
9222
kvm_pmu_instruction_retired(vcpu);
9223
9224
/*
9225
* rflags is the old, "raw" value of the flags. The new value has
9226
* not been saved yet.
9227
*
9228
* This is correct even for TF set by the guest, because "the
9229
* processor will not generate this exception after the instruction
9230
* that sets the TF flag".
9231
*/
9232
if (unlikely(rflags & X86_EFLAGS_TF))
9233
r = kvm_vcpu_do_singlestep(vcpu);
9234
return r;
9235
}
9236
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_skip_emulated_instruction);
9237
9238
static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9239
{
9240
if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9241
return true;
9242
9243
/*
9244
* Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9245
* active, but AMD compatible CPUs do not.
9246
*/
9247
if (!guest_cpuid_is_intel_compatible(vcpu))
9248
return false;
9249
9250
return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9251
}
9252
9253
static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9254
int emulation_type, int *r)
9255
{
9256
WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9257
9258
/*
9259
* Do not check for code breakpoints if hardware has already done the
9260
* checks, as inferred from the emulation type. On NO_DECODE and SKIP,
9261
* the instruction has passed all exception checks, and all intercepted
9262
* exceptions that trigger emulation have lower priority than code
9263
* breakpoints, i.e. the fact that the intercepted exception occurred
9264
* means any code breakpoints have already been serviced.
9265
*
9266
* Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9267
* hardware has checked the RIP of the magic prefix, but not the RIP of
9268
* the instruction being emulated. The intent of forced emulation is
9269
* to behave as if KVM intercepted the instruction without an exception
9270
* and without a prefix.
9271
*/
9272
if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9273
EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9274
return false;
9275
9276
if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9277
(vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9278
struct kvm_run *kvm_run = vcpu->run;
9279
unsigned long eip = kvm_get_linear_rip(vcpu);
9280
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9281
vcpu->arch.guest_debug_dr7,
9282
vcpu->arch.eff_db);
9283
9284
if (dr6 != 0) {
9285
kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9286
kvm_run->debug.arch.pc = eip;
9287
kvm_run->debug.arch.exception = DB_VECTOR;
9288
kvm_run->exit_reason = KVM_EXIT_DEBUG;
9289
*r = 0;
9290
return true;
9291
}
9292
}
9293
9294
if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9295
!kvm_is_code_breakpoint_inhibited(vcpu)) {
9296
unsigned long eip = kvm_get_linear_rip(vcpu);
9297
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9298
vcpu->arch.dr7,
9299
vcpu->arch.db);
9300
9301
if (dr6 != 0) {
9302
kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9303
*r = 1;
9304
return true;
9305
}
9306
}
9307
9308
return false;
9309
}
9310
9311
static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9312
{
9313
switch (ctxt->opcode_len) {
9314
case 1:
9315
switch (ctxt->b) {
9316
case 0xe4: /* IN */
9317
case 0xe5:
9318
case 0xec:
9319
case 0xed:
9320
case 0xe6: /* OUT */
9321
case 0xe7:
9322
case 0xee:
9323
case 0xef:
9324
case 0x6c: /* INS */
9325
case 0x6d:
9326
case 0x6e: /* OUTS */
9327
case 0x6f:
9328
return true;
9329
}
9330
break;
9331
case 2:
9332
switch (ctxt->b) {
9333
case 0x33: /* RDPMC */
9334
return true;
9335
}
9336
break;
9337
}
9338
9339
return false;
9340
}
9341
9342
/*
9343
* Decode an instruction for emulation. The caller is responsible for handling
9344
* code breakpoints. Note, manually detecting code breakpoints is unnecessary
9345
* (and wrong) when emulating on an intercepted fault-like exception[*], as
9346
* code breakpoints have higher priority and thus have already been done by
9347
* hardware.
9348
*
9349
* [*] Except #MC, which is higher priority, but KVM should never emulate in
9350
* response to a machine check.
9351
*/
9352
int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9353
void *insn, int insn_len)
9354
{
9355
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9356
int r;
9357
9358
init_emulate_ctxt(vcpu);
9359
9360
r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9361
9362
trace_kvm_emulate_insn_start(vcpu);
9363
++vcpu->stat.insn_emulation;
9364
9365
return r;
9366
}
9367
EXPORT_SYMBOL_FOR_KVM_INTERNAL(x86_decode_emulated_instruction);
9368
9369
int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9370
int emulation_type, void *insn, int insn_len)
9371
{
9372
int r;
9373
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9374
bool writeback = true;
9375
9376
if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9377
(WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9378
WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9379
emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9380
9381
r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9382
if (r != X86EMUL_CONTINUE) {
9383
if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9384
return 1;
9385
9386
if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9387
emulation_type))
9388
return 1;
9389
9390
if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9391
kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9392
return 0;
9393
}
9394
9395
WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9396
return handle_emulation_failure(vcpu, emulation_type);
9397
}
9398
9399
vcpu->arch.l1tf_flush_l1d = true;
9400
9401
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9402
kvm_clear_exception_queue(vcpu);
9403
9404
/*
9405
* Return immediately if RIP hits a code breakpoint, such #DBs
9406
* are fault-like and are higher priority than any faults on
9407
* the code fetch itself.
9408
*/
9409
if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9410
return r;
9411
9412
r = x86_decode_emulated_instruction(vcpu, emulation_type,
9413
insn, insn_len);
9414
if (r != EMULATION_OK) {
9415
if ((emulation_type & EMULTYPE_TRAP_UD) ||
9416
(emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9417
kvm_queue_exception(vcpu, UD_VECTOR);
9418
return 1;
9419
}
9420
if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9421
emulation_type))
9422
return 1;
9423
9424
if (ctxt->have_exception &&
9425
!(emulation_type & EMULTYPE_SKIP)) {
9426
/*
9427
* #UD should result in just EMULATION_FAILED, and trap-like
9428
* exception should not be encountered during decode.
9429
*/
9430
WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9431
exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9432
inject_emulated_exception(vcpu);
9433
return 1;
9434
}
9435
return handle_emulation_failure(vcpu, emulation_type);
9436
}
9437
}
9438
9439
if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9440
!is_vmware_backdoor_opcode(ctxt)) {
9441
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9442
return 1;
9443
}
9444
9445
/*
9446
* EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9447
* use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9448
* The caller is responsible for updating interruptibility state and
9449
* injecting single-step #DBs.
9450
*/
9451
if (emulation_type & EMULTYPE_SKIP) {
9452
if (ctxt->mode != X86EMUL_MODE_PROT64)
9453
ctxt->eip = (u32)ctxt->_eip;
9454
else
9455
ctxt->eip = ctxt->_eip;
9456
9457
if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9458
r = 1;
9459
goto writeback;
9460
}
9461
9462
kvm_rip_write(vcpu, ctxt->eip);
9463
if (ctxt->eflags & X86_EFLAGS_RF)
9464
kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9465
return 1;
9466
}
9467
9468
/*
9469
* If emulation was caused by a write-protection #PF on a non-page_table
9470
* writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9471
* and retry the instruction, as the vCPU is likely no longer using the
9472
* gfn as a page table.
9473
*/
9474
if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9475
!x86_page_table_writing_insn(ctxt) &&
9476
kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9477
return 1;
9478
9479
/* this is needed for vmware backdoor interface to work since it
9480
changes registers values during IO operation */
9481
if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9482
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9483
emulator_invalidate_register_cache(ctxt);
9484
}
9485
9486
restart:
9487
if (emulation_type & EMULTYPE_PF) {
9488
/* Save the faulting GPA (cr2) in the address field */
9489
ctxt->exception.address = cr2_or_gpa;
9490
9491
/* With shadow page tables, cr2 contains a GVA or nGPA. */
9492
if (vcpu->arch.mmu->root_role.direct) {
9493
ctxt->gpa_available = true;
9494
ctxt->gpa_val = cr2_or_gpa;
9495
}
9496
} else {
9497
/* Sanitize the address out of an abundance of paranoia. */
9498
ctxt->exception.address = 0;
9499
}
9500
9501
/*
9502
* Check L1's instruction intercepts when emulating instructions for
9503
* L2, unless KVM is re-emulating a previously decoded instruction,
9504
* e.g. to complete userspace I/O, in which case KVM has already
9505
* checked the intercepts.
9506
*/
9507
r = x86_emulate_insn(ctxt, is_guest_mode(vcpu) &&
9508
!(emulation_type & EMULTYPE_NO_DECODE));
9509
9510
if (r == EMULATION_INTERCEPTED)
9511
return 1;
9512
9513
if (r == EMULATION_FAILED) {
9514
if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9515
emulation_type))
9516
return 1;
9517
9518
return handle_emulation_failure(vcpu, emulation_type);
9519
}
9520
9521
if (ctxt->have_exception) {
9522
WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9523
vcpu->mmio_needed = false;
9524
r = 1;
9525
inject_emulated_exception(vcpu);
9526
} else if (vcpu->arch.pio.count) {
9527
if (!vcpu->arch.pio.in) {
9528
/* FIXME: return into emulator if single-stepping. */
9529
vcpu->arch.pio.count = 0;
9530
} else {
9531
writeback = false;
9532
vcpu->arch.complete_userspace_io = complete_emulated_pio;
9533
}
9534
r = 0;
9535
} else if (vcpu->mmio_needed) {
9536
++vcpu->stat.mmio_exits;
9537
9538
if (!vcpu->mmio_is_write)
9539
writeback = false;
9540
r = 0;
9541
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9542
} else if (vcpu->arch.complete_userspace_io) {
9543
writeback = false;
9544
r = 0;
9545
} else if (r == EMULATION_RESTART)
9546
goto restart;
9547
else
9548
r = 1;
9549
9550
writeback:
9551
if (writeback) {
9552
unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9553
toggle_interruptibility(vcpu, ctxt->interruptibility);
9554
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9555
9556
/*
9557
* Note, EXCPT_DB is assumed to be fault-like as the emulator
9558
* only supports code breakpoints and general detect #DB, both
9559
* of which are fault-like.
9560
*/
9561
if (!ctxt->have_exception ||
9562
exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9563
kvm_pmu_instruction_retired(vcpu);
9564
if (ctxt->is_branch)
9565
kvm_pmu_branch_retired(vcpu);
9566
kvm_rip_write(vcpu, ctxt->eip);
9567
if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9568
r = kvm_vcpu_do_singlestep(vcpu);
9569
kvm_x86_call(update_emulated_instruction)(vcpu);
9570
__kvm_set_rflags(vcpu, ctxt->eflags);
9571
}
9572
9573
/*
9574
* For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9575
* do nothing, and it will be requested again as soon as
9576
* the shadow expires. But we still need to check here,
9577
* because POPF has no interrupt shadow.
9578
*/
9579
if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9580
kvm_make_request(KVM_REQ_EVENT, vcpu);
9581
} else
9582
vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9583
9584
return r;
9585
}
9586
9587
int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9588
{
9589
return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9590
}
9591
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction);
9592
9593
int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9594
void *insn, int insn_len)
9595
{
9596
return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9597
}
9598
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction_from_buffer);
9599
9600
static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9601
{
9602
vcpu->arch.pio.count = 0;
9603
return 1;
9604
}
9605
9606
static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9607
{
9608
vcpu->arch.pio.count = 0;
9609
9610
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)))
9611
return 1;
9612
9613
return kvm_skip_emulated_instruction(vcpu);
9614
}
9615
9616
static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9617
unsigned short port)
9618
{
9619
unsigned long val = kvm_rax_read(vcpu);
9620
int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9621
9622
if (ret)
9623
return ret;
9624
9625
/*
9626
* Workaround userspace that relies on old KVM behavior of %rip being
9627
* incremented prior to exiting to userspace to handle "OUT 0x7e".
9628
*/
9629
if (port == 0x7e &&
9630
kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9631
vcpu->arch.complete_userspace_io =
9632
complete_fast_pio_out_port_0x7e;
9633
kvm_skip_emulated_instruction(vcpu);
9634
} else {
9635
vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9636
vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9637
}
9638
return 0;
9639
}
9640
9641
static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9642
{
9643
unsigned long val;
9644
9645
/* We should only ever be called with arch.pio.count equal to 1 */
9646
BUG_ON(vcpu->arch.pio.count != 1);
9647
9648
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) {
9649
vcpu->arch.pio.count = 0;
9650
return 1;
9651
}
9652
9653
/* For size less than 4 we merge, else we zero extend */
9654
val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9655
9656
complete_emulator_pio_in(vcpu, &val);
9657
kvm_rax_write(vcpu, val);
9658
9659
return kvm_skip_emulated_instruction(vcpu);
9660
}
9661
9662
static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9663
unsigned short port)
9664
{
9665
unsigned long val;
9666
int ret;
9667
9668
/* For size less than 4 we merge, else we zero extend */
9669
val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9670
9671
ret = emulator_pio_in(vcpu, size, port, &val, 1);
9672
if (ret) {
9673
kvm_rax_write(vcpu, val);
9674
return ret;
9675
}
9676
9677
vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9678
vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9679
9680
return 0;
9681
}
9682
9683
int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9684
{
9685
int ret;
9686
9687
if (in)
9688
ret = kvm_fast_pio_in(vcpu, size, port);
9689
else
9690
ret = kvm_fast_pio_out(vcpu, size, port);
9691
return ret && kvm_skip_emulated_instruction(vcpu);
9692
}
9693
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fast_pio);
9694
9695
static int kvmclock_cpu_down_prep(unsigned int cpu)
9696
{
9697
__this_cpu_write(cpu_tsc_khz, 0);
9698
return 0;
9699
}
9700
9701
static void tsc_khz_changed(void *data)
9702
{
9703
struct cpufreq_freqs *freq = data;
9704
unsigned long khz;
9705
9706
WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9707
9708
if (data)
9709
khz = freq->new;
9710
else
9711
khz = cpufreq_quick_get(raw_smp_processor_id());
9712
if (!khz)
9713
khz = tsc_khz;
9714
__this_cpu_write(cpu_tsc_khz, khz);
9715
}
9716
9717
#ifdef CONFIG_X86_64
9718
static void kvm_hyperv_tsc_notifier(void)
9719
{
9720
struct kvm *kvm;
9721
int cpu;
9722
9723
mutex_lock(&kvm_lock);
9724
list_for_each_entry(kvm, &vm_list, vm_list)
9725
kvm_make_mclock_inprogress_request(kvm);
9726
9727
/* no guest entries from this point */
9728
hyperv_stop_tsc_emulation();
9729
9730
/* TSC frequency always matches when on Hyper-V */
9731
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9732
for_each_present_cpu(cpu)
9733
per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9734
}
9735
kvm_caps.max_guest_tsc_khz = tsc_khz;
9736
9737
list_for_each_entry(kvm, &vm_list, vm_list) {
9738
__kvm_start_pvclock_update(kvm);
9739
pvclock_update_vm_gtod_copy(kvm);
9740
kvm_end_pvclock_update(kvm);
9741
}
9742
9743
mutex_unlock(&kvm_lock);
9744
}
9745
#endif
9746
9747
static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9748
{
9749
struct kvm *kvm;
9750
struct kvm_vcpu *vcpu;
9751
int send_ipi = 0;
9752
unsigned long i;
9753
9754
/*
9755
* We allow guests to temporarily run on slowing clocks,
9756
* provided we notify them after, or to run on accelerating
9757
* clocks, provided we notify them before. Thus time never
9758
* goes backwards.
9759
*
9760
* However, we have a problem. We can't atomically update
9761
* the frequency of a given CPU from this function; it is
9762
* merely a notifier, which can be called from any CPU.
9763
* Changing the TSC frequency at arbitrary points in time
9764
* requires a recomputation of local variables related to
9765
* the TSC for each VCPU. We must flag these local variables
9766
* to be updated and be sure the update takes place with the
9767
* new frequency before any guests proceed.
9768
*
9769
* Unfortunately, the combination of hotplug CPU and frequency
9770
* change creates an intractable locking scenario; the order
9771
* of when these callouts happen is undefined with respect to
9772
* CPU hotplug, and they can race with each other. As such,
9773
* merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9774
* undefined; you can actually have a CPU frequency change take
9775
* place in between the computation of X and the setting of the
9776
* variable. To protect against this problem, all updates of
9777
* the per_cpu tsc_khz variable are done in an interrupt
9778
* protected IPI, and all callers wishing to update the value
9779
* must wait for a synchronous IPI to complete (which is trivial
9780
* if the caller is on the CPU already). This establishes the
9781
* necessary total order on variable updates.
9782
*
9783
* Note that because a guest time update may take place
9784
* anytime after the setting of the VCPU's request bit, the
9785
* correct TSC value must be set before the request. However,
9786
* to ensure the update actually makes it to any guest which
9787
* starts running in hardware virtualization between the set
9788
* and the acquisition of the spinlock, we must also ping the
9789
* CPU after setting the request bit.
9790
*
9791
*/
9792
9793
smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9794
9795
mutex_lock(&kvm_lock);
9796
list_for_each_entry(kvm, &vm_list, vm_list) {
9797
kvm_for_each_vcpu(i, vcpu, kvm) {
9798
if (vcpu->cpu != cpu)
9799
continue;
9800
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9801
if (vcpu->cpu != raw_smp_processor_id())
9802
send_ipi = 1;
9803
}
9804
}
9805
mutex_unlock(&kvm_lock);
9806
9807
if (freq->old < freq->new && send_ipi) {
9808
/*
9809
* We upscale the frequency. Must make the guest
9810
* doesn't see old kvmclock values while running with
9811
* the new frequency, otherwise we risk the guest sees
9812
* time go backwards.
9813
*
9814
* In case we update the frequency for another cpu
9815
* (which might be in guest context) send an interrupt
9816
* to kick the cpu out of guest context. Next time
9817
* guest context is entered kvmclock will be updated,
9818
* so the guest will not see stale values.
9819
*/
9820
smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9821
}
9822
}
9823
9824
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9825
void *data)
9826
{
9827
struct cpufreq_freqs *freq = data;
9828
int cpu;
9829
9830
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9831
return 0;
9832
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9833
return 0;
9834
9835
for_each_cpu(cpu, freq->policy->cpus)
9836
__kvmclock_cpufreq_notifier(freq, cpu);
9837
9838
return 0;
9839
}
9840
9841
static struct notifier_block kvmclock_cpufreq_notifier_block = {
9842
.notifier_call = kvmclock_cpufreq_notifier
9843
};
9844
9845
static int kvmclock_cpu_online(unsigned int cpu)
9846
{
9847
tsc_khz_changed(NULL);
9848
return 0;
9849
}
9850
9851
static void kvm_timer_init(void)
9852
{
9853
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9854
max_tsc_khz = tsc_khz;
9855
9856
if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9857
struct cpufreq_policy *policy;
9858
int cpu;
9859
9860
cpu = get_cpu();
9861
policy = cpufreq_cpu_get(cpu);
9862
if (policy) {
9863
if (policy->cpuinfo.max_freq)
9864
max_tsc_khz = policy->cpuinfo.max_freq;
9865
cpufreq_cpu_put(policy);
9866
}
9867
put_cpu();
9868
}
9869
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9870
CPUFREQ_TRANSITION_NOTIFIER);
9871
9872
cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9873
kvmclock_cpu_online, kvmclock_cpu_down_prep);
9874
}
9875
}
9876
9877
#ifdef CONFIG_X86_64
9878
static void pvclock_gtod_update_fn(struct work_struct *work)
9879
{
9880
struct kvm *kvm;
9881
struct kvm_vcpu *vcpu;
9882
unsigned long i;
9883
9884
mutex_lock(&kvm_lock);
9885
list_for_each_entry(kvm, &vm_list, vm_list)
9886
kvm_for_each_vcpu(i, vcpu, kvm)
9887
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9888
atomic_set(&kvm_guest_has_master_clock, 0);
9889
mutex_unlock(&kvm_lock);
9890
}
9891
9892
static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9893
9894
/*
9895
* Indirection to move queue_work() out of the tk_core.seq write held
9896
* region to prevent possible deadlocks against time accessors which
9897
* are invoked with work related locks held.
