Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/bus/mhi/ep/main.c
29539 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* MHI Endpoint bus stack
4
*
5
* Copyright (C) 2022 Linaro Ltd.
6
* Author: Manivannan Sadhasivam <[email protected]>
7
*/
8
9
#include <linux/bitfield.h>
10
#include <linux/delay.h>
11
#include <linux/dma-direction.h>
12
#include <linux/interrupt.h>
13
#include <linux/io.h>
14
#include <linux/irq.h>
15
#include <linux/mhi_ep.h>
16
#include <linux/mod_devicetable.h>
17
#include <linux/module.h>
18
#include "internal.h"
19
20
#define M0_WAIT_DELAY_MS 100
21
#define M0_WAIT_COUNT 100
22
23
static DEFINE_IDA(mhi_ep_cntrl_ida);
24
25
static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26
static int mhi_ep_destroy_device(struct device *dev, void *data);
27
28
static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29
struct mhi_ring_element *el, bool bei)
30
{
31
struct device *dev = &mhi_cntrl->mhi_dev->dev;
32
union mhi_ep_ring_ctx *ctx;
33
struct mhi_ep_ring *ring;
34
int ret;
35
36
mutex_lock(&mhi_cntrl->event_lock);
37
ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38
ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39
if (!ring->started) {
40
ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41
if (ret) {
42
dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43
goto err_unlock;
44
}
45
}
46
47
/* Add element to the event ring */
48
ret = mhi_ep_ring_add_element(ring, el);
49
if (ret) {
50
dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51
goto err_unlock;
52
}
53
54
mutex_unlock(&mhi_cntrl->event_lock);
55
56
/*
57
* As per the MHI specification, section 4.3, Interrupt moderation:
58
*
59
* 1. If BEI flag is not set, cancel any pending intmodt work if started
60
* for the event ring and raise IRQ immediately.
61
*
62
* 2. If both BEI and intmodt are set, and if no IRQ is pending for the
63
* same event ring, start the IRQ delayed work as per the value of
64
* intmodt. If previous IRQ is pending, then do nothing as the pending
65
* IRQ is enough for the host to process the current event ring element.
66
*
67
* 3. If BEI is set and intmodt is not set, no need to raise IRQ.
68
*/
69
if (!bei) {
70
if (READ_ONCE(ring->irq_pending))
71
cancel_delayed_work(&ring->intmodt_work);
72
73
mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
74
} else if (ring->intmodt && !READ_ONCE(ring->irq_pending)) {
75
WRITE_ONCE(ring->irq_pending, true);
76
schedule_delayed_work(&ring->intmodt_work, msecs_to_jiffies(ring->intmodt));
77
}
78
79
return 0;
80
81
err_unlock:
82
mutex_unlock(&mhi_cntrl->event_lock);
83
84
return ret;
85
}
86
87
static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
88
struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
89
{
90
struct mhi_ring_element *event;
91
int ret;
92
93
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
94
if (!event)
95
return -ENOMEM;
96
97
event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
98
event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
99
event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
100
101
ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
102
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
103
104
return ret;
105
}
106
107
int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
108
{
109
struct mhi_ring_element *event;
110
int ret;
111
112
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
113
if (!event)
114
return -ENOMEM;
115
116
event->dword[0] = MHI_SC_EV_DWORD0(state);
117
event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
118
119
ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
120
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
121
122
return ret;
123
}
124
125
int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
126
{
127
struct mhi_ring_element *event;
128
int ret;
129
130
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
131
if (!event)
132
return -ENOMEM;
133
134
event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
135
event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
136
137
ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
138
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
139
140
return ret;
141
}
142
143
static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
144
{
145
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
146
struct mhi_ring_element *event;
147
int ret;
148
149
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
150
if (!event)
151
return -ENOMEM;
152
153
event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
154
event->dword[0] = MHI_CC_EV_DWORD0(code);
155
event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
156
157
ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
158
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
159
160
return ret;
161
}
162
163
static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
164
{
165
struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
166
struct device *dev = &mhi_cntrl->mhi_dev->dev;
