Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/x86.h
29521 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef ARCH_X86_KVM_X86_H
3
#define ARCH_X86_KVM_X86_H
4
5
#include <linux/kvm_host.h>
6
#include <asm/fpu/xstate.h>
7
#include <asm/mce.h>
8
#include <asm/pvclock.h>
9
#include "kvm_cache_regs.h"
10
#include "kvm_emulate.h"
11
#include "cpuid.h"
12
13
#define KVM_MAX_MCE_BANKS 32
14
15
struct kvm_caps {
16
/* control of guest tsc rate supported? */
17
bool has_tsc_control;
18
/* maximum supported tsc_khz for guests */
19
u32 max_guest_tsc_khz;
20
/* number of bits of the fractional part of the TSC scaling ratio */
21
u8 tsc_scaling_ratio_frac_bits;
22
/* maximum allowed value of TSC scaling ratio */
23
u64 max_tsc_scaling_ratio;
24
/* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */
25
u64 default_tsc_scaling_ratio;
26
/* bus lock detection supported? */
27
bool has_bus_lock_exit;
28
/* notify VM exit supported? */
29
bool has_notify_vmexit;
30
/* bit mask of VM types */
31
u32 supported_vm_types;
32
33
u64 supported_mce_cap;
34
u64 supported_xcr0;
35
u64 supported_xss;
36
u64 supported_perf_cap;
37
38
u64 supported_quirks;
39
u64 inapplicable_quirks;
40
};
41
42
struct kvm_host_values {
43
/*
44
* The host's raw MAXPHYADDR, i.e. the number of non-reserved physical
45
* address bits irrespective of features that repurpose legal bits,
46
* e.g. MKTME.
47
*/
48
u8 maxphyaddr;
49
50
u64 efer;
51
u64 xcr0;
52
u64 xss;
53
u64 s_cet;
54
u64 arch_capabilities;
55
};
56
57
void kvm_spurious_fault(void);
58
59
#define SIZE_OF_MEMSLOTS_HASHTABLE \
60
(sizeof(((struct kvm_memslots *)0)->id_hash) * 2 * KVM_MAX_NR_ADDRESS_SPACES)
61
62
/* Sanity check the size of the memslot hash tables. */
63
static_assert(SIZE_OF_MEMSLOTS_HASHTABLE ==
64
(1024 * (1 + IS_ENABLED(CONFIG_X86_64)) * (1 + IS_ENABLED(CONFIG_KVM_SMM))));
65
66
/*
67
* Assert that "struct kvm_{svm,vmx,tdx}" is an order-0 or order-1 allocation.
68
* Spilling over to an order-2 allocation isn't fundamentally problematic, but
69
* isn't expected to happen in the foreseeable future (O(years)). Assert that
70
* the size is an order-0 allocation when ignoring the memslot hash tables, to
71
* help detect and debug unexpected size increases.
72
*/
73
#define KVM_SANITY_CHECK_VM_STRUCT_SIZE(x) \
74
do { \
75
BUILD_BUG_ON(get_order(sizeof(struct x) - SIZE_OF_MEMSLOTS_HASHTABLE) && \
76
!IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN)); \
77
BUILD_BUG_ON(get_order(sizeof(struct x)) > 1 && \
78
!IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN)); \
79
} while (0)
80
81
#define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check) \
82
({ \
83
bool failed = (consistency_check); \
84
if (failed) \
85
trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
86
failed; \
87
})
88
89
/*
90
* The first...last VMX feature MSRs that are emulated by KVM. This may or may
91
* not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an
92
* associated feature that KVM supports for nested virtualization.
93
*/
94
#define KVM_FIRST_EMULATED_VMX_MSR MSR_IA32_VMX_BASIC
95
#define KVM_LAST_EMULATED_VMX_MSR MSR_IA32_VMX_VMFUNC
96
97
#define KVM_DEFAULT_PLE_GAP 128
98
#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
99
#define KVM_DEFAULT_PLE_WINDOW_GROW 2
100
#define KVM_DEFAULT_PLE_WINDOW_SHRINK 0
101
#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX
102
#define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX
103
#define KVM_SVM_DEFAULT_PLE_WINDOW 3000
104
105
/*
106
* KVM's internal, non-ABI indices for synthetic MSRs. The values themselves
107
* are arbitrary and have no meaning, the only requirement is that they don't
108
* conflict with "real" MSRs that KVM supports. Use values at the upper end
109
* of KVM's reserved paravirtual MSR range to minimize churn, i.e. these values
110
* will be usable until KVM exhausts its supply of paravirtual MSR indices.