9898
*/
9899
static void pvclock_irq_work_fn(struct irq_work *w)
9900
{
9901
queue_work(system_long_wq, &pvclock_gtod_work);
9902
}
9903
9904
static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9905
9906
/*
9907
* Notification about pvclock gtod data update.
9908
*/
9909
static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9910
void *priv)
9911
{
9912
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9913
struct timekeeper *tk = priv;
9914
9915
update_pvclock_gtod(tk);
9916
9917
/*
9918
* Disable master clock if host does not trust, or does not use,
9919
* TSC based clocksource. Delegate queue_work() to irq_work as
9920
* this is invoked with tk_core.seq write held.
9921
*/
9922
if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9923
atomic_read(&kvm_guest_has_master_clock) != 0)
9924
irq_work_queue(&pvclock_irq_work);
9925
return 0;
9926
}
9927
9928
static struct notifier_block pvclock_gtod_notifier = {
9929
.notifier_call = pvclock_gtod_notify,
9930
};
9931
#endif
9932
9933
static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9934
{
9935
memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9936
9937
#define __KVM_X86_OP(func) \
9938
static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9939
#define KVM_X86_OP(func) \
9940
WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9941
#define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9942
#define KVM_X86_OP_OPTIONAL_RET0(func) \
9943
static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9944
(void *)__static_call_return0);
9945
#include <asm/kvm-x86-ops.h>
9946
#undef __KVM_X86_OP
9947
9948
kvm_pmu_ops_update(ops->pmu_ops);
9949
}
9950
9951
static int kvm_x86_check_processor_compatibility(void)
9952
{
9953
int cpu = smp_processor_id();
9954
struct cpuinfo_x86 *c = &cpu_data(cpu);
9955
9956
/*
9957
* Compatibility checks are done when loading KVM and when enabling
9958
* hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9959
* compatible, i.e. KVM should never perform a compatibility check on
9960
* an offline CPU.
9961
*/
9962
WARN_ON(!cpu_online(cpu));
9963
9964
if (__cr4_reserved_bits(cpu_has, c) !=
9965
__cr4_reserved_bits(cpu_has, &boot_cpu_data))
9966
return -EIO;
9967
9968
return kvm_x86_call(check_processor_compatibility)();
9969
}
9970
9971
static void kvm_x86_check_cpu_compat(void *ret)
9972
{
9973
*(int *)ret = kvm_x86_check_processor_compatibility();
9974
}
9975
9976
int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9977
{
9978
u64 host_pat;
9979
int r, cpu;
9980
9981
guard(mutex)(&vendor_module_lock);
9982
9983
if (kvm_x86_ops.enable_virtualization_cpu) {
9984
pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9985
return -EEXIST;
9986
}
9987
9988
/*
9989
* KVM explicitly assumes that the guest has an FPU and
9990
* FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9991
* vCPU's FPU state as a fxregs_state struct.
9992
*/
9993
if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9994
pr_err("inadequate fpu\n");
9995
return -EOPNOTSUPP;
9996
}
9997
9998
if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9999
pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
10000
return -EOPNOTSUPP;
10001
}
10002
10003
/*
10004
* KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
10005
* the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
10006
* other than WB. Note, EPT doesn't utilize the PAT, but don't bother
10007
* with an exception. PAT[0] is set to WB on RESET and also by the
10008
* kernel, i.e. failure indicates a kernel bug or broken firmware.
10009
*/
10010
if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) ||
10011
(host_pat & GENMASK(2, 0)) != 6) {
10012
pr_err("host PAT[0] is not WB\n");
10013
return -EIO;
10014
}
10015
10016
if (boot_cpu_has(X86_FEATURE_SHSTK) || boot_cpu_has(X86_FEATURE_IBT)) {
10017
rdmsrq(MSR_IA32_S_CET, kvm_host.s_cet);
10018
/*
10019
* Linux doesn't yet support supervisor shadow stacks (SSS), so
10020
* KVM doesn't save/restore the associated MSRs, i.e. KVM may
10021
* clobber the host values. Yell and refuse to load if SSS is
10022
* unexpectedly enabled, e.g. to avoid crashing the host.
10023
*/
10024
if (WARN_ON_ONCE(kvm_host.s_cet & CET_SHSTK_EN))
10025
return -EIO;
10026
}
10027
10028
memset(&kvm_caps, 0, sizeof(kvm_caps));
10029
10030
x86_emulator_cache = kvm_alloc_emulator_cache();
10031
if (!x86_emulator_cache) {
10032
pr_err("failed to allocate cache for x86 emulator\n");
10033
return -ENOMEM;
10034
}
10035
10036
user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
10037
if (!user_return_msrs) {
10038
pr_err("failed to allocate percpu kvm_user_return_msrs\n");
10039
r = -ENOMEM;
10040
goto out_free_x86_emulator_cache;
10041
}
10042
kvm_nr_uret_msrs = 0;
10043
10044
r = kvm_mmu_vendor_module_init();
10045
if (r)
10046
goto out_free_percpu;
10047
10048
kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
10049
kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
10050
10051
if (boot_cpu_has(X86_FEATURE_XSAVE)) {
10052
kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
10053
kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
10054
}
10055
10056
if (boot_cpu_has(X86_FEATURE_XSAVES)) {
10057
rdmsrq(MSR_IA32_XSS, kvm_host.xss);
10058
kvm_caps.supported_xss = kvm_host.xss & KVM_SUPPORTED_XSS;
10059
}
10060
10061
kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS;
10062
kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS;
10063
10064
rdmsrq_safe(MSR_EFER, &kvm_host.efer);
10065
10066
kvm_init_pmu_capability(ops->pmu_ops);
10067
10068
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
10069
rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
10070
10071
r = ops->hardware_setup();
10072
if (r != 0)
10073
goto out_mmu_exit;
10074
10075
enable_device_posted_irqs &= enable_apicv &&
10076
irq_remapping_cap(IRQ_POSTING_CAP);
10077
10078
kvm_ops_update(ops);
10079
10080
for_each_online_cpu(cpu) {
10081
smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
10082
if (r < 0)
10083
goto out_unwind_ops;
10084
}
10085
10086
/*
10087
* Point of no return! DO NOT add error paths below this point unless
10088
* absolutely necessary, as most operations from this point forward
10089
* require unwinding.
10090
*/
10091
kvm_timer_init();
10092
10093
if (pi_inject_timer == -1)
10094
pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
10095
#ifdef CONFIG_X86_64
10096
pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
10097
10098
if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10099
set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
10100
#endif
10101
10102
kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
10103
10104
if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
10105
kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
10106
10107
/* KVM always ignores guest PAT for shadow paging. */
10108
if (!tdp_enabled)
10109
kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
10110
10111
if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10112
kvm_caps.supported_xss = 0;
10113
10114
if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
10115
!kvm_cpu_cap_has(X86_FEATURE_IBT))
10116
kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10117
10118
if ((kvm_caps.supported_xss & XFEATURE_MASK_CET_ALL) != XFEATURE_MASK_CET_ALL) {
10119
kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
10120
kvm_cpu_cap_clear(X86_FEATURE_IBT);
10121
kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10122
}
10123
10124
if (kvm_caps.has_tsc_control) {
10125
/*
10126
* Make sure the user can only configure tsc_khz values that
10127
* fit into a signed integer.
10128
* A min value is not calculated because it will always
10129
* be 1 on all machines.
10130
*/
10131
u64 max = min(0x7fffffffULL,
10132
__scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
10133
kvm_caps.max_guest_tsc_khz = max;
10134
}
10135
kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
10136
kvm_init_msr_lists();
10137
return 0;
10138
10139
out_unwind_ops:
10140
kvm_x86_ops.enable_virtualization_cpu = NULL;
10141
kvm_x86_call(hardware_unsetup)();
10142
out_mmu_exit:
10143
kvm_mmu_vendor_module_exit();
10144
out_free_percpu:
10145
free_percpu(user_return_msrs);
10146
out_free_x86_emulator_cache:
10147
kmem_cache_destroy(x86_emulator_cache);
10148
return r;
10149
}
10150
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_init);
10151
10152
void kvm_x86_vendor_exit(void)
10153
{
10154
kvm_unregister_perf_callbacks();
10155
10156
#ifdef CONFIG_X86_64
10157
if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10158
clear_hv_tscchange_cb();
10159
#endif
10160
kvm_lapic_exit();
10161
10162
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10163
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
10164
CPUFREQ_TRANSITION_NOTIFIER);
10165
cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
10166
}
10167
#ifdef CONFIG_X86_64
10168
pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
10169
irq_work_sync(&pvclock_irq_work);
10170
cancel_work_sync(&pvclock_gtod_work);
10171
#endif
10172
kvm_x86_call(hardware_unsetup)();
10173
kvm_mmu_vendor_module_exit();
10174
free_percpu(user_return_msrs);
10175
kmem_cache_destroy(x86_emulator_cache);
10176
#ifdef CONFIG_KVM_XEN
10177
static_key_deferred_flush(&kvm_xen_enabled);
10178
WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
10179
#endif
10180
mutex_lock(&vendor_module_lock);
10181
kvm_x86_ops.enable_virtualization_cpu = NULL;
10182
mutex_unlock(&vendor_module_lock);
10183
}
10184
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_exit);
10185
10186
#ifdef CONFIG_X86_64
10187
static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
10188
unsigned long clock_type)
10189
{
10190
struct kvm_clock_pairing clock_pairing;
10191
struct timespec64 ts;
10192
u64 cycle;
10193
int ret;
10194
10195
if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
10196
return -KVM_EOPNOTSUPP;
10197
10198
/*
10199
* When tsc is in permanent catchup mode guests won't be able to use
10200
* pvclock_read_retry loop to get consistent view of pvclock
10201
*/
10202
if (vcpu->arch.tsc_always_catchup)
10203
return -KVM_EOPNOTSUPP;
10204
10205
if (!kvm_get_walltime_and_clockread(&ts, &cycle))
10206
return -KVM_EOPNOTSUPP;
10207
10208
clock_pairing.sec = ts.tv_sec;
10209
clock_pairing.nsec = ts.tv_nsec;
10210
clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
10211
clock_pairing.flags = 0;
10212
memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
10213
10214
ret = 0;
10215
if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
10216
sizeof(struct kvm_clock_pairing)))
10217
ret = -KVM_EFAULT;
10218
10219
return ret;
10220
}
10221
#endif
10222
10223
/*
10224
* kvm_pv_kick_cpu_op: Kick a vcpu.
10225
*
10226
* @apicid - apicid of vcpu to be kicked.
10227
*/
10228
static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
10229
{
10230
/*
10231
* All other fields are unused for APIC_DM_REMRD, but may be consumed by
10232
* common code, e.g. for tracing. Defer initialization to the compiler.
10233
*/
10234
struct kvm_lapic_irq lapic_irq = {
10235
.delivery_mode = APIC_DM_REMRD,
10236
.dest_mode = APIC_DEST_PHYSICAL,
10237
.shorthand = APIC_DEST_NOSHORT,
10238
.dest_id = apicid,
10239
};
10240
10241
kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
10242
}
10243
10244
bool kvm_apicv_activated(struct kvm *kvm)
10245
{
10246
return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
10247
}
10248
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apicv_activated);
10249
10250
bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10251
{
10252
ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10253
ulong vcpu_reasons =
10254
kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10255
10256
return (vm_reasons | vcpu_reasons) == 0;
10257
}
10258
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_apicv_activated);
10259
10260
static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10261
enum kvm_apicv_inhibit reason, bool set)
10262
{
10263
const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10264
10265
BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10266
10267
if (set)
10268
__set_bit(reason, inhibits);
10269
else
10270
__clear_bit(reason, inhibits);
10271
10272
trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10273
}
10274
10275
static void kvm_apicv_init(struct kvm *kvm)
10276
{
10277
enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10278
APICV_INHIBIT_REASON_DISABLED;
10279
10280
set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10281
10282
init_rwsem(&kvm->arch.apicv_update_lock);
10283
}
10284
10285
static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10286
{
10287
struct kvm_vcpu *target = NULL;
10288
struct kvm_apic_map *map;
10289
10290
vcpu->stat.directed_yield_attempted++;
10291
10292
if (single_task_running())
10293
goto no_yield;
10294
10295
rcu_read_lock();
10296
map = rcu_dereference(vcpu->kvm->arch.apic_map);
10297
10298
if (likely(map) && dest_id <= map->max_apic_id) {
10299
dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
10300
if (map->phys_map[dest_id])
10301
target = map->phys_map[dest_id]->vcpu;
10302
}
10303
10304
rcu_read_unlock();
10305
10306
if (!target || !READ_ONCE(target->ready))
10307
goto no_yield;
10308
10309
/* Ignore requests to yield to self */
10310
if (vcpu == target)
10311
goto no_yield;
10312
10313
if (kvm_vcpu_yield_to(target) <= 0)
10314
goto no_yield;
10315
10316
vcpu->stat.directed_yield_successful++;
10317
10318
no_yield:
10319
return;
10320
}
10321
10322
static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10323
{
10324
u64 ret = vcpu->run->hypercall.ret;
10325
10326
if (!is_64_bit_hypercall(vcpu))
10327
ret = (u32)ret;
10328
kvm_rax_write(vcpu, ret);
10329
return kvm_skip_emulated_instruction(vcpu);
10330
}
10331
10332
int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
10333
int (*complete_hypercall)(struct kvm_vcpu *))
10334
{
10335
unsigned long ret;
10336
unsigned long nr = kvm_rax_read(vcpu);
10337
unsigned long a0 = kvm_rbx_read(vcpu);
10338
unsigned long a1 = kvm_rcx_read(vcpu);
10339
unsigned long a2 = kvm_rdx_read(vcpu);
10340
unsigned long a3 = kvm_rsi_read(vcpu);
10341
int op_64_bit = is_64_bit_hypercall(vcpu);
10342
10343
++vcpu->stat.hypercalls;
10344
10345
trace_kvm_hypercall(nr, a0, a1, a2, a3);
10346
10347
if (!op_64_bit) {
10348
nr &= 0xFFFFFFFF;
10349
a0 &= 0xFFFFFFFF;
10350
a1 &= 0xFFFFFFFF;
10351
a2 &= 0xFFFFFFFF;
10352
a3 &= 0xFFFFFFFF;
10353
}
10354
10355
if (cpl) {
10356
ret = -KVM_EPERM;
10357
goto out;
10358
}
10359
10360
ret = -KVM_ENOSYS;
10361
10362
switch (nr) {
10363
case KVM_HC_VAPIC_POLL_IRQ:
10364
ret = 0;
10365
break;
10366
case KVM_HC_KICK_CPU:
10367
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10368
break;
10369
10370
kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10371
kvm_sched_yield(vcpu, a1);
10372
ret = 0;
10373
break;
10374
#ifdef CONFIG_X86_64
10375
case KVM_HC_CLOCK_PAIRING:
10376
ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10377
break;
10378
#endif
10379
case KVM_HC_SEND_IPI:
10380
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10381
break;
10382
10383
ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10384
break;
10385
case KVM_HC_SCHED_YIELD:
10386
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10387
break;
10388
10389
kvm_sched_yield(vcpu, a0);
10390
ret = 0;
10391
break;
10392
case KVM_HC_MAP_GPA_RANGE: {
10393
u64 gpa = a0, npages = a1, attrs = a2;
10394
10395
ret = -KVM_ENOSYS;
10396
if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10397
break;
10398
10399
if (!PAGE_ALIGNED(gpa) || !npages ||
10400
gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10401
ret = -KVM_EINVAL;
10402
break;
10403
}
10404
10405
vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10406
vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10407
/*
10408
* In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10409
* assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10410
* it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10411
* vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10412
*/
10413
vcpu->run->hypercall.ret = 0;
10414
vcpu->run->hypercall.args[0] = gpa;
10415
vcpu->run->hypercall.args[1] = npages;
10416
vcpu->run->hypercall.args[2] = attrs;
10417
vcpu->run->hypercall.flags = 0;
10418
if (op_64_bit)
10419
vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10420
10421
WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10422
vcpu->arch.complete_userspace_io = complete_hypercall;
10423
return 0;
10424
}
10425
default:
10426
ret = -KVM_ENOSYS;
10427
break;
10428
}
10429
10430
out:
10431
vcpu->run->hypercall.ret = ret;
10432
return 1;
10433
}
10434
EXPORT_SYMBOL_FOR_KVM_INTERNAL(____kvm_emulate_hypercall);
10435
10436
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10437
{
10438
if (kvm_xen_hypercall_enabled(vcpu->kvm))
10439
return kvm_xen_hypercall(vcpu);
10440
10441
if (kvm_hv_hypercall_enabled(vcpu))
10442
return kvm_hv_hypercall(vcpu);
10443
10444
return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu),
10445
complete_hypercall_exit);
10446
}
10447
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_hypercall);
10448
10449
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10450
{
10451
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10452
char instruction[3];
10453
unsigned long rip = kvm_rip_read(vcpu);
10454
10455
/*
10456
* If the quirk is disabled, synthesize a #UD and let the guest pick up
10457
* the pieces.
10458
*/
10459
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10460
ctxt->exception.error_code_valid = false;
10461
ctxt->exception.vector = UD_VECTOR;
10462
ctxt->have_exception = true;
10463
return X86EMUL_PROPAGATE_FAULT;
10464
}
10465
10466
kvm_x86_call(patch_hypercall)(vcpu, instruction);
10467
10468
return emulator_write_emulated(ctxt, rip, instruction, 3,
10469
&ctxt->exception);
10470
}
10471
10472
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10473
{
10474
return vcpu->run->request_interrupt_window &&
10475
likely(!pic_in_kernel(vcpu->kvm));
10476
}
10477
10478
/* Called within kvm->srcu read side. */
10479
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10480
{
10481
struct kvm_run *kvm_run = vcpu->run;
10482
10483
kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10484
kvm_run->cr8 = kvm_get_cr8(vcpu);
10485
kvm_run->apic_base = vcpu->arch.apic_base;
10486
10487
kvm_run->ready_for_interrupt_injection =
10488
pic_in_kernel(vcpu->kvm) ||
10489
kvm_vcpu_ready_for_interrupt_injection(vcpu);
10490
10491
if (is_smm(vcpu))
10492
kvm_run->flags |= KVM_RUN_X86_SMM;
10493
if (is_guest_mode(vcpu))
10494
kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10495
}
10496
10497
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10498
{
10499
int max_irr, tpr;
10500
10501
if (!kvm_x86_ops.update_cr8_intercept)
10502
return;
10503
10504
if (!lapic_in_kernel(vcpu))
10505
return;
10506
10507
if (vcpu->arch.apic->apicv_active)
10508
return;
10509
10510
if (!vcpu->arch.apic->vapic_addr)
10511
max_irr = kvm_lapic_find_highest_irr(vcpu);
10512
else
10513
max_irr = -1;
10514
10515
if (max_irr != -1)
10516
max_irr >>= 4;
10517
10518
tpr = kvm_lapic_get_cr8(vcpu);
10519
10520
kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10521
}
10522
10523
10524
int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10525
{
10526
if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10527
kvm_x86_ops.nested_ops->triple_fault(vcpu);
10528
return 1;
10529
}
10530
10531
return kvm_x86_ops.nested_ops->check_events(vcpu);
10532
}
10533
10534
static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10535
{
10536
/*
10537
* Suppress the error code if the vCPU is in Real Mode, as Real Mode
10538
* exceptions don't report error codes. The presence of an error code
10539
* is carried with the exception and only stripped when the exception
10540
* is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10541
* report an error code despite the CPU being in Real Mode.