167
struct mhi_result result = {};
168
struct mhi_ep_chan *mhi_chan;
169
struct mhi_ep_ring *ch_ring;
170
u32 tmp, ch_id;
171
int ret;
172
173
ch_id = MHI_TRE_GET_CMD_CHID(el);
174
175
/* Check if the channel is supported by the controller */
176
if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
177
dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
178
return -ENODEV;
179
}
180
181
mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
182
ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
183
184
switch (MHI_TRE_GET_CMD_TYPE(el)) {
185
case MHI_PKT_TYPE_START_CHAN_CMD:
186
dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
187
188
mutex_lock(&mhi_chan->lock);
189
/* Initialize and configure the corresponding channel ring */
190
if (!ch_ring->started) {
191
ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
192
(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
193
if (ret) {
194
dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
195
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
196
MHI_EV_CC_UNDEFINED_ERR);
197
if (ret)
198
dev_err(dev, "Error sending completion event: %d\n", ret);
199
200
goto err_unlock;
201
}
202
203
mhi_chan->rd_offset = ch_ring->rd_offset;
204
}
205
206
/* Set channel state to RUNNING */
207
mhi_chan->state = MHI_CH_STATE_RUNNING;
208
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
209
tmp &= ~CHAN_CTX_CHSTATE_MASK;
210
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
211
mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
212
213
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
214
if (ret) {
215
dev_err(dev, "Error sending command completion event (%u)\n",
216
MHI_EV_CC_SUCCESS);
217
goto err_unlock;
218
}
219
220
mutex_unlock(&mhi_chan->lock);
221
222
/*
223
* Create MHI device only during UL channel start. Since the MHI
224
* channels operate in a pair, we'll associate both UL and DL
225
* channels to the same device.
226
*
227
* We also need to check for mhi_dev != NULL because, the host
228
* will issue START_CHAN command during resume and we don't
229
* destroy the device during suspend.
230
*/
231
if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
232
ret = mhi_ep_create_device(mhi_cntrl, ch_id);
233
if (ret) {
234
dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
235
mhi_ep_handle_syserr(mhi_cntrl);
236
return ret;
237
}
238
}
239
240
/* Finally, enable DB for the channel */
241
mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
242
243
break;
244
case MHI_PKT_TYPE_STOP_CHAN_CMD:
245
dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
246
if (!ch_ring->started) {
247
dev_err(dev, "Channel (%u) not opened\n", ch_id);
248
return -ENODEV;
249
}
250
251
mutex_lock(&mhi_chan->lock);
252
/* Disable DB for the channel */
253
mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
254
255
/* Send channel disconnect status to client drivers */
256
if (mhi_chan->xfer_cb) {
257
result.transaction_status = -ENOTCONN;
258
result.bytes_xferd = 0;
259
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
260
}
261
262
/* Set channel state to STOP */
263
mhi_chan->state = MHI_CH_STATE_STOP;
264
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
265
tmp &= ~CHAN_CTX_CHSTATE_MASK;
266
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
267
mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
268
269
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
270
if (ret) {
271
dev_err(dev, "Error sending command completion event (%u)\n",
272
MHI_EV_CC_SUCCESS);
273
goto err_unlock;
274
}
275
276
mutex_unlock(&mhi_chan->lock);
277
break;
278
case MHI_PKT_TYPE_RESET_CHAN_CMD:
279
dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
280
if (!ch_ring->started) {
281
dev_err(dev, "Channel (%u) not opened\n", ch_id);
282
return -ENODEV;
283
}
284
285
mutex_lock(&mhi_chan->lock);
286
/* Stop and reset the transfer ring */
287
mhi_ep_ring_reset(mhi_cntrl, ch_ring);
288
289
/* Send channel disconnect status to client driver */
290
if (mhi_chan->xfer_cb) {
291
result.transaction_status = -ENOTCONN;
292
result.bytes_xferd = 0;
293
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
294
}
295
296
/* Set channel state to DISABLED */
297
mhi_chan->state = MHI_CH_STATE_DISABLED;
298
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
299
tmp &= ~CHAN_CTX_CHSTATE_MASK;
300
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
301
mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
302
303
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
304
if (ret) {
305
dev_err(dev, "Error sending command completion event (%u)\n",
306
MHI_EV_CC_SUCCESS);
307
goto err_unlock;
308
}
309
310
mutex_unlock(&mhi_chan->lock);
311
break;
312
default:
313
dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
314
MHI_TRE_GET_CMD_TYPE(el), ch_id);
315
return -EINVAL;
316
}
317
318
return 0;
319
320
err_unlock:
321
mutex_unlock(&mhi_chan->lock);
322
323
return ret;
324
}
325
326
bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