111
*/
112
113
#define MSR_KVM_INTERNAL_GUEST_SSP 0x4b564dff
114
115
static inline unsigned int __grow_ple_window(unsigned int val,
116
unsigned int base, unsigned int modifier, unsigned int max)
117
{
118
u64 ret = val;
119
120
if (modifier < 1)
121
return base;
122
123
if (modifier < base)
124
ret *= modifier;
125
else
126
ret += modifier;
127
128
return min(ret, (u64)max);
129
}
130
131
static inline unsigned int __shrink_ple_window(unsigned int val,
132
unsigned int base, unsigned int modifier, unsigned int min)
133
{
134
if (modifier < 1)
135
return base;
136
137
if (modifier < base)
138
val /= modifier;
139
else
140
val -= modifier;
141
142
return max(val, min);
143
}
144
145
#define MSR_IA32_CR_PAT_DEFAULT \
146
PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC)
147
148
void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu);
149
int kvm_check_nested_events(struct kvm_vcpu *vcpu);
150
151
/* Forcibly leave the nested mode in cases like a vCPU reset */
152
static inline void kvm_leave_nested(struct kvm_vcpu *vcpu)
153
{
154
kvm_x86_ops.nested_ops->leave_nested(vcpu);
155
}
156
157
/*
158
* If IBRS is advertised to the vCPU, KVM must flush the indirect branch
159
* predictors when transitioning from L2 to L1, as L1 expects hardware (KVM in
160
* this case) to provide separate predictor modes. Bare metal isolates the host
161
* from the guest, but doesn't isolate different guests from one another (in
162
* this case L1 and L2). The exception is if bare metal supports same mode IBRS,
163
* which offers protection within the same mode, and hence protects L1 from L2.
164
*/
165
static inline void kvm_nested_vmexit_handle_ibrs(struct kvm_vcpu *vcpu)
166
{
167
if (cpu_feature_enabled(X86_FEATURE_AMD_IBRS_SAME_MODE))
168
return;
169
170
if (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
171
guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBRS))
172
indirect_branch_prediction_barrier();
173
}
174
175
static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu)
176
{
177
return vcpu->arch.last_vmentry_cpu != -1;
178
}
179
180
static inline void kvm_set_mp_state(struct kvm_vcpu *vcpu, int mp_state)
181
{
182
vcpu->arch.mp_state = mp_state;
183
if (mp_state == KVM_MP_STATE_RUNNABLE)
184
vcpu->arch.pv.pv_unhalted = false;
185
}
186
187
static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu)
188
{
189
return vcpu->arch.exception.pending ||
190
vcpu->arch.exception_vmexit.pending ||
191
kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
192
}
193
194
static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
195
{
196
vcpu->arch.exception.pending = false;
197
vcpu->arch.exception.injected = false;
198
vcpu->arch.exception_vmexit.pending = false;
199
}
200
201
static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
202
bool soft)
203
{
204
vcpu->arch.interrupt.injected = true;
205
vcpu->arch.interrupt.soft = soft;
206
vcpu->arch.interrupt.nr = vector;
207
}
208
209
static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
210
{
211
vcpu->arch.interrupt.injected = false;
212
}
213
214
static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
215
{
216
return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
217
vcpu->arch.nmi_injected;
218
}
219
220
static inline bool kvm_exception_is_soft(unsigned int nr)
221
{
222
return (nr == BP_VECTOR) || (nr == OF_VECTOR);
223
}
224
225
static inline bool is_protmode(struct kvm_vcpu *vcpu)
226
{
227
return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE);
228
}
229
230
static inline bool is_long_mode(struct kvm_vcpu *vcpu)
231
{
232
#ifdef CONFIG_X86_64
233
return !!(vcpu->arch.efer & EFER_LMA);
234
#else
235
return false;
236
#endif
237
}
238
239
static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
240
{
241
int cs_db, cs_l;
242
243
WARN_ON_ONCE(vcpu->arch.guest_state_protected);
244
245
if (!is_long_mode(vcpu))
246
return false;
247
kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
248
return cs_l;
249
}
250
251
static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu)
252
{
253
/*
254
* If running with protected guest state, the CS register is not
255
* accessible. The hypercall register values will have had to been
256
* provided in 64-bit mode, so assume the guest is in 64-bit.