10542
*/
10543
vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10544
10545
trace_kvm_inj_exception(vcpu->arch.exception.vector,
10546
vcpu->arch.exception.has_error_code,
10547
vcpu->arch.exception.error_code,
10548
vcpu->arch.exception.injected);
10549
10550
kvm_x86_call(inject_exception)(vcpu);
10551
}
10552
10553
/*
10554
* Check for any event (interrupt or exception) that is ready to be injected,
10555
* and if there is at least one event, inject the event with the highest
10556
* priority. This handles both "pending" events, i.e. events that have never
10557
* been injected into the guest, and "injected" events, i.e. events that were
10558
* injected as part of a previous VM-Enter, but weren't successfully delivered
10559
* and need to be re-injected.
10560
*
10561
* Note, this is not guaranteed to be invoked on a guest instruction boundary,
10562
* i.e. doesn't guarantee that there's an event window in the guest. KVM must
10563
* be able to inject exceptions in the "middle" of an instruction, and so must
10564
* also be able to re-inject NMIs and IRQs in the middle of an instruction.
10565
* I.e. for exceptions and re-injected events, NOT invoking this on instruction
10566
* boundaries is necessary and correct.
10567
*
10568
* For simplicity, KVM uses a single path to inject all events (except events
10569
* that are injected directly from L1 to L2) and doesn't explicitly track
10570
* instruction boundaries for asynchronous events. However, because VM-Exits
10571
* that can occur during instruction execution typically result in KVM skipping
10572
* the instruction or injecting an exception, e.g. instruction and exception
10573
* intercepts, and because pending exceptions have higher priority than pending
10574
* interrupts, KVM still honors instruction boundaries in most scenarios.
10575
*
10576
* But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10577
* the instruction or inject an exception, then KVM can incorrecty inject a new
10578
* asynchronous event if the event became pending after the CPU fetched the
10579
* instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10580
* occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10581
* injected on the restarted instruction instead of being deferred until the
10582
* instruction completes.
10583
*
10584
* In practice, this virtualization hole is unlikely to be observed by the
10585
* guest, and even less likely to cause functional problems. To detect the
10586
* hole, the guest would have to trigger an event on a side effect of an early
10587
* phase of instruction execution, e.g. on the instruction fetch from memory.
10588
* And for it to be a functional problem, the guest would need to depend on the
10589
* ordering between that side effect, the instruction completing, _and_ the
10590
* delivery of the asynchronous event.
10591
*/
10592
static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10593
bool *req_immediate_exit)
10594
{
10595
bool can_inject;
10596
int r;
10597
10598
/*
10599
* Process nested events first, as nested VM-Exit supersedes event
10600
* re-injection. If there's an event queued for re-injection, it will
10601
* be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10602
*/
10603
if (is_guest_mode(vcpu))
10604
r = kvm_check_nested_events(vcpu);
10605
else
10606
r = 0;
10607
10608
/*
10609
* Re-inject exceptions and events *especially* if immediate entry+exit
10610
* to/from L2 is needed, as any event that has already been injected
10611
* into L2 needs to complete its lifecycle before injecting a new event.
10612
*
10613
* Don't re-inject an NMI or interrupt if there is a pending exception.
10614
* This collision arises if an exception occurred while vectoring the
10615
* injected event, KVM intercepted said exception, and KVM ultimately
10616
* determined the fault belongs to the guest and queues the exception
10617
* for injection back into the guest.
10618
*
10619
* "Injected" interrupts can also collide with pending exceptions if
10620
* userspace ignores the "ready for injection" flag and blindly queues
10621
* an interrupt. In that case, prioritizing the exception is correct,
10622
* as the exception "occurred" before the exit to userspace. Trap-like
10623
* exceptions, e.g. most #DBs, have higher priority than interrupts.
10624
* And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10625
* priority, they're only generated (pended) during instruction
10626
* execution, and interrupts are recognized at instruction boundaries.
10627
* Thus a pending fault-like exception means the fault occurred on the
10628
* *previous* instruction and must be serviced prior to recognizing any
10629
* new events in order to fully complete the previous instruction.
10630
*/
10631
if (vcpu->arch.exception.injected)
10632
kvm_inject_exception(vcpu);
10633
else if (kvm_is_exception_pending(vcpu))
10634
; /* see above */
10635
else if (vcpu->arch.nmi_injected)
10636
kvm_x86_call(inject_nmi)(vcpu);
10637
else if (vcpu->arch.interrupt.injected)
10638
kvm_x86_call(inject_irq)(vcpu, true);
10639
10640
/*
10641
* Exceptions that morph to VM-Exits are handled above, and pending
10642
* exceptions on top of injected exceptions that do not VM-Exit should
10643
* either morph to #DF or, sadly, override the injected exception.
10644
*/
10645
WARN_ON_ONCE(vcpu->arch.exception.injected &&
10646
vcpu->arch.exception.pending);
10647
10648
/*
10649
* Bail if immediate entry+exit to/from the guest is needed to complete
10650
* nested VM-Enter or event re-injection so that a different pending
10651
* event can be serviced (or if KVM needs to exit to userspace).
10652
*
10653
* Otherwise, continue processing events even if VM-Exit occurred. The
10654
* VM-Exit will have cleared exceptions that were meant for L2, but
10655
* there may now be events that can be injected into L1.
10656
*/
10657
if (r < 0)
10658
goto out;
10659
10660
/*
10661
* A pending exception VM-Exit should either result in nested VM-Exit
10662
* or force an immediate re-entry and exit to/from L2, and exception
10663
* VM-Exits cannot be injected (flag should _never_ be set).
10664
*/
10665
WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10666
vcpu->arch.exception_vmexit.pending);
10667
10668
/*
10669
* New events, other than exceptions, cannot be injected if KVM needs
10670
* to re-inject a previous event. See above comments on re-injecting
10671
* for why pending exceptions get priority.
10672
*/
10673
can_inject = !kvm_event_needs_reinjection(vcpu);
10674
10675
if (vcpu->arch.exception.pending) {
10676
/*
10677
* Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10678
* value pushed on the stack. Trap-like exception and all #DBs
10679
* leave RF as-is (KVM follows Intel's behavior in this regard;
10680
* AMD states that code breakpoint #DBs excplitly clear RF=0).
10681
*
10682
* Note, most versions of Intel's SDM and AMD's APM incorrectly
10683
* describe the behavior of General Detect #DBs, which are
10684
* fault-like. They do _not_ set RF, a la code breakpoints.
10685
*/
10686
if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10687
__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10688
X86_EFLAGS_RF);
10689
10690
if (vcpu->arch.exception.vector == DB_VECTOR) {
10691
kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10692
if (vcpu->arch.dr7 & DR7_GD) {
10693
vcpu->arch.dr7 &= ~DR7_GD;
10694
kvm_update_dr7(vcpu);
10695
}
10696
}
10697
10698
kvm_inject_exception(vcpu);
10699
10700
vcpu->arch.exception.pending = false;
10701
vcpu->arch.exception.injected = true;
10702
10703
can_inject = false;
10704
}
10705
10706
/* Don't inject interrupts if the user asked to avoid doing so */
10707
if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10708
return 0;
10709
10710
/*
10711
* Finally, inject interrupt events. If an event cannot be injected
10712
* due to architectural conditions (e.g. IF=0) a window-open exit
10713
* will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10714
* and can architecturally be injected, but we cannot do it right now:
10715
* an interrupt could have arrived just now and we have to inject it
10716
* as a vmexit, or there could already an event in the queue, which is
10717
* indicated by can_inject. In that case we request an immediate exit
10718
* in order to make progress and get back here for another iteration.
10719
* The kvm_x86_ops hooks communicate this by returning -EBUSY.
10720
*/
10721
#ifdef CONFIG_KVM_SMM
10722
if (vcpu->arch.smi_pending) {
10723
r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10724
-EBUSY;
10725
if (r < 0)
10726
goto out;
10727
if (r) {
10728
vcpu->arch.smi_pending = false;
10729
++vcpu->arch.smi_count;
10730
enter_smm(vcpu);
10731
can_inject = false;
10732
} else
10733
kvm_x86_call(enable_smi_window)(vcpu);
10734
}
10735
#endif
10736
10737
if (vcpu->arch.nmi_pending) {
10738
r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10739
-EBUSY;
10740
if (r < 0)
10741
goto out;
10742
if (r) {
10743
--vcpu->arch.nmi_pending;
10744
vcpu->arch.nmi_injected = true;
10745
kvm_x86_call(inject_nmi)(vcpu);
10746
can_inject = false;
10747
WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10748
}
10749
if (vcpu->arch.nmi_pending)
10750
kvm_x86_call(enable_nmi_window)(vcpu);
10751
}
10752
10753
if (kvm_cpu_has_injectable_intr(vcpu)) {
10754
r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10755
-EBUSY;
10756
if (r < 0)
10757
goto out;
10758
if (r) {
10759
int irq = kvm_cpu_get_interrupt(vcpu);
10760
10761
if (!WARN_ON_ONCE(irq == -1)) {
10762
kvm_queue_interrupt(vcpu, irq, false);
10763
kvm_x86_call(inject_irq)(vcpu, false);
10764
WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10765
}
10766
}
10767
if (kvm_cpu_has_injectable_intr(vcpu))
10768
kvm_x86_call(enable_irq_window)(vcpu);
10769
}
10770
10771
if (is_guest_mode(vcpu) &&
10772
kvm_x86_ops.nested_ops->has_events &&
10773
kvm_x86_ops.nested_ops->has_events(vcpu, true))
10774
*req_immediate_exit = true;
10775
10776
/*
10777
* KVM must never queue a new exception while injecting an event; KVM
10778
* is done emulating and should only propagate the to-be-injected event
10779
* to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10780
* infinite loop as KVM will bail from VM-Enter to inject the pending
10781
* exception and start the cycle all over.
10782
*
10783
* Exempt triple faults as they have special handling and won't put the
10784
* vCPU into an infinite loop. Triple fault can be queued when running
10785
* VMX without unrestricted guest, as that requires KVM to emulate Real
10786
* Mode events (see kvm_inject_realmode_interrupt()).
10787
*/
10788
WARN_ON_ONCE(vcpu->arch.exception.pending ||
10789
vcpu->arch.exception_vmexit.pending);
10790
return 0;
10791
10792
out:
10793
if (r == -EBUSY) {
10794
*req_immediate_exit = true;
10795
r = 0;
10796
}
10797
return r;
10798
}
10799
10800
static void process_nmi(struct kvm_vcpu *vcpu)
10801
{
10802
unsigned int limit;
10803
10804
/*
10805
* x86 is limited to one NMI pending, but because KVM can't react to
10806
* incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10807
* scheduled out, KVM needs to play nice with two queued NMIs showing
10808
* up at the same time. To handle this scenario, allow two NMIs to be
10809
* (temporarily) pending so long as NMIs are not blocked and KVM is not
10810
* waiting for a previous NMI injection to complete (which effectively
10811
* blocks NMIs). KVM will immediately inject one of the two NMIs, and
10812
* will request an NMI window to handle the second NMI.
10813
*/
10814
if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10815
limit = 1;
10816
else
10817
limit = 2;
10818
10819
/*
10820
* Adjust the limit to account for pending virtual NMIs, which aren't
10821
* tracked in vcpu->arch.nmi_pending.
10822
*/
10823
if (kvm_x86_call(is_vnmi_pending)(vcpu))
10824
limit--;
10825
10826
vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10827
vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10828
10829
if (vcpu->arch.nmi_pending &&
10830
(kvm_x86_call(set_vnmi_pending)(vcpu)))
10831
vcpu->arch.nmi_pending--;
10832
10833
if (vcpu->arch.nmi_pending)
10834
kvm_make_request(KVM_REQ_EVENT, vcpu);
10835
}
10836
10837
/* Return total number of NMIs pending injection to the VM */
10838
int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10839
{
10840
return vcpu->arch.nmi_pending +
10841
kvm_x86_call(is_vnmi_pending)(vcpu);
10842
}
10843
10844
void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10845
unsigned long *vcpu_bitmap)
10846
{
10847
kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10848
}
10849
10850
void kvm_make_scan_ioapic_request(struct kvm *kvm)
10851
{
10852
kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10853
}
10854
10855
void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10856
{
10857
struct kvm_lapic *apic = vcpu->arch.apic;
10858
bool activate;
10859
10860
if (!lapic_in_kernel(vcpu))
10861
return;
10862
10863
down_read(&vcpu->kvm->arch.apicv_update_lock);
10864
preempt_disable();
10865
10866
/* Do not activate APICV when APIC is disabled */
10867
activate = kvm_vcpu_apicv_activated(vcpu) &&
10868
(kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10869
10870
if (apic->apicv_active == activate)
10871
goto out;
10872
10873
apic->apicv_active = activate;
10874
kvm_apic_update_apicv(vcpu);
10875
kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10876
10877
/*
10878
* When APICv gets disabled, we may still have injected interrupts
10879
* pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10880
* still active when the interrupt got accepted. Make sure
10881
* kvm_check_and_inject_events() is called to check for that.
10882
*/
10883
if (!apic->apicv_active)
10884
kvm_make_request(KVM_REQ_EVENT, vcpu);
10885
10886
out:
10887
preempt_enable();
10888
up_read(&vcpu->kvm->arch.apicv_update_lock);
10889
}
10890
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_update_apicv);
10891
10892
static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10893
{
10894
if (!lapic_in_kernel(vcpu))
10895
return;
10896
10897
/*
10898
* Due to sharing page tables across vCPUs, the xAPIC memslot must be
10899
* deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10900
* and hardware doesn't support x2APIC virtualization. E.g. some AMD
10901
* CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10902
* this case so that KVM can use the AVIC doorbell to inject interrupts
10903
* to running vCPUs, but KVM must not create SPTEs for the APIC base as
10904
* the vCPU would incorrectly be able to access the vAPIC page via MMIO
10905
* despite being in x2APIC mode. For simplicity, inhibiting the APIC
10906
* access page is sticky.
10907
*/
10908
if (apic_x2apic_mode(vcpu->arch.apic) &&
10909
kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10910
kvm_inhibit_apic_access_page(vcpu);
10911
10912
__kvm_vcpu_update_apicv(vcpu);
10913
}
10914
10915
void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10916
enum kvm_apicv_inhibit reason, bool set)
10917
{
10918
unsigned long old, new;
10919
10920
lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10921
10922
if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10923
return;
10924
10925
old = new = kvm->arch.apicv_inhibit_reasons;
10926
10927
set_or_clear_apicv_inhibit(&new, reason, set);
10928
10929
if (!!old != !!new) {
10930
/*
10931
* Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10932
* false positives in the sanity check WARN in vcpu_enter_guest().
10933
* This task will wait for all vCPUs to ack the kick IRQ before
10934
* updating apicv_inhibit_reasons, and all other vCPUs will
10935
* block on acquiring apicv_update_lock so that vCPUs can't
10936
* redo vcpu_enter_guest() without seeing the new inhibit state.
10937
*
10938
* Note, holding apicv_update_lock and taking it in the read
10939
* side (handling the request) also prevents other vCPUs from
10940
* servicing the request with a stale apicv_inhibit_reasons.
10941
*/
10942
kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10943
kvm->arch.apicv_inhibit_reasons = new;
10944
if (new) {
10945
unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10946
int idx = srcu_read_lock(&kvm->srcu);
10947
10948
kvm_zap_gfn_range(kvm, gfn, gfn+1);
10949
srcu_read_unlock(&kvm->srcu, idx);
10950
}
10951
} else {
10952
kvm->arch.apicv_inhibit_reasons = new;
10953
}
10954
}
10955
10956
void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10957
enum kvm_apicv_inhibit reason, bool set)
10958
{
10959
if (!enable_apicv)
10960
return;
10961
10962
down_write(&kvm->arch.apicv_update_lock);
10963
__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10964
up_write(&kvm->arch.apicv_update_lock);
10965
}
10966
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_or_clear_apicv_inhibit);
10967
10968
static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10969
{
10970
if (!kvm_apic_present(vcpu))
10971
return;
10972
10973
bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10974
vcpu->arch.highest_stale_pending_ioapic_eoi = -1;
10975
10976
kvm_x86_call(sync_pir_to_irr)(vcpu);
10977
10978
if (irqchip_split(vcpu->kvm))
10979
kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10980
#ifdef CONFIG_KVM_IOAPIC
10981
else if (ioapic_in_kernel(vcpu->kvm))
10982
kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10983
#endif
10984
10985
if (is_guest_mode(vcpu))
10986
vcpu->arch.load_eoi_exitmap_pending = true;
10987
else
10988
kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10989
}
10990
10991
static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10992
{
10993
if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10994
return;
10995
10996
#ifdef CONFIG_KVM_HYPERV
10997
if (to_hv_vcpu(vcpu)) {
10998
u64 eoi_exit_bitmap[4];
10999
11000
bitmap_or((ulong *)eoi_exit_bitmap,
11001
vcpu->arch.ioapic_handled_vectors,
11002
to_hv_synic(vcpu)->vec_bitmap, 256);
11003
kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
11004
return;
11005
}
11006
#endif
11007
kvm_x86_call(load_eoi_exitmap)(
11008
vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
11009
}
11010
11011
void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
11012
{
11013
kvm_x86_call(guest_memory_reclaimed)(kvm);
11014
}
11015
11016
static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
11017
{
11018
if (!lapic_in_kernel(vcpu))
11019
return;
11020
11021
kvm_x86_call(set_apic_access_page_addr)(vcpu);
11022
}
11023
11024
/*
11025
* Called within kvm->srcu read side.
11026
* Returns 1 to let vcpu_run() continue the guest execution loop without
11027
* exiting to the userspace. Otherwise, the value will be returned to the
11028
* userspace.
11029
*/
11030
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
11031
{
11032
int r;
11033
bool req_int_win =
11034
dm_request_for_irq_injection(vcpu) &&
11035
kvm_cpu_accept_dm_intr(vcpu);
11036
fastpath_t exit_fastpath;
11037
u64 run_flags, debug_ctl;
11038
11039
bool req_immediate_exit = false;
11040
11041
if (kvm_request_pending(vcpu)) {
11042
if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
11043
r = -EIO;
11044
goto out;
11045
}
11046
11047
if (kvm_dirty_ring_check_request(vcpu)) {
11048
r = 0;
11049
goto out;
11050
}
11051
11052
if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
11053
if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
11054
r = 0;
11055
goto out;
11056
}
11057
}
11058
if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
11059
kvm_mmu_free_obsolete_roots(vcpu);
11060
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
11061
__kvm_migrate_timers(vcpu);
11062
if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
11063
kvm_update_masterclock(vcpu->kvm);
11064
if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
11065
kvm_gen_kvmclock_update(vcpu);
11066
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
11067
r = kvm_guest_time_update(vcpu);
11068
if (unlikely(r))
11069
goto out;
11070
}
11071
if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
11072
kvm_mmu_sync_roots(vcpu);
11073
if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
11074
kvm_mmu_load_pgd(vcpu);
11075
11076
/*
11077
* Note, the order matters here, as flushing "all" TLB entries
11078
* also flushes the "current" TLB entries, i.e. servicing the
11079
* flush "all" will clear any request to flush "current".
11080
*/
11081
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
11082
kvm_vcpu_flush_tlb_all(vcpu);
11083
11084
kvm_service_local_tlb_flush_requests(vcpu);
11085
11086
/*
11087
* Fall back to a "full" guest flush if Hyper-V's precise
11088
* flushing fails. Note, Hyper-V's flushing is per-vCPU, but
11089
* the flushes are considered "remote" and not "local" because
11090
* the requests can be initiated from other vCPUs.