327
{
328
struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
329
mhi_dev->ul_chan;
330
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
331
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
332
333
return !!(mhi_chan->rd_offset == ring->wr_offset);
334
}
335
EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
336
337
static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info)
338
{
339
struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
340
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
341
struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan;
342
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
343
struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
344
struct mhi_result result = {};
345
int ret;
346
347
if (mhi_chan->xfer_cb) {
348
result.buf_addr = buf_info->cb_buf;
349
result.dir = mhi_chan->dir;
350
result.bytes_xferd = buf_info->size;
351
352
mhi_chan->xfer_cb(mhi_dev, &result);
353
}
354
355
/*
356
* The host will split the data packet into multiple TREs if it can't fit
357
* the packet in a single TRE. In that case, CHAIN flag will be set by the
358
* host for all TREs except the last one.
359
*/
360
if (buf_info->code != MHI_EV_CC_OVERFLOW) {
361
if (MHI_TRE_DATA_GET_CHAIN(el)) {
362
/*
363
* IEOB (Interrupt on End of Block) flag will be set by the host if
364
* it expects the completion event for all TREs of a TD.
365
*/
366
if (MHI_TRE_DATA_GET_IEOB(el)) {
367
ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
368
MHI_TRE_DATA_GET_LEN(el),
369
MHI_EV_CC_EOB);
370
if (ret < 0) {
371
dev_err(&mhi_chan->mhi_dev->dev,
372
"Error sending transfer compl. event\n");
373
goto err_free_tre_buf;
374
}
375
}
376
} else {
377
/*
378
* IEOT (Interrupt on End of Transfer) flag will be set by the host
379
* for the last TRE of the TD and expects the completion event for
380
* the same.
381
*/
382
if (MHI_TRE_DATA_GET_IEOT(el)) {
383
ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
384
MHI_TRE_DATA_GET_LEN(el),
385
MHI_EV_CC_EOT);
386
if (ret < 0) {
387
dev_err(&mhi_chan->mhi_dev->dev,
388
"Error sending transfer compl. event\n");
389
goto err_free_tre_buf;
390
}
391
}
392
}
393
}
394
395
mhi_ep_ring_inc_index(ring);
396
397
err_free_tre_buf:
398
kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf);
399
}
400
401
static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
402
struct mhi_ep_ring *ring)
403
{
404
struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
405
struct device *dev = &mhi_cntrl->mhi_dev->dev;
406
size_t tr_len, read_offset;
407
struct mhi_ep_buf_info buf_info = {};
408
u32 len = MHI_EP_DEFAULT_MTU;
409
struct mhi_ring_element *el;
410
void *buf_addr;
411
int ret;
412
413
do {
414
/* Don't process the transfer ring if the channel is not in RUNNING state */
415
if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
416
dev_err(dev, "Channel not available\n");
417
return -ENODEV;
418
}
419
420
el = &ring->ring_cache[mhi_chan->rd_offset];
421
422
/* Check if there is data pending to be read from previous read operation */
423
if (mhi_chan->tre_bytes_left) {
424
dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
425
tr_len = min(len, mhi_chan->tre_bytes_left);
426
} else {
427
mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
428
mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
429
mhi_chan->tre_bytes_left = mhi_chan->tre_size;
430
431
tr_len = min(len, mhi_chan->tre_size);
432
}
433
434
read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
435
436
buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL);
437
if (!buf_addr)
438
return -ENOMEM;
439
440
buf_info.host_addr = mhi_chan->tre_loc + read_offset;
441
buf_info.dev_addr = buf_addr;
442
buf_info.size = tr_len;
443
buf_info.cb = mhi_ep_read_completion;
444
buf_info.cb_buf = buf_addr;
445
buf_info.mhi_dev = mhi_chan->mhi_dev;
446
447
if (mhi_chan->tre_bytes_left - tr_len)
448
buf_info.code = MHI_EV_CC_OVERFLOW;
449
450
dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
451
ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info);
452
if (ret < 0) {
453
dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
454
goto err_free_buf_addr;
455
}
456
457
mhi_chan->tre_bytes_left -= tr_len;
458
459
if (!mhi_chan->tre_bytes_left)
460
mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
461
/* Read until the some buffer is left or the ring becomes not empty */
462
} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
463
464
return 0;
465
466
err_free_buf_addr:
467
kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr);
468
469
return ret;
470
}
471
472
static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring)
473
{
474
struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
475
struct mhi_result result = {};
476
struct mhi_ep_chan *mhi_chan;
477
int ret;
478
479
mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
480
481
/*
482
* Bail out if transfer callback is not registered for the channel.