257
*/
258
return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu);
259
}
260
261
static inline bool x86_exception_has_error_code(unsigned int vector)
262
{
263
static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
264
BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
265
BIT(PF_VECTOR) | BIT(AC_VECTOR);
266
267
return (1U << vector) & exception_has_error_code;
268
}
269
270
static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
271
{
272
return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
273
}
274
275
static inline bool is_pae(struct kvm_vcpu *vcpu)
276
{
277
return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE);
278
}
279
280
static inline bool is_pse(struct kvm_vcpu *vcpu)
281
{
282
return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE);
283
}
284
285
static inline bool is_paging(struct kvm_vcpu *vcpu)
286
{
287
return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG));
288
}
289
290
static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
291
{
292
return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
293
}
294
295
static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
296
{
297
return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48;
298
}
299
300
static inline u8 max_host_virt_addr_bits(void)
301
{
302
return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48;
303
}
304
305
/*
306
* x86 MSRs which contain linear addresses, x86 hidden segment bases, and
307
* IDT/GDT bases have static canonicality checks, the size of which depends
308
* only on the CPU's support for 5-level paging, rather than on the state of
309
* CR4.LA57. This applies to both WRMSR and to other instructions that set
310
* their values, e.g. SGDT.
311
*
312
* KVM passes through most of these MSRS and also doesn't intercept the
313
* instructions that set the hidden segment bases.
314
*
315
* Because of this, to be consistent with hardware, even if the guest doesn't
316
* have LA57 enabled in its CPUID, perform canonicality checks based on *host*
317
* support for 5 level paging.
318
*
319
* Finally, instructions which are related to MMU invalidation of a given
320
* linear address, also have a similar static canonical check on address.
321
* This allows for example to invalidate 5-level addresses of a guest from a
322
* host which uses 4-level paging.
323
*/
324
static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu,
325
unsigned int flags)
326
{
327
if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD))
328
return !__is_canonical_address(la, max_host_virt_addr_bits());
329
else
330
return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu));
331
}
332
333
static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu)
334
{
335
return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR);
336
}
337
338
static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu)
339
{
340
return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD);
341
}
342
343
static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu)
344
{
345
return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG);
346
}
347
348
static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
349
gva_t gva, gfn_t gfn, unsigned access)
350
{
351
u64 gen = kvm_memslots(vcpu->kvm)->generation;
352
353
if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
354
return;
355
356
/*
357
* If this is a shadow nested page table, the "GVA" is
358
* actually a nGPA.
359
*/
360
vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
361
vcpu->arch.mmio_access = access;
362
vcpu->arch.mmio_gfn = gfn;
363
vcpu->arch.mmio_gen = gen;
364
}
365
366
static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
367
{
368
return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
369
}
370
371
/*
372
* Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
373
* clear all mmio cache info.
374
*/
375
#define MMIO_GVA_ANY (~(gva_t)0)
376
377
static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
378
{
379
if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
380
return;
381
382
vcpu->arch.mmio_gva = 0;
383
}
384
385
static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
386
{
387
if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
388
vcpu->arch.mmio_gva == (gva & PAGE_MASK))
389
return true;
390
391
return false;
392
}
393
394
static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
395
{
396
if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
397
vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
398
return true;
399
400
return false;
401
}
402
403
static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
404
{
405
unsigned long val = kvm_register_read_raw(vcpu, reg);
406
407
return is_64_bit_mode(vcpu) ? val : (u32)val;
408
}
409
410
static inline void kvm_register_write(struct kvm_vcpu *vcpu,
411
int reg, unsigned long val)
412
{
413
if (!is_64_bit_mode(vcpu))
414
val = (u32)val;
415
return kvm_register_write_raw(vcpu, reg, val);
416
}
417
418
static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
419
{
420
return !(kvm->arch.disabled_quirks & quirk);
421
}
422
423
void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
424
425
u64 get_kvmclock_ns(struct kvm *kvm);
426
uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm);
427
bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp);
428
int kvm_guest_time_update(struct kvm_vcpu *v);
429
430
int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
431
gva_t addr, void *val, unsigned int bytes,
432
struct x86_exception *exception);
433
434
int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
435
gva_t addr, void *val, unsigned int bytes,
436
struct x86_exception *exception);
437
438
int handle_ud(struct kvm_vcpu *vcpu);
439
440
void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
441
struct kvm_queued_exception *ex);
442
443
int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
444
int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
445
void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code);
446
int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
447
void *insn, int insn_len);
448
int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
449
int emulation_type, void *insn, int insn_len);
450
fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu);
451
fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg);
452
fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu);
453
fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu);
454
455
extern struct kvm_caps kvm_caps;
456
extern struct kvm_host_values kvm_host;
457
458
extern bool enable_pmu;
459
460
/*
461
* Get a filtered version of KVM's supported XCR0 that strips out dynamic
462
* features for which the current process doesn't (yet) have permission to use.