11091
*/
11092
#ifdef CONFIG_KVM_HYPERV
11093
if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
11094
kvm_hv_vcpu_flush_tlb(vcpu))
11095
kvm_vcpu_flush_tlb_guest(vcpu);
11096
#endif
11097
11098
if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
11099
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
11100
r = 0;
11101
goto out;
11102
}
11103
if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11104
if (is_guest_mode(vcpu))
11105
kvm_x86_ops.nested_ops->triple_fault(vcpu);
11106
11107
if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11108
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
11109
vcpu->mmio_needed = 0;
11110
r = 0;
11111
goto out;
11112
}
11113
}
11114
if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
11115
/* Page is swapped out. Do synthetic halt */
11116
vcpu->arch.apf.halted = true;
11117
r = 1;
11118
goto out;
11119
}
11120
if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
11121
record_steal_time(vcpu);
11122
if (kvm_check_request(KVM_REQ_PMU, vcpu))
11123
kvm_pmu_handle_event(vcpu);
11124
if (kvm_check_request(KVM_REQ_PMI, vcpu))
11125
kvm_pmu_deliver_pmi(vcpu);
11126
#ifdef CONFIG_KVM_SMM
11127
if (kvm_check_request(KVM_REQ_SMI, vcpu))
11128
process_smi(vcpu);
11129
#endif
11130
if (kvm_check_request(KVM_REQ_NMI, vcpu))
11131
process_nmi(vcpu);
11132
if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
11133
BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
11134
if (test_bit(vcpu->arch.pending_ioapic_eoi,
11135
vcpu->arch.ioapic_handled_vectors)) {
11136
vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
11137
vcpu->run->eoi.vector =
11138
vcpu->arch.pending_ioapic_eoi;
11139
r = 0;
11140
goto out;
11141
}
11142
}
11143
if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
11144
vcpu_scan_ioapic(vcpu);
11145
if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
11146
vcpu_load_eoi_exitmap(vcpu);
11147
if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
11148
kvm_vcpu_reload_apic_access_page(vcpu);
11149
#ifdef CONFIG_KVM_HYPERV
11150
if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
11151
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11152
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
11153
vcpu->run->system_event.ndata = 0;
11154
r = 0;
11155
goto out;
11156
}
11157
if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
11158
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11159
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
11160
vcpu->run->system_event.ndata = 0;
11161
r = 0;
11162
goto out;
11163
}
11164
if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
11165
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
11166
11167
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
11168
vcpu->run->hyperv = hv_vcpu->exit;
11169
r = 0;
11170
goto out;
11171
}
11172
11173
/*
11174
* KVM_REQ_HV_STIMER has to be processed after
11175
* KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
11176
* depend on the guest clock being up-to-date
11177
*/
11178
if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
11179
kvm_hv_process_stimers(vcpu);
11180
#endif
11181
if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
11182
kvm_vcpu_update_apicv(vcpu);
11183
if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
11184
kvm_check_async_pf_completion(vcpu);
11185
11186
if (kvm_check_request(KVM_REQ_RECALC_INTERCEPTS, vcpu))
11187
kvm_x86_call(recalc_intercepts)(vcpu);
11188
11189
if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
11190
kvm_x86_call(update_cpu_dirty_logging)(vcpu);
11191
11192
if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
11193
kvm_vcpu_reset(vcpu, true);
11194
if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
11195
r = 1;
11196
goto out;
11197
}
11198
}
11199
}
11200
11201
if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
11202
kvm_xen_has_interrupt(vcpu)) {
11203
++vcpu->stat.req_event;
11204
r = kvm_apic_accept_events(vcpu);
11205
if (r < 0) {
11206
r = 0;
11207
goto out;
11208
}
11209
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
11210
r = 1;
11211
goto out;
11212
}
11213
11214
r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
11215
if (r < 0) {
11216
r = 0;
11217
goto out;
11218
}
11219
if (req_int_win)
11220
kvm_x86_call(enable_irq_window)(vcpu);
11221
11222
if (kvm_lapic_enabled(vcpu)) {
11223
update_cr8_intercept(vcpu);
11224
kvm_lapic_sync_to_vapic(vcpu);
11225
}
11226
}
11227
11228
r = kvm_mmu_reload(vcpu);
11229
if (unlikely(r)) {
11230
goto cancel_injection;
11231
}
11232
11233
preempt_disable();
11234
11235
kvm_x86_call(prepare_switch_to_guest)(vcpu);
11236
11237
/*
11238
* Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
11239
* IPI are then delayed after guest entry, which ensures that they
11240
* result in virtual interrupt delivery.
11241
*/
11242
local_irq_disable();
11243
11244
/* Store vcpu->apicv_active before vcpu->mode. */
11245
smp_store_release(&vcpu->mode, IN_GUEST_MODE);
11246
11247
kvm_vcpu_srcu_read_unlock(vcpu);
11248
11249
/*
11250
* 1) We should set ->mode before checking ->requests. Please see
11251
* the comment in kvm_vcpu_exiting_guest_mode().
11252
*
11253
* 2) For APICv, we should set ->mode before checking PID.ON. This
11254
* pairs with the memory barrier implicit in pi_test_and_set_on
11255
* (see vmx_deliver_posted_interrupt).
11256
*
11257
* 3) This also orders the write to mode from any reads to the page
11258
* tables done while the VCPU is running. Please see the comment
11259
* in kvm_flush_remote_tlbs.
11260
*/
11261
smp_mb__after_srcu_read_unlock();
11262
11263
/*
11264
* Process pending posted interrupts to handle the case where the
11265
* notification IRQ arrived in the host, or was never sent (because the
11266
* target vCPU wasn't running). Do this regardless of the vCPU's APICv
11267
* status, KVM doesn't update assigned devices when APICv is inhibited,
11268
* i.e. they can post interrupts even if APICv is temporarily disabled.
11269
*/
11270
if (kvm_lapic_enabled(vcpu))
11271
kvm_x86_call(sync_pir_to_irr)(vcpu);
11272
11273
if (kvm_vcpu_exit_request(vcpu)) {
11274
vcpu->mode = OUTSIDE_GUEST_MODE;
11275
smp_wmb();
11276
local_irq_enable();
11277
preempt_enable();
11278
kvm_vcpu_srcu_read_lock(vcpu);
11279
r = 1;
11280
goto cancel_injection;
11281
}
11282
11283
run_flags = 0;
11284
if (req_immediate_exit) {
11285
run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT;
11286
kvm_make_request(KVM_REQ_EVENT, vcpu);
11287
}
11288
11289
fpregs_assert_state_consistent();
11290
if (test_thread_flag(TIF_NEED_FPU_LOAD))
11291
switch_fpu_return();
11292
11293
if (vcpu->arch.guest_fpu.xfd_err)
11294
wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11295
11296
if (unlikely(vcpu->arch.switch_db_regs &&
11297
!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
11298
set_debugreg(DR7_FIXED_1, 7);
11299
set_debugreg(vcpu->arch.eff_db[0], 0);
11300
set_debugreg(vcpu->arch.eff_db[1], 1);
11301
set_debugreg(vcpu->arch.eff_db[2], 2);
11302
set_debugreg(vcpu->arch.eff_db[3], 3);
11303
/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
11304
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
11305
run_flags |= KVM_RUN_LOAD_GUEST_DR6;
11306
} else if (unlikely(hw_breakpoint_active())) {
11307
set_debugreg(DR7_FIXED_1, 7);
11308
}
11309
11310
/*
11311
* Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL
11312
* can be modified in IRQ context, e.g. via SMP function calls. Inform
11313
* vendor code if any host-owned bits were changed, e.g. so that the
11314
* value loaded into hardware while running the guest can be updated.
11315
*/
11316
debug_ctl = get_debugctlmsr();
11317
if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL &&
11318
!vcpu->arch.guest_state_protected)
11319
run_flags |= KVM_RUN_LOAD_DEBUGCTL;
11320
vcpu->arch.host_debugctl = debug_ctl;
11321
11322
guest_timing_enter_irqoff();
11323
11324
for (;;) {
11325
/*
11326
* Assert that vCPU vs. VM APICv state is consistent. An APICv
11327
* update must kick and wait for all vCPUs before toggling the
11328
* per-VM state, and responding vCPUs must wait for the update
11329
* to complete before servicing KVM_REQ_APICV_UPDATE.
11330
*/
11331
WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11332
(kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11333
11334
exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags);
11335
if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11336
break;
11337
11338
if (kvm_lapic_enabled(vcpu))
11339
kvm_x86_call(sync_pir_to_irr)(vcpu);
11340
11341
if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11342
exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11343
break;
11344
}
11345
11346
run_flags = 0;
11347
11348
/* Note, VM-Exits that go down the "slow" path are accounted below. */
11349
++vcpu->stat.exits;
11350
}
11351
11352
/*
11353
* Do this here before restoring debug registers on the host. And
11354
* since we do this before handling the vmexit, a DR access vmexit
11355
* can (a) read the correct value of the debug registers, (b) set
11356
* KVM_DEBUGREG_WONT_EXIT again.
11357
*/
11358
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11359
WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11360
WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH);
11361
kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11362
kvm_update_dr0123(vcpu);
11363
kvm_update_dr7(vcpu);
11364
}
11365
11366
/*
11367
* If the guest has used debug registers, at least dr7
11368
* will be disabled while returning to the host.
11369
* If we don't have active breakpoints in the host, we don't
11370
* care about the messed up debug address registers. But if
11371
* we have some of them active, restore the old state.
11372
*/
11373
if (hw_breakpoint_active())
11374
hw_breakpoint_restore();
11375
11376
vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11377
vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11378
11379
vcpu->mode = OUTSIDE_GUEST_MODE;
11380
smp_wmb();
11381
11382
/*
11383
* Sync xfd before calling handle_exit_irqoff() which may
11384
* rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11385
* in #NM irqoff handler).
11386
*/
11387
if (vcpu->arch.xfd_no_write_intercept)
11388
fpu_sync_guest_vmexit_xfd_state();
11389
11390
kvm_x86_call(handle_exit_irqoff)(vcpu);
11391
11392
if (vcpu->arch.guest_fpu.xfd_err)
11393
wrmsrq(MSR_IA32_XFD_ERR, 0);
11394
11395
/*
11396
* Mark this CPU as needing a branch predictor flush before running
11397
* userspace. Must be done before enabling preemption to ensure it gets
11398
* set for the CPU that actually ran the guest, and not the CPU that it
11399
* may migrate to.
11400
*/
11401
if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER))
11402
this_cpu_write(x86_ibpb_exit_to_user, true);
11403
11404
/*
11405
* Consume any pending interrupts, including the possible source of
11406
* VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11407
* An instruction is required after local_irq_enable() to fully unblock
11408
* interrupts on processors that implement an interrupt shadow, the
11409
* stat.exits increment will do nicely.
11410
*/
11411
kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11412
local_irq_enable();
11413
++vcpu->stat.exits;
11414
local_irq_disable();
11415
kvm_after_interrupt(vcpu);
11416
11417
/*
11418
* Wait until after servicing IRQs to account guest time so that any
11419
* ticks that occurred while running the guest are properly accounted
11420
* to the guest. Waiting until IRQs are enabled degrades the accuracy
11421
* of accounting via context tracking, but the loss of accuracy is
11422
* acceptable for all known use cases.
11423
*/
11424
guest_timing_exit_irqoff();
11425
11426
local_irq_enable();
11427
preempt_enable();
11428
11429
kvm_vcpu_srcu_read_lock(vcpu);
11430
11431
/*
11432
* Call this to ensure WC buffers in guest are evicted after each VM
11433
* Exit, so that the evicted WC writes can be snooped across all cpus
11434
*/
11435
smp_mb__after_srcu_read_lock();
11436
11437
/*
11438
* Profile KVM exit RIPs:
11439
*/
11440
if (unlikely(prof_on == KVM_PROFILING &&
11441
!vcpu->arch.guest_state_protected)) {
11442
unsigned long rip = kvm_rip_read(vcpu);
11443
profile_hit(KVM_PROFILING, (void *)rip);
11444
}
11445
11446
if (unlikely(vcpu->arch.tsc_always_catchup))
11447
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11448
11449
if (vcpu->arch.apic_attention)
11450
kvm_lapic_sync_from_vapic(vcpu);
11451
11452
if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11453
return 0;
11454
11455
r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11456
return r;
11457
11458
cancel_injection:
11459
if (req_immediate_exit)
11460
kvm_make_request(KVM_REQ_EVENT, vcpu);
11461
kvm_x86_call(cancel_injection)(vcpu);
11462
if (unlikely(vcpu->arch.apic_attention))
11463
kvm_lapic_sync_from_vapic(vcpu);
11464
out:
11465
return r;
11466
}
11467
11468
static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11469
{
11470
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11471
!vcpu->arch.apf.halted);
11472
}
11473
11474
bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11475
{
11476
if (!list_empty_careful(&vcpu->async_pf.done))
11477
return true;
11478
11479
if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11480
kvm_apic_init_sipi_allowed(vcpu))
11481
return true;
11482
11483
if (kvm_is_exception_pending(vcpu))
11484
return true;
11485
11486
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11487
(vcpu->arch.nmi_pending &&
11488
kvm_x86_call(nmi_allowed)(vcpu, false)))
11489
return true;
11490
11491
#ifdef CONFIG_KVM_SMM
11492
if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11493
(vcpu->arch.smi_pending &&
11494
kvm_x86_call(smi_allowed)(vcpu, false)))
11495
return true;
11496
#endif
11497
11498
if (kvm_test_request(KVM_REQ_PMI, vcpu))
11499
return true;
11500
11501
if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11502
return true;
11503
11504
if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11505
return true;
11506
11507
if (kvm_hv_has_stimer_pending(vcpu))
11508
return true;
11509
11510
if (is_guest_mode(vcpu) &&
11511
kvm_x86_ops.nested_ops->has_events &&
11512
kvm_x86_ops.nested_ops->has_events(vcpu, false))
11513
return true;
11514
11515
if (kvm_xen_has_pending_events(vcpu))
11516
return true;
11517
11518
return false;
11519
}
11520
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_has_events);
11521
11522
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11523
{
11524
return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted ||
11525
kvm_vcpu_has_events(vcpu);
11526
}
11527
11528
/* Called within kvm->srcu read side. */
11529
static inline int vcpu_block(struct kvm_vcpu *vcpu)
11530
{
11531
bool hv_timer;
11532
11533
if (!kvm_arch_vcpu_runnable(vcpu)) {
11534
/*
11535
* Switch to the software timer before halt-polling/blocking as
11536
* the guest's timer may be a break event for the vCPU, and the
11537
* hypervisor timer runs only when the CPU is in guest mode.
11538
* Switch before halt-polling so that KVM recognizes an expired
11539
* timer before blocking.
11540
*/
11541
hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11542
if (hv_timer)
11543
kvm_lapic_switch_to_sw_timer(vcpu);
11544
11545
kvm_vcpu_srcu_read_unlock(vcpu);
11546
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11547
kvm_vcpu_halt(vcpu);
11548
else
11549
kvm_vcpu_block(vcpu);
11550
kvm_vcpu_srcu_read_lock(vcpu);
11551
11552
if (hv_timer)
11553
kvm_lapic_switch_to_hv_timer(vcpu);
11554
11555
/*
11556
* If the vCPU is not runnable, a signal or another host event
11557
* of some kind is pending; service it without changing the
11558
* vCPU's activity state.
11559
*/
11560
if (!kvm_arch_vcpu_runnable(vcpu))
11561
return 1;
11562
}
11563
11564
/*
11565
* Evaluate nested events before exiting the halted state. This allows
11566
* the halt state to be recorded properly in the VMCS12's activity
11567
* state field (AMD does not have a similar field and a VM-Exit always
11568
* causes a spurious wakeup from HLT).
11569
*/
11570
if (is_guest_mode(vcpu)) {
11571
int r = kvm_check_nested_events(vcpu);
11572
11573
WARN_ON_ONCE(r == -EBUSY);
11574
if (r < 0)
11575
return 0;
11576
}
11577
11578
if (kvm_apic_accept_events(vcpu) < 0)
11579
return 0;
11580
switch(vcpu->arch.mp_state) {
11581
case KVM_MP_STATE_HALTED:
11582
case KVM_MP_STATE_AP_RESET_HOLD:
11583
kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11584
fallthrough;
11585
case KVM_MP_STATE_RUNNABLE:
11586
vcpu->arch.apf.halted = false;
11587
break;
11588
case KVM_MP_STATE_INIT_RECEIVED:
11589
break;
11590
default:
11591
WARN_ON_ONCE(1);
11592
break;
11593
}
11594
return 1;
11595
}
11596
11597
/* Called within kvm->srcu read side. */
11598
static int vcpu_run(struct kvm_vcpu *vcpu)
11599
{
11600
int r;
11601
11602
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11603
11604
for (;;) {
11605
/*
11606
* If another guest vCPU requests a PV TLB flush in the middle
11607
* of instruction emulation, the rest of the emulation could
11608
* use a stale page translation. Assume that any code after
11609
* this point can start executing an instruction.
11610
*/
11611
vcpu->arch.at_instruction_boundary = false;
11612
if (kvm_vcpu_running(vcpu)) {
11613
r = vcpu_enter_guest(vcpu);
11614
} else {
11615
r = vcpu_block(vcpu);
11616
}
11617
11618
if (r <= 0)
11619
break;
11620
11621
kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11622
if (kvm_xen_has_pending_events(vcpu))
11623
kvm_xen_inject_pending_events(vcpu);
11624
11625
if (kvm_cpu_has_pending_timer(vcpu))
11626
kvm_inject_pending_timer_irqs(vcpu);
11627
11628
if (dm_request_for_irq_injection(vcpu) &&
11629
kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11630
r = 0;
11631
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11632
++vcpu->stat.request_irq_exits;
11633
break;
11634
}
11635
11636
if (__xfer_to_guest_mode_work_pending()) {
11637
kvm_vcpu_srcu_read_unlock(vcpu);
11638
r = xfer_to_guest_mode_handle_work(vcpu);
11639
kvm_vcpu_srcu_read_lock(vcpu);
11640
if (r)
11641
return r;
11642
}
11643
}
11644
11645
return r;
11646
}
11647
11648
static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11649
{
11650
/*
11651
* The vCPU has halted, e.g. executed HLT. Update the run state if the
11652
* local APIC is in-kernel, the run loop will detect the non-runnable
11653
* state and halt the vCPU. Exit to userspace if the local APIC is
11654
* managed by userspace, in which case userspace is responsible for
11655
* handling wake events.
11656
*/
11657
++vcpu->stat.halt_exits;
11658
if (lapic_in_kernel(vcpu)) {
11659
if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted)
11660
state = KVM_MP_STATE_RUNNABLE;
11661
kvm_set_mp_state(vcpu, state);
11662
return 1;
11663
} else {
11664
vcpu->run->exit_reason = reason;
11665
return 0;
11666
}
11667
}
11668
11669
int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11670
{
11671
return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11672
}
11673
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt_noskip);
11674
11675
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11676
{
11677
int ret = kvm_skip_emulated_instruction(vcpu);
11678
/*
11679
* TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11680
* KVM_EXIT_DEBUG here.
11681
*/
11682
return kvm_emulate_halt_noskip(vcpu) && ret;
11683
}
11684
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt);
11685
11686
fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11687
{
11688
if (!kvm_emulate_halt(vcpu))
11689
return EXIT_FASTPATH_EXIT_USERSPACE;
11690
11691
if (kvm_vcpu_running(vcpu))
11692
return EXIT_FASTPATH_REENTER_GUEST;
11693
11694
return EXIT_FASTPATH_EXIT_HANDLED;
11695
}
11696
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_hlt);
11697
11698
int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11699
{
11700
int ret = kvm_skip_emulated_instruction(vcpu);
11701
11702
return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11703
KVM_EXIT_AP_RESET_HOLD) && ret;
11704
}
11705
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_ap_reset_hold);
11706
11707
bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11708
{
11709
return kvm_vcpu_apicv_active(vcpu) &&
11710
kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11711
}
11712
11713
bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11714
{
11715
return vcpu->arch.preempted_in_kernel;
11716
}
11717
11718
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11719
{
11720
if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11721
return true;
11722
11723
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11724
#ifdef CONFIG_KVM_SMM
11725
kvm_test_request(KVM_REQ_SMI, vcpu) ||
11726
#endif
11727
kvm_test_request(KVM_REQ_EVENT, vcpu))
11728
return true;
11729
11730
return kvm_arch_dy_has_pending_interrupt(vcpu);
11731
}
11732
11733
static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11734
{
11735
return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11736
}
11737
11738
static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11739
{
11740
BUG_ON(!vcpu->arch.pio.count);
11741
11742
return complete_emulated_io(vcpu);
11743
}
11744
11745
/*
11746
* Implements the following, as a state machine:
11747
*
11748
* read:
11749
* for each fragment
11750
* for each mmio piece in the fragment
11751
* write gpa, len
11752
* exit
11753
* copy data
11754
* execute insn
11755
*
11756
* write:
11757
* for each fragment
11758
* for each mmio piece in the fragment
11759
* write gpa, len
11760
* copy data
11761
* exit
11762
*/
11763
static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11764
{
11765
struct kvm_run *run = vcpu->run;
11766
struct kvm_mmio_fragment *frag;
11767
unsigned len;
11768
11769
BUG_ON(!vcpu->mmio_needed);
11770
11771
/* Complete previous fragment */
11772
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11773
len = min(8u, frag->len);
11774
if (!vcpu->mmio_is_write)
11775
memcpy(frag->data, run->mmio.data, len);
11776
11777
if (frag->len <= 8) {
11778
/* Switch to the next fragment. */
11779
frag++;
11780
vcpu->mmio_cur_fragment++;
11781
} else {
11782
/* Go forward to the next mmio piece. */
11783
frag->data += len;
11784
frag->gpa += len;
11785
frag->len -= len;
11786
}
11787
11788
if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11789
vcpu->mmio_needed = 0;
11790
11791
/* FIXME: return into emulator if single-stepping. */
11792
if (vcpu->mmio_is_write)
11793
return 1;
11794
vcpu->mmio_read_completed = 1;
11795
return complete_emulated_io(vcpu);
11796
}
11797
11798
run->exit_reason = KVM_EXIT_MMIO;
11799
run->mmio.phys_addr = frag->gpa;
11800
if (vcpu->mmio_is_write)
11801
memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11802
run->mmio.len = min(8u, frag->len);
11803
run->mmio.is_write = vcpu->mmio_is_write;
11804
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11805
return 0;
11806
}
11807
11808
/* Swap (qemu) user FPU context for the guest FPU context. */
11809
static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11810
{
11811
/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11812
fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11813
trace_kvm_fpu(1);
11814
}
11815
11816
/* When vcpu_run ends, restore user space FPU context. */
11817
static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11818
{
11819
fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11820
++vcpu->stat.fpu_reload;
11821
trace_kvm_fpu(0);
11822
}
11823
11824
static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu)
11825
{
11826
/*
11827
* SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and
11828
* tracks the pending SIPI separately. SIPI_RECEIVED is still accepted
11829
* by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be
11830
* converted to INIT_RECEIVED.
11831
*/
11832
if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED))
11833
return -EINVAL;
11834
11835
/*
11836
* Disallow running the vCPU if userspace forced it into an impossible
11837
* MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked.
11838
*/
11839
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED &&
11840
!kvm_apic_init_sipi_allowed(vcpu))
11841
return -EINVAL;
11842
11843
return kvm_x86_call(vcpu_pre_run)(vcpu);
11844
}
11845
11846
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11847
{
11848
struct kvm_queued_exception *ex = &vcpu->arch.exception;
11849
struct kvm_run *kvm_run = vcpu->run;
11850
u64 sync_valid_fields;
11851
int r;
11852
11853
r = kvm_mmu_post_init_vm(vcpu->kvm);
11854
if (r)
11855
return r;
11856
11857
vcpu_load(vcpu);
11858
kvm_sigset_activate(vcpu);
11859
kvm_run->flags = 0;
11860
kvm_load_guest_fpu(vcpu);
11861
11862
kvm_vcpu_srcu_read_lock(vcpu);
11863
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11864
if (!vcpu->wants_to_run) {
11865
r = -EINTR;
11866
goto out;
11867
}
11868
11869
/*
11870
* Don't bother switching APIC timer emulation from the
11871
* hypervisor timer to the software timer, the only way for the
11872
* APIC timer to be active is if userspace stuffed vCPU state,
11873
* i.e. put the vCPU into a nonsensical state. Only an INIT
11874
* will transition the vCPU out of UNINITIALIZED (without more
11875
* state stuffing from userspace), which will reset the local
11876
* APIC and thus cancel the timer or drop the IRQ (if the timer
11877
* already expired).
11878
*/
11879
kvm_vcpu_srcu_read_unlock(vcpu);
11880
kvm_vcpu_block(vcpu);
11881
kvm_vcpu_srcu_read_lock(vcpu);
11882
11883
if (kvm_apic_accept_events(vcpu) < 0) {
11884
r = 0;
11885
goto out;
11886
}
11887
r = -EAGAIN;
11888
if (signal_pending(current)) {
11889
r = -EINTR;
11890
kvm_run->exit_reason = KVM_EXIT_INTR;
11891
++vcpu->stat.signal_exits;
11892
}
11893
goto out;
11894
}
11895
11896
sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11897
if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11898
(kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11899
r = -EINVAL;
11900
goto out;
11901
}
11902
11903
if (kvm_run->kvm_dirty_regs) {
11904
r = sync_regs(vcpu);
11905
if (r != 0)
11906
goto out;
11907
}
11908
11909
/* re-sync apic's tpr */
11910
if (!lapic_in_kernel(vcpu)) {
11911
if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11912
r = -EINVAL;
11913
goto out;
11914
}
11915
}
11916
11917
/*
11918
* If userspace set a pending exception and L2 is active, convert it to
11919
* a pending VM-Exit if L1 wants to intercept the exception.
11920
*/
11921
if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11922
kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11923
ex->error_code)) {
11924
kvm_queue_exception_vmexit(vcpu, ex->vector,
11925
ex->has_error_code, ex->error_code,
11926
ex->has_payload, ex->payload);
11927
ex->injected = false;
11928
ex->pending = false;
11929
}
11930
vcpu->arch.exception_from_userspace = false;
11931
11932
if (unlikely(vcpu->arch.complete_userspace_io)) {
11933
int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11934
vcpu->arch.complete_userspace_io = NULL;
11935
r = cui(vcpu);
11936
if (r <= 0)
11937
goto out;
11938
} else {
11939
WARN_ON_ONCE(vcpu->arch.pio.count);
11940
WARN_ON_ONCE(vcpu->mmio_needed);
11941
}
11942
11943
if (!vcpu->wants_to_run) {
11944
r = -EINTR;
11945
goto out;
11946
}
11947
11948
r = kvm_x86_vcpu_pre_run(vcpu);
11949
if (r <= 0)
11950
goto out;
11951
11952
r = vcpu_run(vcpu);
11953
11954
out:
11955
kvm_put_guest_fpu(vcpu);
11956
if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11957
store_regs(vcpu);
11958
post_kvm_run_save(vcpu);
11959
kvm_vcpu_srcu_read_unlock(vcpu);
11960
11961
kvm_sigset_deactivate(vcpu);
11962
vcpu_put(vcpu);
11963
return r;
11964
}
11965
11966
static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11967
{
11968
if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11969
/*
11970
* We are here if userspace calls get_regs() in the middle of
11971
* instruction emulation. Registers state needs to be copied
11972
* back from emulation context to vcpu. Userspace shouldn't do
11973
* that usually, but some bad designed PV devices (vmware
11974
* backdoor interface) need this to work
11975
*/
11976
emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11977
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11978
}
11979
regs->rax = kvm_rax_read(vcpu);
11980
regs->rbx = kvm_rbx_read(vcpu);
11981
regs->rcx = kvm_rcx_read(vcpu);
11982
regs->rdx = kvm_rdx_read(vcpu);
11983
regs->rsi = kvm_rsi_read(vcpu);
11984
regs->rdi = kvm_rdi_read(vcpu);
11985
regs->rsp = kvm_rsp_read(vcpu);
11986
regs->rbp = kvm_rbp_read(vcpu);
11987
#ifdef CONFIG_X86_64
11988
regs->r8 = kvm_r8_read(vcpu);
11989
regs->r9 = kvm_r9_read(vcpu);
11990
regs->r10 = kvm_r10_read(vcpu);
11991
regs->r11 = kvm_r11_read(vcpu);
11992
regs->r12 = kvm_r12_read(vcpu);
11993
regs->r13 = kvm_r13_read(vcpu);
11994
regs->r14 = kvm_r14_read(vcpu);
11995
regs->r15 = kvm_r15_read(vcpu);
11996
#endif
11997
11998
regs->rip = kvm_rip_read(vcpu);
11999
regs->rflags = kvm_get_rflags(vcpu);
12000
}
12001
12002
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12003
{
12004
if (vcpu->kvm->arch.has_protected_state &&
12005
vcpu->arch.guest_state_protected)
12006
return -EINVAL;
12007
12008
vcpu_load(vcpu);
12009
__get_regs(vcpu, regs);
12010
vcpu_put(vcpu);
12011
return 0;
12012
}
12013
12014
static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12015
{
12016
vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
12017
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12018
12019
kvm_rax_write(vcpu, regs->rax);
12020
kvm_rbx_write(vcpu, regs->rbx);
12021
kvm_rcx_write(vcpu, regs->rcx);
12022
kvm_rdx_write(vcpu, regs->rdx);
12023
kvm_rsi_write(vcpu, regs->rsi);
12024
kvm_rdi_write(vcpu, regs->rdi);
12025
kvm_rsp_write(vcpu, regs->rsp);
12026
kvm_rbp_write(vcpu, regs->rbp);
12027
#ifdef CONFIG_X86_64
12028
kvm_r8_write(vcpu, regs->r8);
12029
kvm_r9_write(vcpu, regs->r9);
12030
kvm_r10_write(vcpu, regs->r10);
12031
kvm_r11_write(vcpu, regs->r11);
12032
kvm_r12_write(vcpu, regs->r12);
12033
kvm_r13_write(vcpu, regs->r13);
12034
kvm_r14_write(vcpu, regs->r14);
12035
kvm_r15_write(vcpu, regs->r15);
12036
#endif
12037
12038
kvm_rip_write(vcpu, regs->rip);
12039
kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
12040
12041
vcpu->arch.exception.pending = false;
12042
vcpu->arch.exception_vmexit.pending = false;
12043
12044
kvm_make_request(KVM_REQ_EVENT, vcpu);
12045
}
12046
12047
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12048
{
12049
if (vcpu->kvm->arch.has_protected_state &&
12050
vcpu->arch.guest_state_protected)
12051
return -EINVAL;
12052
12053
vcpu_load(vcpu);
12054
__set_regs(vcpu, regs);
12055
vcpu_put(vcpu);
12056
return 0;
12057
}
12058
12059
static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12060
{
12061
struct desc_ptr dt;
12062
12063
if (vcpu->arch.guest_state_protected)
12064
goto skip_protected_regs;
12065
12066
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12067
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12068
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12069
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12070
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12071
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12072
12073
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12074
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12075
12076
kvm_x86_call(get_idt)(vcpu, &dt);
12077
sregs->idt.limit = dt.size;
12078
sregs->idt.base = dt.address;
12079
kvm_x86_call(get_gdt)(vcpu, &dt);
12080
sregs->gdt.limit = dt.size;
12081
sregs->gdt.base = dt.address;
12082
12083
sregs->cr2 = vcpu->arch.cr2;
12084
sregs->cr3 = kvm_read_cr3(vcpu);
12085
12086
skip_protected_regs:
12087
sregs->cr0 = kvm_read_cr0(vcpu);
12088
sregs->cr4 = kvm_read_cr4(vcpu);
12089
sregs->cr8 = kvm_get_cr8(vcpu);
12090
sregs->efer = vcpu->arch.efer;
12091
sregs->apic_base = vcpu->arch.apic_base;
12092
}
12093
12094
static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12095
{
12096
__get_sregs_common(vcpu, sregs);
12097
12098
if (vcpu->arch.guest_state_protected)
12099
return;
12100
12101
if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
12102
set_bit(vcpu->arch.interrupt.nr,
12103
(unsigned long *)sregs->interrupt_bitmap);
12104
}
12105
12106
static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12107
{
12108
int i;
12109
12110
__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
12111
12112
if (vcpu->arch.guest_state_protected)
12113
return;
12114
12115
if (is_pae_paging(vcpu)) {
12116
for (i = 0 ; i < 4 ; i++)
12117
sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
12118
sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
12119
}
12120
}
12121
12122
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
12123
struct kvm_sregs *sregs)
12124
{
12125
if (vcpu->kvm->arch.has_protected_state &&
12126
vcpu->arch.guest_state_protected)
12127
return -EINVAL;
12128
12129
vcpu_load(vcpu);
12130
__get_sregs(vcpu, sregs);
12131
vcpu_put(vcpu);
12132
return 0;
12133
}
12134
12135
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
12136
struct kvm_mp_state *mp_state)
12137
{
12138
int r;
12139
12140
vcpu_load(vcpu);
12141
if (kvm_mpx_supported())
12142
kvm_load_guest_fpu(vcpu);
12143
12144
kvm_vcpu_srcu_read_lock(vcpu);
12145
12146
r = kvm_apic_accept_events(vcpu);
12147
if (r < 0)
12148
goto out;
12149
r = 0;
12150
12151
if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
12152
vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
12153
vcpu->arch.pv.pv_unhalted)
12154
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
12155
else
12156
mp_state->mp_state = vcpu->arch.mp_state;
12157
12158
out:
12159
kvm_vcpu_srcu_read_unlock(vcpu);
12160
12161
if (kvm_mpx_supported())
12162
kvm_put_guest_fpu(vcpu);
12163
vcpu_put(vcpu);
12164
return r;
12165
}
12166
12167
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
12168
struct kvm_mp_state *mp_state)
12169
{
12170
int ret = -EINVAL;
12171
12172
vcpu_load(vcpu);
12173
12174
switch (mp_state->mp_state) {
12175
case KVM_MP_STATE_UNINITIALIZED:
12176
case KVM_MP_STATE_HALTED:
12177
case KVM_MP_STATE_AP_RESET_HOLD:
12178
case KVM_MP_STATE_INIT_RECEIVED:
12179
case KVM_MP_STATE_SIPI_RECEIVED:
12180
if (!lapic_in_kernel(vcpu))
12181
goto out;
12182
break;
12183
12184
case KVM_MP_STATE_RUNNABLE:
12185
break;
12186
12187
default:
12188
goto out;
12189
}
12190
12191
/*
12192
* SIPI_RECEIVED is obsolete and no longer used internally; KVM instead
12193
* leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI.
12194
* Translate SIPI_RECEIVED as appropriate for backwards compatibility.
12195
*/
12196
if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
12197
mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED;
12198
set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
12199
}
12200
12201
kvm_set_mp_state(vcpu, mp_state->mp_state);
12202
kvm_make_request(KVM_REQ_EVENT, vcpu);
12203
12204
ret = 0;
12205
out:
12206
vcpu_put(vcpu);
12207
return ret;
12208
}
12209
12210
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
12211
int reason, bool has_error_code, u32 error_code)
12212
{
12213
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
12214
int ret;
12215
12216
if (kvm_is_cr4_bit_set(vcpu, X86_CR4_CET)) {
12217
u64 u_cet, s_cet;
12218
12219
/*
12220
* Check both User and Supervisor on task switches as inter-
12221
* privilege level task switches are impacted by CET at both
12222
* the current privilege level and the new privilege level, and
12223
* that information is not known at this time. The expectation
12224
* is that the guest won't require emulation of task switches
12225
* while using IBT or Shadow Stacks.
12226
*/
12227
if (__kvm_emulate_msr_read(vcpu, MSR_IA32_U_CET, &u_cet) ||
12228
__kvm_emulate_msr_read(vcpu, MSR_IA32_S_CET, &s_cet))
12229
goto unhandled_task_switch;
12230
12231
if ((u_cet | s_cet) & (CET_ENDBR_EN | CET_SHSTK_EN))
12232
goto unhandled_task_switch;
12233
}
12234
12235
init_emulate_ctxt(vcpu);
12236
12237
ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
12238
has_error_code, error_code);
12239
12240
/*
12241
* Report an error userspace if MMIO is needed, as KVM doesn't support
12242
* MMIO during a task switch (or any other complex operation).
12243
*/
12244
if (ret || vcpu->mmio_needed)
12245
goto unhandled_task_switch;
12246
12247
kvm_rip_write(vcpu, ctxt->eip);
12248
kvm_set_rflags(vcpu, ctxt->eflags);
12249
return 1;
12250
12251
unhandled_task_switch:
12252
vcpu->mmio_needed = false;
12253
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12254
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12255
vcpu->run->internal.ndata = 0;
12256
return 0;
12257
}
12258
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_task_switch);
12259
12260
static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12261
{
12262
if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
12263
/*
12264
* When EFER.LME and CR0.PG are set, the processor is in
12265
* 64-bit mode (though maybe in a 32-bit code segment).
12266
* CR4.PAE and EFER.LMA must be set.
12267
*/
12268
if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
12269
return false;
12270
if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
12271
return false;
12272
} else {
12273
/*
12274
* Not in 64-bit mode: EFER.LMA is clear and the code
12275
* segment cannot be 64-bit.