463
* This is intended to be used only when enumerating support to userspace,
464
* e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be
465
* used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if
466
* userspace attempts to enable unpermitted features.
467
*/
468
static inline u64 kvm_get_filtered_xcr0(void)
469
{
470
u64 permitted_xcr0 = kvm_caps.supported_xcr0;
471
472
BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
473
474
if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) {
475
permitted_xcr0 &= xstate_get_guest_group_perm();
476
477
/*
478
* Treat XTILE_CFG as unsupported if the current process isn't
479
* allowed to use XTILE_DATA, as attempting to set XTILE_CFG in
480
* XCR0 without setting XTILE_DATA is architecturally illegal.
481
*/
482
if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA))
483
permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG;
484
}
485
return permitted_xcr0;
486
}
487
488
static inline bool kvm_mpx_supported(void)
489
{
490
return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
491
== (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
492
}
493
494
extern unsigned int min_timer_period_us;
495
496
extern bool enable_vmware_backdoor;
497
498
extern int pi_inject_timer;
499
500
extern bool report_ignored_msrs;
501
502
extern bool eager_page_split;
503
504
static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
505
{
506
if (report_ignored_msrs)
507
vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data);
508
}
509
510
static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr)
511
{
512
if (report_ignored_msrs)
513
vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr);
514
}
515
516
static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
517
{
518
return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
519
vcpu->arch.virtual_tsc_shift);
520
}
521
522
/* Same "calling convention" as do_div:
523
* - divide (n << 32) by base
524
* - put result in n
525
* - return remainder
526
*/
527
#define do_shl32_div32(n, base) \
528
({ \
529
u32 __quot, __rem; \
530
asm("divl %2" : "=a" (__quot), "=d" (__rem) \
531
: "rm" (base), "0" (0), "1" ((u32) n)); \
532
n = __quot; \
533
__rem; \
534
})
535
536
static inline void kvm_disable_exits(struct kvm *kvm, u64 mask)
537
{
538
kvm->arch.disabled_exits |= mask;
539
}
540
541
static inline bool kvm_mwait_in_guest(struct kvm *kvm)
542
{
543
return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_MWAIT;
544
}
545
546
static inline bool kvm_hlt_in_guest(struct kvm *kvm)
547
{
548
return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_HLT;
549
}
550
551
static inline bool kvm_pause_in_guest(struct kvm *kvm)
552
{
553
return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_PAUSE;
554
}
555
556
static inline bool kvm_cstate_in_guest(struct kvm *kvm)
557
{
558
return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_CSTATE;
559
}
560
561
static inline bool kvm_aperfmperf_in_guest(struct kvm *kvm)
562
{
563
return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_APERFMPERF;
564
}
565
566
static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm)
567
{
568
return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED;
569
}
570
571
static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu,
572
enum kvm_intr_type intr)
573
{
574
WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr);
575
}
576
577
static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
578
{
579
WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0);
580
}
581
582
static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu)
583
{
584
return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI;
585
}
586
587
static inline bool kvm_pat_valid(u64 data)
588
{
589
if (data & 0xF8F8F8F8F8F8F8F8ull)
590
return false;
591
/* 0, 1, 4, 5, 6, 7 are valid values. */
592
return (data | ((data & 0x0202020202020202ull) << 1)) == data;
593
}
594
595
static inline bool kvm_dr7_valid(u64 data)
596
{
597
/* Bits [63:32] are reserved */
598
return !(data >> 32);
599
}
600
static inline bool kvm_dr6_valid(u64 data)
601
{
602
/* Bits [63:32] are reserved */
603
return !(data >> 32);
604
}
605
606
/*
607
* Trigger machine check on the host. We assume all the MSRs are already set up
608
* by the CPU and that we still run on the same CPU as the MCE occurred on.
609
* We pass a fake environment to the machine check handler because we want
610
* the guest to be always treated like user space, no matter what context
611
* it used internally.
612
*/
613
static inline void kvm_machine_check(void)
614
{
615
#if defined(CONFIG_X86_MCE)
616
struct pt_regs regs = {
617
.cs = 3, /* Fake ring 3 no matter what the guest ran on */
618
.flags = X86_EFLAGS_IF,
619
};
620
621
do_machine_check(&regs);
622
#endif
623
}
624
625
void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
626
void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
627
int kvm_spec_ctrl_test_value(u64 value);
628
int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
629
struct x86_exception *e);
630
int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva);
631
bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type);
632
633
enum kvm_msr_access {
634
MSR_TYPE_R = BIT(0),
635
MSR_TYPE_W = BIT(1),
636
MSR_TYPE_RW = MSR_TYPE_R | MSR_TYPE_W,
637
};
638
639
/*
640
* Internal error codes that are used to indicate that MSR emulation encountered
641
* an error that should result in #GP in the guest, unless userspace handles it.