12276
*/
12277
if (sregs->efer & EFER_LMA || sregs->cs.l)
12278
return false;
12279
}
12280
12281
return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
12282
kvm_is_valid_cr0(vcpu, sregs->cr0);
12283
}
12284
12285
static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
12286
int *mmu_reset_needed, bool update_pdptrs)
12287
{
12288
int idx;
12289
struct desc_ptr dt;
12290
12291
if (!kvm_is_valid_sregs(vcpu, sregs))
12292
return -EINVAL;
12293
12294
if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
12295
return -EINVAL;
12296
12297
if (vcpu->arch.guest_state_protected)
12298
return 0;
12299
12300
dt.size = sregs->idt.limit;
12301
dt.address = sregs->idt.base;
12302
kvm_x86_call(set_idt)(vcpu, &dt);
12303
dt.size = sregs->gdt.limit;
12304
dt.address = sregs->gdt.base;
12305
kvm_x86_call(set_gdt)(vcpu, &dt);
12306
12307
vcpu->arch.cr2 = sregs->cr2;
12308
*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
12309
vcpu->arch.cr3 = sregs->cr3;
12310
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12311
kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
12312
12313
kvm_set_cr8(vcpu, sregs->cr8);
12314
12315
*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
12316
kvm_x86_call(set_efer)(vcpu, sregs->efer);
12317
12318
*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
12319
kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
12320
12321
*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
12322
kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
12323
12324
if (update_pdptrs) {
12325
idx = srcu_read_lock(&vcpu->kvm->srcu);
12326
if (is_pae_paging(vcpu)) {
12327
load_pdptrs(vcpu, kvm_read_cr3(vcpu));
12328
*mmu_reset_needed = 1;
12329
}
12330
srcu_read_unlock(&vcpu->kvm->srcu, idx);
12331
}
12332
12333
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12334
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12335
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12336
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12337
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12338
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12339
12340
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12341
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12342
12343
update_cr8_intercept(vcpu);
12344
12345
/* Older userspace won't unhalt the vcpu on reset. */
12346
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
12347
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12348
!is_protmode(vcpu))
12349
kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12350
12351
return 0;
12352
}
12353
12354
static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12355
{
12356
int pending_vec, max_bits;
12357
int mmu_reset_needed = 0;
12358
int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12359
12360
if (ret)
12361
return ret;
12362
12363
if (mmu_reset_needed) {
12364
kvm_mmu_reset_context(vcpu);
12365
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12366
}
12367
12368
max_bits = KVM_NR_INTERRUPTS;
12369
pending_vec = find_first_bit(
12370
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
12371
12372
if (pending_vec < max_bits) {
12373
kvm_queue_interrupt(vcpu, pending_vec, false);
12374
pr_debug("Set back pending irq %d\n", pending_vec);
12375
kvm_make_request(KVM_REQ_EVENT, vcpu);
12376
}
12377
return 0;
12378
}
12379
12380
static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12381
{
12382
int mmu_reset_needed = 0;
12383
bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12384
bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12385
!(sregs2->efer & EFER_LMA);
12386
int i, ret;
12387
12388
if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12389
return -EINVAL;
12390
12391
if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12392
return -EINVAL;
12393
12394
ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12395
&mmu_reset_needed, !valid_pdptrs);
12396
if (ret)
12397
return ret;
12398
12399
if (valid_pdptrs) {
12400
for (i = 0; i < 4 ; i++)
12401
kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12402
12403
kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12404
mmu_reset_needed = 1;
12405
vcpu->arch.pdptrs_from_userspace = true;
12406
}
12407
if (mmu_reset_needed) {
12408
kvm_mmu_reset_context(vcpu);
12409
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12410
}
12411
return 0;
12412
}
12413
12414
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12415
struct kvm_sregs *sregs)
12416
{
12417
int ret;
12418
12419
if (vcpu->kvm->arch.has_protected_state &&
12420
vcpu->arch.guest_state_protected)
12421
return -EINVAL;
12422
12423
vcpu_load(vcpu);
12424
ret = __set_sregs(vcpu, sregs);
12425
vcpu_put(vcpu);
12426
return ret;
12427
}
12428
12429
static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12430
{
12431
bool set = false;
12432
struct kvm_vcpu *vcpu;
12433
unsigned long i;
12434
12435
if (!enable_apicv)
12436
return;
12437
12438
down_write(&kvm->arch.apicv_update_lock);
12439
12440
kvm_for_each_vcpu(i, vcpu, kvm) {
12441
if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12442
set = true;
12443
break;
12444
}
12445
}
12446
__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12447
up_write(&kvm->arch.apicv_update_lock);
12448
}
12449
12450
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12451
struct kvm_guest_debug *dbg)
12452
{
12453
unsigned long rflags;
12454
int i, r;
12455
12456
if (vcpu->arch.guest_state_protected)
12457
return -EINVAL;
12458
12459
vcpu_load(vcpu);
12460
12461
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12462
r = -EBUSY;
12463
if (kvm_is_exception_pending(vcpu))
12464
goto out;
12465
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12466
kvm_queue_exception(vcpu, DB_VECTOR);
12467
else
12468
kvm_queue_exception(vcpu, BP_VECTOR);
12469
}
12470
12471
/*
12472
* Read rflags as long as potentially injected trace flags are still
12473
* filtered out.
12474
*/
12475
rflags = kvm_get_rflags(vcpu);
12476
12477
vcpu->guest_debug = dbg->control;
12478
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12479
vcpu->guest_debug = 0;
12480
12481
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12482
for (i = 0; i < KVM_NR_DB_REGS; ++i)
12483
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12484
vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12485
} else {
12486
for (i = 0; i < KVM_NR_DB_REGS; i++)
12487
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12488
}
12489
kvm_update_dr7(vcpu);
12490
12491
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12492
vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12493
12494
/*
12495
* Trigger an rflags update that will inject or remove the trace
12496
* flags.
12497
*/
12498
kvm_set_rflags(vcpu, rflags);
12499
12500
kvm_x86_call(update_exception_bitmap)(vcpu);
12501
12502
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12503
12504
r = 0;
12505
12506
out:
12507
vcpu_put(vcpu);
12508
return r;
12509
}
12510
12511
/*
12512
* Translate a guest virtual address to a guest physical address.
12513
*/
12514
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12515
struct kvm_translation *tr)
12516
{
12517
unsigned long vaddr = tr->linear_address;
12518
gpa_t gpa;
12519
int idx;
12520
12521
vcpu_load(vcpu);
12522
12523
idx = srcu_read_lock(&vcpu->kvm->srcu);
12524
gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12525
srcu_read_unlock(&vcpu->kvm->srcu, idx);
12526
tr->physical_address = gpa;
12527
tr->valid = gpa != INVALID_GPA;
12528
tr->writeable = 1;
12529
tr->usermode = 0;
12530
12531
vcpu_put(vcpu);
12532
return 0;
12533
}
12534
12535
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12536
{
12537
struct fxregs_state *fxsave;
12538
12539
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12540
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12541
12542
vcpu_load(vcpu);
12543
12544
fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12545
memcpy(fpu->fpr, fxsave->st_space, 128);
12546
fpu->fcw = fxsave->cwd;
12547
fpu->fsw = fxsave->swd;
12548
fpu->ftwx = fxsave->twd;
12549
fpu->last_opcode = fxsave->fop;
12550
fpu->last_ip = fxsave->rip;
12551
fpu->last_dp = fxsave->rdp;
12552
memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12553
12554
vcpu_put(vcpu);
12555
return 0;
12556
}
12557
12558
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12559
{
12560
struct fxregs_state *fxsave;
12561
12562
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12563
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12564
12565
vcpu_load(vcpu);
12566
12567
fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12568
12569
memcpy(fxsave->st_space, fpu->fpr, 128);
12570
fxsave->cwd = fpu->fcw;
12571
fxsave->swd = fpu->fsw;
12572
fxsave->twd = fpu->ftwx;
12573
fxsave->fop = fpu->last_opcode;
12574
fxsave->rip = fpu->last_ip;
12575
fxsave->rdp = fpu->last_dp;
12576
memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12577
12578
vcpu_put(vcpu);
12579
return 0;
12580
}
12581
12582
static void store_regs(struct kvm_vcpu *vcpu)
12583
{
12584
BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12585
12586
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12587
__get_regs(vcpu, &vcpu->run->s.regs.regs);
12588
12589
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12590
__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12591
12592
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12593
kvm_vcpu_ioctl_x86_get_vcpu_events(
12594
vcpu, &vcpu->run->s.regs.events);
12595
}
12596
12597
static int sync_regs(struct kvm_vcpu *vcpu)
12598
{
12599
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12600
__set_regs(vcpu, &vcpu->run->s.regs.regs);
12601
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12602
}
12603
12604
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12605
struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12606
12607
if (__set_sregs(vcpu, &sregs))
12608
return -EINVAL;
12609
12610
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12611
}
12612
12613
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12614
struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12615
12616
if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12617
return -EINVAL;
12618
12619
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12620
}
12621
12622
return 0;
12623
}
12624
12625
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12626
{
12627
if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12628
pr_warn_once("SMP vm created on host with unstable TSC; "
12629
"guest TSC will not be reliable\n");
12630
12631
if (!kvm->arch.max_vcpu_ids)
12632
kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12633
12634
if (id >= kvm->arch.max_vcpu_ids)
12635
return -EINVAL;
12636
12637
return kvm_x86_call(vcpu_precreate)(kvm);
12638
}
12639
12640
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12641
{
12642
struct page *page;
12643
int r;
12644
12645
vcpu->arch.last_vmentry_cpu = -1;
12646
vcpu->arch.regs_avail = ~0;
12647
vcpu->arch.regs_dirty = ~0;
12648
12649
kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12650
12651
if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12652
kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12653
else
12654
kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12655
12656
r = kvm_mmu_create(vcpu);
12657
if (r < 0)
12658
return r;
12659
12660
r = kvm_create_lapic(vcpu);
12661
if (r < 0)
12662
goto fail_mmu_destroy;
12663
12664
r = -ENOMEM;
12665
12666
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12667
if (!page)
12668
goto fail_free_lapic;
12669
vcpu->arch.pio_data = page_address(page);
12670
12671
vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12672
GFP_KERNEL_ACCOUNT);
12673
vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12674
GFP_KERNEL_ACCOUNT);
12675
if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12676
goto fail_free_mce_banks;
12677
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12678
12679
if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12680
GFP_KERNEL_ACCOUNT))
12681
goto fail_free_mce_banks;
12682
12683
if (!alloc_emulate_ctxt(vcpu))
12684
goto free_wbinvd_dirty_mask;
12685
12686
if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12687
pr_err("failed to allocate vcpu's fpu\n");
12688
goto free_emulate_ctxt;
12689
}
12690
12691
kvm_async_pf_hash_reset(vcpu);
12692
12693
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12694
vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12695
vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12696
vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12697
}
12698
kvm_pmu_init(vcpu);
12699
12700
vcpu->arch.pending_external_vector = -1;
12701
vcpu->arch.preempted_in_kernel = false;
12702
12703
#if IS_ENABLED(CONFIG_HYPERV)
12704
vcpu->arch.hv_root_tdp = INVALID_PAGE;
12705
#endif
12706
12707
r = kvm_x86_call(vcpu_create)(vcpu);
12708
if (r)
12709
goto free_guest_fpu;
12710
12711
kvm_xen_init_vcpu(vcpu);
12712
vcpu_load(vcpu);
12713
kvm_vcpu_after_set_cpuid(vcpu);
12714
kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12715
kvm_vcpu_reset(vcpu, false);
12716
kvm_init_mmu(vcpu);
12717
vcpu_put(vcpu);
12718
return 0;
12719
12720
free_guest_fpu:
12721
fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12722
free_emulate_ctxt:
12723
kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12724
free_wbinvd_dirty_mask:
12725
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12726
fail_free_mce_banks:
12727
kfree(vcpu->arch.mce_banks);
12728
kfree(vcpu->arch.mci_ctl2_banks);
12729
free_page((unsigned long)vcpu->arch.pio_data);
12730
fail_free_lapic:
12731
kvm_free_lapic(vcpu);
12732
fail_mmu_destroy:
12733
kvm_mmu_destroy(vcpu);
12734
return r;
12735
}
12736
12737
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12738
{
12739
struct kvm *kvm = vcpu->kvm;
12740
12741
if (mutex_lock_killable(&vcpu->mutex))
12742
return;
12743
vcpu_load(vcpu);
12744
kvm_synchronize_tsc(vcpu, NULL);
12745
vcpu_put(vcpu);
12746
12747
/* poll control enabled by default */
12748
vcpu->arch.msr_kvm_poll_control = 1;
12749
12750
mutex_unlock(&vcpu->mutex);
12751
12752
if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12753
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12754
KVMCLOCK_SYNC_PERIOD);
12755
}
12756
12757
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12758
{
12759
int idx, cpu;
12760
12761
kvm_clear_async_pf_completion_queue(vcpu);
12762
kvm_mmu_unload(vcpu);
12763
12764
kvmclock_reset(vcpu);
12765
12766
for_each_possible_cpu(cpu)
12767
cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL);
12768
12769
kvm_x86_call(vcpu_free)(vcpu);
12770
12771
kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12772
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12773
fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12774
12775
kvm_xen_destroy_vcpu(vcpu);
12776
kvm_hv_vcpu_uninit(vcpu);
12777
kvm_pmu_destroy(vcpu);
12778
kfree(vcpu->arch.mce_banks);
12779
kfree(vcpu->arch.mci_ctl2_banks);
12780
kvm_free_lapic(vcpu);
12781
idx = srcu_read_lock(&vcpu->kvm->srcu);
12782
kvm_mmu_destroy(vcpu);
12783
srcu_read_unlock(&vcpu->kvm->srcu, idx);
12784
free_page((unsigned long)vcpu->arch.pio_data);
12785
kvfree(vcpu->arch.cpuid_entries);
12786
}
12787
12788
static void kvm_xstate_reset(struct kvm_vcpu *vcpu, bool init_event)
12789
{
12790
struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12791
u64 xfeatures_mask;
12792
int i;
12793
12794
/*
12795
* Guest FPU state is zero allocated and so doesn't need to be manually
12796
* cleared on RESET, i.e. during vCPU creation.
12797
*/
12798
if (!init_event || !fpstate)
12799
return;
12800
12801
/*
12802
* On INIT, only select XSTATE components are zeroed, most components
12803
* are unchanged. Currently, the only components that are zeroed and
12804
* supported by KVM are MPX and CET related.
12805
*/
12806
xfeatures_mask = (kvm_caps.supported_xcr0 | kvm_caps.supported_xss) &
12807
(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR |
12808
XFEATURE_MASK_CET_ALL);
12809
if (!xfeatures_mask)
12810
return;
12811
12812
BUILD_BUG_ON(sizeof(xfeatures_mask) * BITS_PER_BYTE <= XFEATURE_MAX);
12813
12814
/*
12815
* All paths that lead to INIT are required to load the guest's FPU
12816
* state (because most paths are buried in KVM_RUN).
12817
*/
12818
kvm_put_guest_fpu(vcpu);
12819
for_each_set_bit(i, (unsigned long *)&xfeatures_mask, XFEATURE_MAX)
12820
fpstate_clear_xstate_component(fpstate, i);
12821
kvm_load_guest_fpu(vcpu);
12822
}
12823
12824
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12825
{
12826
struct kvm_cpuid_entry2 *cpuid_0x1;
12827
unsigned long old_cr0 = kvm_read_cr0(vcpu);
12828
unsigned long new_cr0;
12829
12830
/*
12831
* Several of the "set" flows, e.g. ->set_cr0(), read other registers
12832
* to handle side effects. RESET emulation hits those flows and relies
12833
* on emulated/virtualized registers, including those that are loaded
12834
* into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12835
* to detect improper or missing initialization.
12836
*/
12837
WARN_ON_ONCE(!init_event &&
12838
(old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12839
12840
/*
12841
* SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12842
* possible to INIT the vCPU while L2 is active. Force the vCPU back
12843
* into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12844
* bits), i.e. virtualization is disabled.
12845
*/
12846
if (is_guest_mode(vcpu))
12847
kvm_leave_nested(vcpu);
12848
12849
kvm_lapic_reset(vcpu, init_event);
12850
12851
WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12852
vcpu->arch.hflags = 0;
12853
12854
vcpu->arch.smi_pending = 0;
12855
vcpu->arch.smi_count = 0;
12856
atomic_set(&vcpu->arch.nmi_queued, 0);
12857
vcpu->arch.nmi_pending = 0;
12858
vcpu->arch.nmi_injected = false;
12859
kvm_clear_interrupt_queue(vcpu);
12860
kvm_clear_exception_queue(vcpu);
12861
12862
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12863
kvm_update_dr0123(vcpu);
12864
vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12865
vcpu->arch.dr7 = DR7_FIXED_1;
12866
kvm_update_dr7(vcpu);
12867
12868
vcpu->arch.cr2 = 0;
12869
12870
kvm_make_request(KVM_REQ_EVENT, vcpu);
12871
vcpu->arch.apf.msr_en_val = 0;
12872
vcpu->arch.apf.msr_int_val = 0;
12873
vcpu->arch.st.msr_val = 0;
12874
12875
kvmclock_reset(vcpu);
12876
12877
kvm_clear_async_pf_completion_queue(vcpu);
12878
kvm_async_pf_hash_reset(vcpu);
12879
vcpu->arch.apf.halted = false;
12880
12881
kvm_xstate_reset(vcpu, init_event);
12882
12883
if (!init_event) {
12884
vcpu->arch.smbase = 0x30000;
12885
12886
vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12887
12888
vcpu->arch.msr_misc_features_enables = 0;
12889
vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12890
MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12891
12892
__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12893
kvm_msr_write(vcpu, MSR_IA32_XSS, 0);
12894
}
12895
12896
/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12897
memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12898
kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12899
12900
/*
12901
* Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12902
* if no CPUID match is found. Note, it's impossible to get a match at
12903
* RESET since KVM emulates RESET before exposing the vCPU to userspace,
12904
* i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12905
* on RESET. But, go through the motions in case that's ever remedied.
12906
*/
12907
cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12908
kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12909
12910
kvm_x86_call(vcpu_reset)(vcpu, init_event);
12911
12912
kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12913
kvm_rip_write(vcpu, 0xfff0);
12914
12915
vcpu->arch.cr3 = 0;
12916
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12917
12918
/*
12919
* CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12920
* of Intel's SDM list CD/NW as being set on INIT, but they contradict
12921
* (or qualify) that with a footnote stating that CD/NW are preserved.
12922
*/
12923
new_cr0 = X86_CR0_ET;
12924
if (init_event)
12925
new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12926
else
12927
new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12928
12929
kvm_x86_call(set_cr0)(vcpu, new_cr0);
12930
kvm_x86_call(set_cr4)(vcpu, 0);
12931
kvm_x86_call(set_efer)(vcpu, 0);
12932
kvm_x86_call(update_exception_bitmap)(vcpu);
12933
12934
/*
12935
* On the standard CR0/CR4/EFER modification paths, there are several
12936
* complex conditions determining whether the MMU has to be reset and/or
12937
* which PCIDs have to be flushed. However, CR0.WP and the paging-related
12938
* bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12939
* is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12940
* CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12941
*/
12942
if (old_cr0 & X86_CR0_PG) {
12943
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12944
kvm_mmu_reset_context(vcpu);
12945
}
12946
12947
/*
12948
* Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12949
* APM states the TLBs are untouched by INIT, but it also states that
12950
* the TLBs are flushed on "External initialization of the processor."
12951
* Flush the guest TLB regardless of vendor, there is no meaningful
12952
* benefit in relying on the guest to flush the TLB immediately after
12953
* INIT. A spurious TLB flush is benign and likely negligible from a
12954
* performance perspective.
12955
*/
12956
if (init_event)
12957
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12958
}
12959
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_reset);
12960
12961
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12962
{
12963
struct kvm_segment cs;
12964
12965
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12966
cs.selector = vector << 8;
12967
cs.base = vector << 12;
12968
kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12969
kvm_rip_write(vcpu, 0);
12970
}
12971
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_deliver_sipi_vector);
12972
12973
void kvm_arch_enable_virtualization(void)
12974
{
12975
cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12976
}
12977
12978
void kvm_arch_disable_virtualization(void)
12979
{
12980
cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12981
}
12982
12983
int kvm_arch_enable_virtualization_cpu(void)
12984
{
12985
struct kvm *kvm;
12986
struct kvm_vcpu *vcpu;
12987
unsigned long i;
12988
int ret;
12989
u64 local_tsc;
12990
u64 max_tsc = 0;
12991
bool stable, backwards_tsc = false;
12992
12993
kvm_user_return_msr_cpu_online();
12994
12995
ret = kvm_x86_check_processor_compatibility();
12996
if (ret)
12997
return ret;
12998
12999
ret = kvm_x86_call(enable_virtualization_cpu)();
13000
if (ret != 0)
13001
return ret;
13002
13003
local_tsc = rdtsc();
13004
stable = !kvm_check_tsc_unstable();
13005
list_for_each_entry(kvm, &vm_list, vm_list) {
13006
kvm_for_each_vcpu(i, vcpu, kvm) {
13007
if (!stable && vcpu->cpu == smp_processor_id())
13008
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
13009
if (stable && vcpu->arch.last_host_tsc > local_tsc) {
13010
backwards_tsc = true;
13011
if (vcpu->arch.last_host_tsc > max_tsc)
13012
max_tsc = vcpu->arch.last_host_tsc;
13013
}
13014
}
13015
}
13016
13017
/*
13018
* Sometimes, even reliable TSCs go backwards. This happens on
13019
* platforms that reset TSC during suspend or hibernate actions, but
13020
* maintain synchronization. We must compensate. Fortunately, we can
13021
* detect that condition here, which happens early in CPU bringup,
13022
* before any KVM threads can be running. Unfortunately, we can't
13023
* bring the TSCs fully up to date with real time, as we aren't yet far
13024
* enough into CPU bringup that we know how much real time has actually
13025
* elapsed; our helper function, ktime_get_boottime_ns() will be using boot
13026
* variables that haven't been updated yet.
13027
*
13028
* So we simply find the maximum observed TSC above, then record the
13029
* adjustment to TSC in each VCPU. When the VCPU later gets loaded,
13030
* the adjustment will be applied. Note that we accumulate
13031
* adjustments, in case multiple suspend cycles happen before some VCPU
13032
* gets a chance to run again. In the event that no KVM threads get a
13033
* chance to run, we will miss the entire elapsed period, as we'll have
13034
* reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
13035
* loose cycle time. This isn't too big a deal, since the loss will be
13036
* uniform across all VCPUs (not to mention the scenario is extremely
13037
* unlikely). It is possible that a second hibernate recovery happens
13038
* much faster than a first, causing the observed TSC here to be
13039
* smaller; this would require additional padding adjustment, which is
13040
* why we set last_host_tsc to the local tsc observed here.
13041
*
13042
* N.B. - this code below runs only on platforms with reliable TSC,
13043
* as that is the only way backwards_tsc is set above. Also note
13044
* that this runs for ALL vcpus, which is not a bug; all VCPUs should
13045
* have the same delta_cyc adjustment applied if backwards_tsc
13046
* is detected. Note further, this adjustment is only done once,
13047
* as we reset last_host_tsc on all VCPUs to stop this from being
13048
* called multiple times (one for each physical CPU bringup).
13049
*
13050
* Platforms with unreliable TSCs don't have to deal with this, they
13051
* will be compensated by the logic in vcpu_load, which sets the TSC to
13052
* catchup mode. This will catchup all VCPUs to real time, but cannot
13053
* guarantee that they stay in perfect synchronization.
13054
*/
13055
if (backwards_tsc) {
13056
u64 delta_cyc = max_tsc - local_tsc;
13057
list_for_each_entry(kvm, &vm_list, vm_list) {
13058
kvm->arch.backwards_tsc_observed = true;
13059
kvm_for_each_vcpu(i, vcpu, kvm) {
13060
vcpu->arch.tsc_offset_adjustment += delta_cyc;
13061
vcpu->arch.last_host_tsc = local_tsc;
13062
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
13063
}
13064
13065
/*
13066
* We have to disable TSC offset matching.. if you were
13067
* booting a VM while issuing an S4 host suspend....
13068
* you may have some problem. Solving this issue is
13069
* left as an exercise to the reader.
13070
*/
13071
kvm->arch.last_tsc_nsec = 0;
13072
kvm->arch.last_tsc_write = 0;
13073
}
13074
13075
}
13076
return 0;
13077
}
13078
13079
void kvm_arch_disable_virtualization_cpu(void)
13080
{
13081
kvm_x86_call(disable_virtualization_cpu)();
13082
drop_user_return_notifiers();
13083
}
13084
13085
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
13086
{
13087
return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
13088
}
13089
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_reset_bsp);
13090
13091
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
13092
{
13093
return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
13094
}
13095
13096
void kvm_arch_free_vm(struct kvm *kvm)
13097
{
13098
#if IS_ENABLED(CONFIG_HYPERV)
13099
kfree(kvm->arch.hv_pa_pg);
13100
#endif
13101
__kvm_arch_free_vm(kvm);
13102
}
13103
13104
13105
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
13106
{
13107
int ret;
13108
unsigned long flags;
13109
13110
if (!kvm_is_vm_type_supported(type))
13111
return -EINVAL;
13112
13113
kvm->arch.vm_type = type;
13114
kvm->arch.has_private_mem =
13115
(type == KVM_X86_SW_PROTECTED_VM);
13116
/* Decided by the vendor code for other VM types. */
13117
kvm->arch.pre_fault_allowed =
13118
type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
13119
kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks;
13120
13121
ret = kvm_page_track_init(kvm);
13122
if (ret)
13123
goto out;
13124
13125
ret = kvm_mmu_init_vm(kvm);
13126
if (ret)
13127
goto out_cleanup_page_track;
13128
13129
ret = kvm_x86_call(vm_init)(kvm);
13130
if (ret)
13131
goto out_uninit_mmu;
13132
13133
atomic_set(&kvm->arch.noncoherent_dma_count, 0);
13134
13135
raw_spin_lock_init(&kvm->arch.tsc_write_lock);
13136
mutex_init(&kvm->arch.apic_map_lock);
13137
seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
13138
kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
13139
13140
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
13141
pvclock_update_vm_gtod_copy(kvm);
13142
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
13143
13144
kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
13145
kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
13146
kvm->arch.guest_can_read_msr_platform_info = true;
13147
kvm->arch.enable_pmu = enable_pmu;
13148
13149
#if IS_ENABLED(CONFIG_HYPERV)
13150
spin_lock_init(&kvm->arch.hv_root_tdp_lock);
13151
kvm->arch.hv_root_tdp = INVALID_PAGE;
13152
#endif
13153
13154
INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
13155
INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
13156
13157
kvm_apicv_init(kvm);
13158
kvm_hv_init_vm(kvm);
13159
kvm_xen_init_vm(kvm);
13160
13161
if (ignore_msrs && !report_ignored_msrs) {
13162
pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
13163
"a supported configuration. Lying to the guest about the existence of MSRs\n"
13164
"may cause the guest operating system to hang or produce errors. If a guest\n"
13165
"does not run without ignore_msrs=1, please report it to [email protected].\n");
13166
}
13167
13168
once_init(&kvm->arch.nx_once);
13169
return 0;
13170
13171
out_uninit_mmu:
13172
kvm_mmu_uninit_vm(kvm);
13173
out_cleanup_page_track:
13174
kvm_page_track_cleanup(kvm);
13175
out:
13176
return ret;
13177
}
13178
13179
/**
13180
* __x86_set_memory_region: Setup KVM internal memory slot
13181
*
13182
* @kvm: the kvm pointer to the VM.
13183
* @id: the slot ID to setup.
13184
* @gpa: the GPA to install the slot (unused when @size == 0).
13185
* @size: the size of the slot. Set to zero to uninstall a slot.
13186
*
13187
* This function helps to setup a KVM internal memory slot. Specify
13188
* @size > 0 to install a new slot, while @size == 0 to uninstall a
13189
* slot. The return code can be one of the following:
13190
*
13191
* HVA: on success (uninstall will return a bogus HVA)
13192
* -errno: on error
13193
*
13194
* The caller should always use IS_ERR() to check the return value
13195
* before use. Note, the KVM internal memory slots are guaranteed to
13196
* remain valid and unchanged until the VM is destroyed, i.e., the
13197
* GPA->HVA translation will not change. However, the HVA is a user
13198
* address, i.e. its accessibility is not guaranteed, and must be
13199
* accessed via __copy_{to,from}_user().
13200
*/
13201
void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
13202
u32 size)
13203
{
13204
int i, r;
13205
unsigned long hva, old_npages;
13206
struct kvm_memslots *slots = kvm_memslots(kvm);
13207
struct kvm_memory_slot *slot;
13208
13209
lockdep_assert_held(&kvm->slots_lock);
13210
13211
if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
13212
return ERR_PTR_USR(-EINVAL);
13213
13214
slot = id_to_memslot(slots, id);
13215
if (size) {
13216
if (slot && slot->npages)
13217
return ERR_PTR_USR(-EEXIST);
13218
13219
/*
13220
* MAP_SHARED to prevent internal slot pages from being moved
13221
* by fork()/COW.
13222
*/
13223
hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
13224
MAP_SHARED | MAP_ANONYMOUS, 0);
13225
if (IS_ERR_VALUE(hva))
13226
return (void __user *)hva;
13227
} else {
13228
if (!slot || !slot->npages)
13229
return NULL;
13230
13231
old_npages = slot->npages;
13232
hva = slot->userspace_addr;
13233
}
13234
13235
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
13236
struct kvm_userspace_memory_region2 m;
13237
13238
m.slot = id | (i << 16);
13239
m.flags = 0;
13240
m.guest_phys_addr = gpa;
13241
m.userspace_addr = hva;
13242
m.memory_size = size;
13243
r = kvm_set_internal_memslot(kvm, &m);
13244
if (r < 0)
13245
return ERR_PTR_USR(r);
13246
}
13247
13248
if (!size)
13249
vm_munmap(hva, old_npages * PAGE_SIZE);
13250
13251
return (void __user *)hva;
13252
}
13253
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__x86_set_memory_region);
13254
13255
void kvm_arch_pre_destroy_vm(struct kvm *kvm)
13256
{
13257
/*
13258
* Stop all background workers and kthreads before destroying vCPUs, as
13259
* iterating over vCPUs in a different task while vCPUs are being freed
13260
* is unsafe, i.e. will lead to use-after-free. The PIT also needs to
13261
* be stopped before IRQ routing is freed.
13262
*/
13263
cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
13264
cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
13265
13266
#ifdef CONFIG_KVM_IOAPIC
13267
kvm_free_pit(kvm);
13268
#endif
13269
13270
kvm_mmu_pre_destroy_vm(kvm);
13271
static_call_cond(kvm_x86_vm_pre_destroy)(kvm);
13272
}
13273
13274
void kvm_arch_destroy_vm(struct kvm *kvm)
13275
{
13276
if (current->mm == kvm->mm) {
13277
/*
13278
* Free memory regions allocated on behalf of userspace,
13279
* unless the memory map has changed due to process exit
13280
* or fd copying.
13281
*/
13282
mutex_lock(&kvm->slots_lock);
13283
__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
13284
0, 0);
13285
__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
13286
0, 0);
13287
__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
13288
mutex_unlock(&kvm->slots_lock);
13289
}
13290
kvm_destroy_vcpus(kvm);
13291
kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
13292
#ifdef CONFIG_KVM_IOAPIC
13293
kvm_pic_destroy(kvm);
13294
kvm_ioapic_destroy(kvm);
13295
#endif
13296
kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
13297
kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13298
kvm_mmu_uninit_vm(kvm);
13299
kvm_page_track_cleanup(kvm);
13300
kvm_xen_destroy_vm(kvm);
13301
kvm_hv_destroy_vm(kvm);
13302
kvm_x86_call(vm_destroy)(kvm);
13303
}
13304
13305
static void memslot_rmap_free(struct kvm_memory_slot *slot)
13306
{
13307
int i;
13308
13309
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13310
vfree(slot->arch.rmap[i]);
13311
slot->arch.rmap[i] = NULL;
13312
}
13313
}
13314
13315
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
13316
{
13317
int i;
13318
13319
memslot_rmap_free(slot);
13320
13321
for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13322
vfree(slot->arch.lpage_info[i - 1]);
13323
slot->arch.lpage_info[i - 1] = NULL;
13324
}
13325
13326
kvm_page_track_free_memslot(slot);
13327
}
13328
13329
int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
13330
{
13331
const int sz = sizeof(*slot->arch.rmap[0]);
13332
int i;
13333
13334
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13335
int level = i + 1;
13336
int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13337
13338
if (slot->arch.rmap[i])
13339
continue;
13340
13341
slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
13342
if (!slot->arch.rmap[i]) {
13343
memslot_rmap_free(slot);
13344
return -ENOMEM;
13345
}
13346
}
13347
13348
return 0;
13349
}
13350
13351
static int kvm_alloc_memslot_metadata(struct kvm *kvm,
13352
struct kvm_memory_slot *slot)
13353
{
13354
unsigned long npages = slot->npages;
13355
int i, r;
13356
13357
/*
13358
* Clear out the previous array pointers for the KVM_MR_MOVE case. The
13359
* old arrays will be freed by kvm_set_memory_region() if installing
13360
* the new memslot is successful.
13361
*/
13362
memset(&slot->arch, 0, sizeof(slot->arch));
13363
13364
if (kvm_memslots_have_rmaps(kvm)) {
13365
r = memslot_rmap_alloc(slot, npages);
13366
if (r)
13367
return r;
13368
}
13369
13370
for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13371
struct kvm_lpage_info *linfo;
13372
unsigned long ugfn;
13373
int lpages;
13374
int level = i + 1;
13375
13376
lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13377
13378
linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13379
if (!linfo)
13380
goto out_free;
13381
13382
slot->arch.lpage_info[i - 1] = linfo;
13383
13384
if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13385
linfo[0].disallow_lpage = 1;
13386
if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13387
linfo[lpages - 1].disallow_lpage = 1;
13388
ugfn = slot->userspace_addr >> PAGE_SHIFT;
13389
/*
13390
* If the gfn and userspace address are not aligned wrt each
13391
* other, disable large page support for this slot.
13392
*/
13393
if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13394
unsigned long j;
13395
13396
for (j = 0; j < lpages; ++j)
13397
linfo[j].disallow_lpage = 1;
13398
}
13399
}
13400
13401
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13402
kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13403
#endif
13404
13405
if (kvm_page_track_create_memslot(kvm, slot, npages))
13406
goto out_free;
13407
13408
return 0;
13409
13410
out_free:
13411
memslot_rmap_free(slot);
13412
13413
for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13414
vfree(slot->arch.lpage_info[i - 1]);
13415
slot->arch.lpage_info[i - 1] = NULL;
13416
}
13417
return -ENOMEM;
13418
}
13419
13420
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13421
{
13422
struct kvm_vcpu *vcpu;
13423
unsigned long i;
13424
13425
/*
13426
* memslots->generation has been incremented.
13427
* mmio generation may have reached its maximum value.
13428
*/
13429
kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13430
13431
/* Force re-initialization of steal_time cache */
13432
kvm_for_each_vcpu(i, vcpu, kvm)
13433
kvm_vcpu_kick(vcpu);
13434
}
13435
13436
int kvm_arch_prepare_memory_region(struct kvm *kvm,
13437
const struct kvm_memory_slot *old,
13438
struct kvm_memory_slot *new,
13439
enum kvm_mr_change change)
13440
{
13441
/*
13442
* KVM doesn't support moving memslots when there are external page
13443
* trackers attached to the VM, i.e. if KVMGT is in use.
13444
*/
13445
if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13446
return -EINVAL;
13447
13448
if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13449
if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13450
return -EINVAL;
13451
13452
if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13453
return -EINVAL;
13454
13455
return kvm_alloc_memslot_metadata(kvm, new);
13456
}
13457
13458
if (change == KVM_MR_FLAGS_ONLY)
13459
memcpy(&new->arch, &old->arch, sizeof(old->arch));
13460
else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13461
return -EIO;
13462
13463
return 0;
13464
}
13465
13466
13467
static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13468
{
13469
int nr_slots;
13470
13471
if (!kvm->arch.cpu_dirty_log_size)
13472
return;
13473
13474
nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13475
if ((enable && nr_slots == 1) || !nr_slots)
13476
kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13477
}
13478
13479
static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13480
struct kvm_memory_slot *old,
13481
const struct kvm_memory_slot *new,
13482
enum kvm_mr_change change)
13483
{
13484
u32 old_flags = old ? old->flags : 0;
13485
u32 new_flags = new ? new->flags : 0;
13486
bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13487
13488
/*
13489
* Update CPU dirty logging if dirty logging is being toggled. This
13490
* applies to all operations.
13491
*/
13492
if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13493
kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13494
13495
/*
13496
* Nothing more to do for RO slots (which can't be dirtied and can't be
13497
* made writable) or CREATE/MOVE/DELETE of a slot.
13498
*
13499
* For a memslot with dirty logging disabled:
13500
* CREATE: No dirty mappings will already exist.
13501
* MOVE/DELETE: The old mappings will already have been cleaned up by
13502
* kvm_arch_flush_shadow_memslot()
13503
*
13504
* For a memslot with dirty logging enabled:
13505
* CREATE: No shadow pages exist, thus nothing to write-protect
13506
* and no dirty bits to clear.
13507
* MOVE/DELETE: The old mappings will already have been cleaned up by
13508
* kvm_arch_flush_shadow_memslot().
13509
*/
13510
if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13511
return;
13512
13513
/*
13514
* READONLY and non-flags changes were filtered out above, and the only
13515
* other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13516
* logging isn't being toggled on or off.
13517
*/
13518
if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13519
return;
13520
13521
if (!log_dirty_pages) {
13522
/*
13523
* Recover huge page mappings in the slot now that dirty logging
13524
* is disabled, i.e. now that KVM does not have to track guest
13525
* writes at 4KiB granularity.
13526
*
13527
* Dirty logging might be disabled by userspace if an ongoing VM
13528
* live migration is cancelled and the VM must continue running
13529
* on the source.
13530
*/
13531
kvm_mmu_recover_huge_pages(kvm, new);
13532
} else {
13533
/*
13534
* Initially-all-set does not require write protecting any page,
13535
* because they're all assumed to be dirty.
13536
*/
13537
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13538
return;
13539
13540
if (READ_ONCE(eager_page_split))
13541
kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13542
13543
if (kvm->arch.cpu_dirty_log_size) {
13544
kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13545
kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13546
} else {
13547
kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13548
}
13549
13550
/*
13551
* Unconditionally flush the TLBs after enabling dirty logging.
13552
* A flush is almost always going to be necessary (see below),
13553
* and unconditionally flushing allows the helpers to omit
13554
* the subtly complex checks when removing write access.
13555
*
13556
* Do the flush outside of mmu_lock to reduce the amount of
13557
* time mmu_lock is held. Flushing after dropping mmu_lock is
13558
* safe as KVM only needs to guarantee the slot is fully
13559
* write-protected before returning to userspace, i.e. before
13560
* userspace can consume the dirty status.
13561
*
13562
* Flushing outside of mmu_lock requires KVM to be careful when
13563
* making decisions based on writable status of an SPTE, e.g. a
13564
* !writable SPTE doesn't guarantee a CPU can't perform writes.
13565
*
13566
* Specifically, KVM also write-protects guest page tables to
13567
* monitor changes when using shadow paging, and must guarantee
13568
* no CPUs can write to those page before mmu_lock is dropped.
13569
* Because CPUs may have stale TLB entries at this point, a
13570
* !writable SPTE doesn't guarantee CPUs can't perform writes.
13571
*
13572
* KVM also allows making SPTES writable outside of mmu_lock,
13573
* e.g. to allow dirty logging without taking mmu_lock.
13574
*
13575
* To handle these scenarios, KVM uses a separate software-only
13576
* bit (MMU-writable) to track if a SPTE is !writable due to
13577
* a guest page table being write-protected (KVM clears the
13578
* MMU-writable flag when write-protecting for shadow paging).
13579
*
13580
* The use of MMU-writable is also the primary motivation for
13581
* the unconditional flush. Because KVM must guarantee that a
13582
* CPU doesn't contain stale, writable TLB entries for a
13583
* !MMU-writable SPTE, KVM must flush if it encounters any
13584
* MMU-writable SPTE regardless of whether the actual hardware
13585
* writable bit was set. I.e. KVM is almost guaranteed to need
13586
* to flush, while unconditionally flushing allows the "remove
13587
* write access" helpers to ignore MMU-writable entirely.
13588
*
13589
* See is_writable_pte() for more details (the case involving
13590
* access-tracked SPTEs is particularly relevant).