642
* Note, '1', '0', and negative numbers are off limits, as they are used by KVM
643
* as part of KVM's lightly documented internal KVM_RUN return codes.
644
*
645
* UNSUPPORTED - The MSR isn't supported, either because it is completely
646
* unknown to KVM, or because the MSR should not exist according
647
* to the vCPU model.
648
*
649
* FILTERED - Access to the MSR is denied by a userspace MSR filter.
650
*/
651
#define KVM_MSR_RET_UNSUPPORTED 2
652
#define KVM_MSR_RET_FILTERED 3
653
654
static inline bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
655
{
656
return !(cr4 & vcpu->arch.cr4_guest_rsvd_bits);
657
}
658
659
#define __cr4_reserved_bits(__cpu_has, __c) \
660
({ \
661
u64 __reserved_bits = CR4_RESERVED_BITS; \
662
\
663
if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \
664
__reserved_bits |= X86_CR4_OSXSAVE; \
665
if (!__cpu_has(__c, X86_FEATURE_SMEP)) \
666
__reserved_bits |= X86_CR4_SMEP; \
667
if (!__cpu_has(__c, X86_FEATURE_SMAP)) \
668
__reserved_bits |= X86_CR4_SMAP; \
669
if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \
670
__reserved_bits |= X86_CR4_FSGSBASE; \
671
if (!__cpu_has(__c, X86_FEATURE_PKU)) \
672
__reserved_bits |= X86_CR4_PKE; \
673
if (!__cpu_has(__c, X86_FEATURE_LA57)) \
674
__reserved_bits |= X86_CR4_LA57; \
675
if (!__cpu_has(__c, X86_FEATURE_UMIP)) \
676
__reserved_bits |= X86_CR4_UMIP; \
677
if (!__cpu_has(__c, X86_FEATURE_VMX)) \
678
__reserved_bits |= X86_CR4_VMXE; \
679
if (!__cpu_has(__c, X86_FEATURE_PCID)) \
680
__reserved_bits |= X86_CR4_PCIDE; \
681
if (!__cpu_has(__c, X86_FEATURE_LAM)) \
682
__reserved_bits |= X86_CR4_LAM_SUP; \
683
if (!__cpu_has(__c, X86_FEATURE_SHSTK) && \
684
!__cpu_has(__c, X86_FEATURE_IBT)) \
685
__reserved_bits |= X86_CR4_CET; \
686
__reserved_bits; \
687
})
688
689
int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
690
void *dst);
691
int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
692
void *dst);
693
int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
694
unsigned int port, void *data, unsigned int count,
695
int in);
696
697
static inline bool user_exit_on_hypercall(struct kvm *kvm, unsigned long hc_nr)
698
{
699
return kvm->arch.hypercall_exit_enabled & BIT(hc_nr);
700
}
701
702
int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
703
int (*complete_hypercall)(struct kvm_vcpu *));
704
705
#define __kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall) \
706
({ \
707
int __ret; \
708
__ret = ____kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall); \
709
\
710
if (__ret > 0) \
711
__ret = complete_hypercall(_vcpu); \
712
__ret; \
713
})
714
715
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
716
717
#define CET_US_RESERVED_BITS GENMASK(9, 6)
718
#define CET_US_SHSTK_MASK_BITS GENMASK(1, 0)
719
#define CET_US_IBT_MASK_BITS (GENMASK_ULL(5, 2) | GENMASK_ULL(63, 10))
720
#define CET_US_LEGACY_BITMAP_BASE(data) ((data) >> 12)
721
722
static inline bool kvm_is_valid_u_s_cet(struct kvm_vcpu *vcpu, u64 data)
723
{
724
if (data & CET_US_RESERVED_BITS)
725
return false;
726
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
727
(data & CET_US_SHSTK_MASK_BITS))
728
return false;
729
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) &&
730
(data & CET_US_IBT_MASK_BITS))
731
return false;
732
if (!IS_ALIGNED(CET_US_LEGACY_BITMAP_BASE(data), 4))
733
return false;
734
/* IBT can be suppressed iff the TRACKER isn't WAIT_ENDBR. */
735
if ((data & CET_SUPPRESS) && (data & CET_WAIT_ENDBR))
736
return false;
737
738
return true;
739
}
740
#endif
741
742