13591
*/
13592
kvm_flush_remote_tlbs_memslot(kvm, new);
13593
}
13594
}
13595
13596
void kvm_arch_commit_memory_region(struct kvm *kvm,
13597
struct kvm_memory_slot *old,
13598
const struct kvm_memory_slot *new,
13599
enum kvm_mr_change change)
13600
{
13601
if (change == KVM_MR_DELETE)
13602
kvm_page_track_delete_slot(kvm, old);
13603
13604
if (!kvm->arch.n_requested_mmu_pages &&
13605
(change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13606
unsigned long nr_mmu_pages;
13607
13608
nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13609
nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13610
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13611
}
13612
13613
kvm_mmu_slot_apply_flags(kvm, old, new, change);
13614
13615
/* Free the arrays associated with the old memslot. */
13616
if (change == KVM_MR_MOVE)
13617
kvm_arch_free_memslot(kvm, old);
13618
}
13619
13620
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13621
{
13622
WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13623
13624
if (vcpu->arch.guest_state_protected)
13625
return true;
13626
13627
return kvm_x86_call(get_cpl)(vcpu) == 0;
13628
}
13629
13630
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13631
{
13632
WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13633
13634
if (vcpu->arch.guest_state_protected)
13635
return 0;
13636
13637
return kvm_rip_read(vcpu);
13638
}
13639
13640
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13641
{
13642
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13643
}
13644
13645
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13646
{
13647
return kvm_x86_call(interrupt_allowed)(vcpu, false);
13648
}
13649
13650
unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13651
{
13652
/* Can't read the RIP when guest state is protected, just return 0 */
13653
if (vcpu->arch.guest_state_protected)
13654
return 0;
13655
13656
if (is_64_bit_mode(vcpu))
13657
return kvm_rip_read(vcpu);
13658
return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13659
kvm_rip_read(vcpu));
13660
}
13661
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_linear_rip);
13662
13663
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13664
{
13665
return kvm_get_linear_rip(vcpu) == linear_rip;
13666
}
13667
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_linear_rip);
13668
13669
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13670
{
13671
unsigned long rflags;
13672
13673
rflags = kvm_x86_call(get_rflags)(vcpu);
13674
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13675
rflags &= ~X86_EFLAGS_TF;
13676
return rflags;
13677
}
13678
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_rflags);
13679
13680
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13681
{
13682
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13683
kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13684
rflags |= X86_EFLAGS_TF;
13685
kvm_x86_call(set_rflags)(vcpu, rflags);
13686
}
13687
13688
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13689
{
13690
__kvm_set_rflags(vcpu, rflags);
13691
kvm_make_request(KVM_REQ_EVENT, vcpu);
13692
}
13693
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_rflags);
13694
13695
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13696
{
13697
BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13698
13699
return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13700
}
13701
13702
static inline u32 kvm_async_pf_next_probe(u32 key)
13703
{
13704
return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13705
}
13706
13707
static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13708
{
13709
u32 key = kvm_async_pf_hash_fn(gfn);
13710
13711
while (vcpu->arch.apf.gfns[key] != ~0)
13712
key = kvm_async_pf_next_probe(key);
13713
13714
vcpu->arch.apf.gfns[key] = gfn;
13715
}
13716
13717
static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13718
{
13719
int i;
13720
u32 key = kvm_async_pf_hash_fn(gfn);
13721
13722
for (i = 0; i < ASYNC_PF_PER_VCPU &&
13723
(vcpu->arch.apf.gfns[key] != gfn &&
13724
vcpu->arch.apf.gfns[key] != ~0); i++)
13725
key = kvm_async_pf_next_probe(key);
13726
13727
return key;
13728
}
13729
13730
bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13731
{
13732
return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13733
}
13734
13735
static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13736
{
13737
u32 i, j, k;
13738
13739
i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13740
13741
if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13742
return;
13743
13744
while (true) {
13745
vcpu->arch.apf.gfns[i] = ~0;
13746
do {
13747
j = kvm_async_pf_next_probe(j);
13748
if (vcpu->arch.apf.gfns[j] == ~0)
13749
return;
13750
k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13751
/*
13752
* k lies cyclically in ]i,j]
13753
* | i.k.j |
13754
* |....j i.k.| or |.k..j i...|
13755
*/
13756
} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13757
vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13758
i = j;
13759
}
13760
}
13761
13762
static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13763
{
13764
u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13765
13766
return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13767
sizeof(reason));
13768
}
13769
13770
static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13771
{
13772
unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13773
13774
return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13775
&token, offset, sizeof(token));
13776
}
13777
13778
static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13779
{
13780
unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13781
u32 val;
13782
13783
if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13784
&val, offset, sizeof(val)))
13785
return false;
13786
13787
return !val;
13788
}
13789
13790
static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13791
{
13792
13793
if (!kvm_pv_async_pf_enabled(vcpu))
13794
return false;
13795
13796
if (!vcpu->arch.apf.send_always &&
13797
(vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13798
return false;
13799
13800
if (is_guest_mode(vcpu)) {
13801
/*
13802
* L1 needs to opt into the special #PF vmexits that are
13803
* used to deliver async page faults.
13804
*/
13805
return vcpu->arch.apf.delivery_as_pf_vmexit;
13806
} else {
13807
/*
13808
* Play it safe in case the guest temporarily disables paging.
13809
* The real mode IDT in particular is unlikely to have a #PF
13810
* exception setup.
13811
*/
13812
return is_paging(vcpu);
13813
}
13814
}
13815
13816
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13817
{
13818
if (unlikely(!lapic_in_kernel(vcpu) ||
13819
kvm_event_needs_reinjection(vcpu) ||
13820
kvm_is_exception_pending(vcpu)))
13821
return false;
13822
13823
if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13824
return false;
13825
13826
/*
13827
* If interrupts are off we cannot even use an artificial
13828
* halt state.
13829
*/
13830
return kvm_arch_interrupt_allowed(vcpu);
13831
}
13832
13833
bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13834
struct kvm_async_pf *work)
13835
{
13836
struct x86_exception fault;
13837
13838
trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13839
kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13840
13841
if (kvm_can_deliver_async_pf(vcpu) &&
13842
!apf_put_user_notpresent(vcpu)) {
13843
fault.vector = PF_VECTOR;
13844
fault.error_code_valid = true;
13845
fault.error_code = 0;
13846
fault.nested_page_fault = false;
13847
fault.address = work->arch.token;
13848
fault.async_page_fault = true;
13849
kvm_inject_page_fault(vcpu, &fault);
13850
return true;
13851
} else {
13852
/*
13853
* It is not possible to deliver a paravirtualized asynchronous
13854
* page fault, but putting the guest in an artificial halt state
13855
* can be beneficial nevertheless: if an interrupt arrives, we
13856
* can deliver it timely and perhaps the guest will schedule
13857
* another process. When the instruction that triggered a page
13858
* fault is retried, hopefully the page will be ready in the host.
13859
*/
13860
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13861
return false;
13862
}
13863
}
13864
13865
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13866
struct kvm_async_pf *work)
13867
{
13868
struct kvm_lapic_irq irq = {
13869
.delivery_mode = APIC_DM_FIXED,
13870
.vector = vcpu->arch.apf.vec
13871
};
13872
13873
if (work->wakeup_all)
13874
work->arch.token = ~0; /* broadcast wakeup */
13875
else
13876
kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13877
trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13878
13879
if ((work->wakeup_all || work->notpresent_injected) &&
13880
kvm_pv_async_pf_enabled(vcpu) &&
13881
!apf_put_user_ready(vcpu, work->arch.token)) {
13882
vcpu->arch.apf.pageready_pending = true;
13883
kvm_apic_set_irq(vcpu, &irq, NULL);
13884
}
13885
13886
vcpu->arch.apf.halted = false;
13887
kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13888
}
13889
13890
void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13891
{
13892
kvm_make_request(KVM_REQ_APF_READY, vcpu);
13893
if (!vcpu->arch.apf.pageready_pending)
13894
kvm_vcpu_kick(vcpu);
13895
}
13896
13897
bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13898
{
13899
if (!kvm_pv_async_pf_enabled(vcpu))
13900
return true;
13901
else
13902
return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13903
}
13904
13905
static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13906
{
13907
/*
13908
* Non-coherent DMA assignment and de-assignment may affect whether or
13909
* not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13910
* due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13911
* (or last) non-coherent device is (un)registered to so that new SPTEs
13912
* with the correct "ignore guest PAT" setting are created.
13913
*
13914
* If KVM always honors guest PAT, however, there is nothing to do.
13915
*/
13916
if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT))
13917
kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13918
}
13919
13920
void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13921
{
13922
if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13923
kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13924
}
13925
13926
void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13927
{
13928
if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13929
kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13930
}
13931
13932
bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13933
{
13934
return atomic_read(&kvm->arch.noncoherent_dma_count);
13935
}
13936
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_arch_has_noncoherent_dma);
13937
13938
bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13939
{
13940
return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13941
}
13942
13943
#ifdef CONFIG_KVM_GUEST_MEMFD
13944
/*
13945
* KVM doesn't yet support mmap() on guest_memfd for VMs with private memory
13946
* (the private vs. shared tracking needs to be moved into guest_memfd).
13947
*/
13948
bool kvm_arch_supports_gmem_mmap(struct kvm *kvm)
13949
{
13950
return !kvm_arch_has_private_mem(kvm);
13951
}
13952
13953
#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
13954
int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13955
{
13956
return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13957
}
13958
#endif
13959
13960
#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
13961
void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13962
{
13963
kvm_x86_call(gmem_invalidate)(start, end);
13964
}
13965
#endif
13966
#endif
13967
13968
int kvm_spec_ctrl_test_value(u64 value)
13969
{
13970
/*
13971
* test that setting IA32_SPEC_CTRL to given value
13972
* is allowed by the host processor
13973
*/
13974
13975
u64 saved_value;
13976
unsigned long flags;
13977
int ret = 0;
13978
13979
local_irq_save(flags);
13980
13981
if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13982
ret = 1;
13983
else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value))
13984
ret = 1;
13985
else
13986
wrmsrq(MSR_IA32_SPEC_CTRL, saved_value);
13987
13988
local_irq_restore(flags);
13989
13990
return ret;
13991
}
13992
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spec_ctrl_test_value);
13993
13994
void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13995
{
13996
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13997
struct x86_exception fault;
13998
u64 access = error_code &
13999
(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
14000
14001
if (!(error_code & PFERR_PRESENT_MASK) ||
14002
mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
14003
/*
14004
* If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
14005
* tables probably do not match the TLB. Just proceed
14006
* with the error code that the processor gave.
14007
*/
14008
fault.vector = PF_VECTOR;
14009
fault.error_code_valid = true;
14010
fault.error_code = error_code;
14011
fault.nested_page_fault = false;
14012
fault.address = gva;
14013
fault.async_page_fault = false;
14014
}
14015
vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
14016
}
14017
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fixup_and_inject_pf_error);
14018
14019
/*
14020
* Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
14021
* KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
14022
* indicates whether exit to userspace is needed.
14023
*/
14024
int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
14025
struct x86_exception *e)
14026
{
14027
if (r == X86EMUL_PROPAGATE_FAULT) {
14028
if (KVM_BUG_ON(!e, vcpu->kvm))
14029
return -EIO;
14030
14031
kvm_inject_emulated_page_fault(vcpu, e);
14032
return 1;
14033
}
14034
14035
/*
14036
* In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
14037
* while handling a VMX instruction KVM could've handled the request
14038
* correctly by exiting to userspace and performing I/O but there
14039
* doesn't seem to be a real use-case behind such requests, just return
14040
* KVM_EXIT_INTERNAL_ERROR for now.
14041
*/
14042
kvm_prepare_emulation_failure_exit(vcpu);
14043
14044
return 0;
14045
}
14046
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_memory_failure);
14047
14048
int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
14049
{
14050
bool pcid_enabled;
14051
struct x86_exception e;
14052
struct {
14053
u64 pcid;
14054
u64 gla;
14055
} operand;
14056
int r;
14057
14058
r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
14059
if (r != X86EMUL_CONTINUE)
14060
return kvm_handle_memory_failure(vcpu, r, &e);
14061
14062
if (operand.pcid >> 12 != 0) {
14063
kvm_inject_gp(vcpu, 0);
14064
return 1;
14065
}
14066
14067
pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
14068
14069
switch (type) {
14070
case INVPCID_TYPE_INDIV_ADDR:
14071
/*
14072
* LAM doesn't apply to addresses that are inputs to TLB
14073
* invalidation.
14074
*/
14075
if ((!pcid_enabled && (operand.pcid != 0)) ||
14076
is_noncanonical_invlpg_address(operand.gla, vcpu)) {
14077
kvm_inject_gp(vcpu, 0);
14078
return 1;
14079
}
14080
kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
14081
return kvm_skip_emulated_instruction(vcpu);
14082
14083
case INVPCID_TYPE_SINGLE_CTXT:
14084
if (!pcid_enabled && (operand.pcid != 0)) {
14085
kvm_inject_gp(vcpu, 0);
14086
return 1;
14087
}
14088
14089
kvm_invalidate_pcid(vcpu, operand.pcid);
14090
return kvm_skip_emulated_instruction(vcpu);
14091
14092
case INVPCID_TYPE_ALL_NON_GLOBAL:
14093
/*
14094
* Currently, KVM doesn't mark global entries in the shadow
14095
* page tables, so a non-global flush just degenerates to a
14096
* global flush. If needed, we could optimize this later by
14097
* keeping track of global entries in shadow page tables.
14098
*/
14099
14100
fallthrough;
14101
case INVPCID_TYPE_ALL_INCL_GLOBAL:
14102
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
14103
return kvm_skip_emulated_instruction(vcpu);
14104
14105
default:
14106
kvm_inject_gp(vcpu, 0);
14107
return 1;
14108
}
14109
}
14110
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invpcid);
14111
14112
static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
14113
{
14114
struct kvm_run *run = vcpu->run;
14115
struct kvm_mmio_fragment *frag;
14116
unsigned int len;
14117
14118
BUG_ON(!vcpu->mmio_needed);
14119
14120
/* Complete previous fragment */
14121
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
14122
len = min(8u, frag->len);
14123
if (!vcpu->mmio_is_write)
14124
memcpy(frag->data, run->mmio.data, len);
14125
14126
if (frag->len <= 8) {
14127
/* Switch to the next fragment. */
14128
frag++;
14129
vcpu->mmio_cur_fragment++;
14130
} else {
14131
/* Go forward to the next mmio piece. */
14132
frag->data += len;
14133
frag->gpa += len;
14134
frag->len -= len;
14135
}
14136
14137
if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
14138
vcpu->mmio_needed = 0;
14139
14140
// VMG change, at this point, we're always done
14141
// RIP has already been advanced
14142
return 1;
14143
}
14144
14145
// More MMIO is needed
14146
run->mmio.phys_addr = frag->gpa;
14147
run->mmio.len = min(8u, frag->len);
14148
run->mmio.is_write = vcpu->mmio_is_write;
14149
if (run->mmio.is_write)
14150
memcpy(run->mmio.data, frag->data, min(8u, frag->len));
14151
run->exit_reason = KVM_EXIT_MMIO;
14152
14153
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14154
14155
return 0;
14156
}
14157
14158
int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14159
void *data)
14160
{
14161
int handled;
14162
struct kvm_mmio_fragment *frag;
14163
14164
if (!data)
14165
return -EINVAL;
14166
14167
handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14168
if (handled == bytes)
14169
return 1;
14170
14171
bytes -= handled;
14172
gpa += handled;
14173
data += handled;
14174
14175
/*TODO: Check if need to increment number of frags */
14176
frag = vcpu->mmio_fragments;
14177
vcpu->mmio_nr_fragments = 1;
14178
frag->len = bytes;
14179
frag->gpa = gpa;
14180
frag->data = data;
14181
14182
vcpu->mmio_needed = 1;
14183
vcpu->mmio_cur_fragment = 0;
14184
14185
vcpu->run->mmio.phys_addr = gpa;
14186
vcpu->run->mmio.len = min(8u, frag->len);
14187
vcpu->run->mmio.is_write = 1;
14188
memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
14189
vcpu->run->exit_reason = KVM_EXIT_MMIO;
14190
14191
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14192
14193
return 0;
14194
}
14195
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_write);
14196
14197
int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14198
void *data)
14199
{
14200
int handled;
14201
struct kvm_mmio_fragment *frag;
14202
14203
if (!data)
14204
return -EINVAL;
14205
14206
handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14207
if (handled == bytes)
14208
return 1;
14209
14210
bytes -= handled;
14211
gpa += handled;
14212
data += handled;
14213
14214
/*TODO: Check if need to increment number of frags */
14215
frag = vcpu->mmio_fragments;
14216
vcpu->mmio_nr_fragments = 1;
14217
frag->len = bytes;
14218
frag->gpa = gpa;
14219
frag->data = data;
14220
14221
vcpu->mmio_needed = 1;
14222
vcpu->mmio_cur_fragment = 0;
14223
14224
vcpu->run->mmio.phys_addr = gpa;
14225
vcpu->run->mmio.len = min(8u, frag->len);
14226
vcpu->run->mmio.is_write = 0;
14227
vcpu->run->exit_reason = KVM_EXIT_MMIO;
14228
14229
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14230
14231
return 0;
14232
}
14233
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_read);
14234
14235
static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
14236
{
14237
vcpu->arch.sev_pio_count -= count;
14238
vcpu->arch.sev_pio_data += count * size;
14239
}
14240
14241
static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14242
unsigned int port);
14243
14244
static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
14245
{
14246
int size = vcpu->arch.pio.size;
14247
int port = vcpu->arch.pio.port;
14248
14249
vcpu->arch.pio.count = 0;
14250
if (vcpu->arch.sev_pio_count)
14251
return kvm_sev_es_outs(vcpu, size, port);
14252
return 1;
14253
}
14254
14255
static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14256
unsigned int port)
14257
{
14258
for (;;) {
14259
unsigned int count =
14260
min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14261
int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
14262
14263
/* memcpy done already by emulator_pio_out. */
14264
advance_sev_es_emulated_pio(vcpu, count, size);
14265
if (!ret)
14266
break;
14267
14268
/* Emulation done by the kernel. */
14269
if (!vcpu->arch.sev_pio_count)
14270
return 1;
14271
}
14272
14273
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
14274
return 0;
14275
}
14276
14277
static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14278
unsigned int port);
14279
14280
static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
14281
{
14282
unsigned count = vcpu->arch.pio.count;
14283
int size = vcpu->arch.pio.size;
14284
int port = vcpu->arch.pio.port;
14285
14286
complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14287
advance_sev_es_emulated_pio(vcpu, count, size);
14288
if (vcpu->arch.sev_pio_count)
14289
return kvm_sev_es_ins(vcpu, size, port);
14290
return 1;
14291
}
14292
14293
static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14294
unsigned int port)
14295
{
14296
for (;;) {
14297
unsigned int count =
14298
min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14299
if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14300
break;
14301
14302
/* Emulation done by the kernel. */
14303
advance_sev_es_emulated_pio(vcpu, count, size);
14304
if (!vcpu->arch.sev_pio_count)
14305
return 1;
14306
}
14307
14308
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14309
return 0;
14310
}
14311
14312
int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14313
unsigned int port, void *data, unsigned int count,
14314
int in)
14315
{
14316
vcpu->arch.sev_pio_data = data;
14317
vcpu->arch.sev_pio_count = count;
14318
return in ? kvm_sev_es_ins(vcpu, size, port)
14319
: kvm_sev_es_outs(vcpu, size, port);
14320
}
14321
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_string_io);
14322
14323
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14324
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14325
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio);
14326
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14327
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14328
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14329
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14330
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14331
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14332
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14333
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14334
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14335
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14336
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14337
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14338
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14339
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14340
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14341
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14342
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14343
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14344
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14345
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14346
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14347
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14348
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14349
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14350
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14351
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14352
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14353
14354
static int __init kvm_x86_init(void)
14355
{
14356
kvm_init_xstate_sizes();
14357
14358
kvm_mmu_x86_module_init();
14359
mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14360
return 0;
14361
}
14362
module_init(kvm_x86_init);
14363
14364
static void __exit kvm_x86_exit(void)
14365
{
14366
WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14367
}
14368
module_exit(kvm_x86_exit);
14369
14370