483
* This is most likely due to the client driver not loaded at this point.
484
*/
485
if (!mhi_chan->xfer_cb) {
486
dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
487
return -ENODEV;
488
}
489
490
if (ring->ch_id % 2) {
491
/* DL channel */
492
result.dir = mhi_chan->dir;
493
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
494
} else {
495
/* UL channel */
496
ret = mhi_ep_read_channel(mhi_cntrl, ring);
497
if (ret < 0) {
498
dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
499
return ret;
500
}
501
}
502
503
return 0;
504
}
505
506
static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info)
507
{
508
struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
509
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
510
struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
511
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
512
struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
513
struct device *dev = &mhi_dev->dev;
514
struct mhi_result result = {};
515
int ret;
516
517
if (mhi_chan->xfer_cb) {
518
result.buf_addr = buf_info->cb_buf;
519
result.dir = mhi_chan->dir;
520
result.bytes_xferd = buf_info->size;
521
522
mhi_chan->xfer_cb(mhi_dev, &result);
523
}
524
525
ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size,
526
buf_info->code);
527
if (ret) {
528
dev_err(dev, "Error sending transfer completion event\n");
529
return;
530
}
531
532
mhi_ep_ring_inc_index(ring);
533
}
534
535
/* TODO: Handle partially formed TDs */
536
int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
537
{
538
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
539
struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
540
struct device *dev = &mhi_chan->mhi_dev->dev;
541
struct mhi_ep_buf_info buf_info = {};
542
struct mhi_ring_element *el;
543
u32 buf_left, read_offset;
544
struct mhi_ep_ring *ring;
545
size_t tr_len;
546
u32 tre_len;
547
int ret;
548
549
buf_left = skb->len;
550
ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
551
552
mutex_lock(&mhi_chan->lock);
553
554
do {
555
/* Don't process the transfer ring if the channel is not in RUNNING state */
556
if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
557
dev_err(dev, "Channel not available\n");
558
ret = -ENODEV;
559
goto err_exit;
560
}
561
562
if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
563
dev_err(dev, "TRE not available!\n");
564
ret = -ENOSPC;
565
goto err_exit;
566
}
567
568
el = &ring->ring_cache[mhi_chan->rd_offset];
569
tre_len = MHI_TRE_DATA_GET_LEN(el);
570
571
tr_len = min(buf_left, tre_len);
572
read_offset = skb->len - buf_left;
573
574
buf_info.dev_addr = skb->data + read_offset;
575
buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
576
buf_info.size = tr_len;
577
buf_info.cb = mhi_ep_skb_completion;
578
buf_info.cb_buf = skb;
579
buf_info.mhi_dev = mhi_dev;
580
581
/*
582
* For all TREs queued by the host for DL channel, only the EOT flag will be set.
583
* If the packet doesn't fit into a single TRE, send the OVERFLOW event to
584
* the host so that the host can adjust the packet boundary to next TREs. Else send
585
* the EOT event to the host indicating the packet boundary.
586
*/
587
if (buf_left - tr_len)
588
buf_info.code = MHI_EV_CC_OVERFLOW;
589
else
590
buf_info.code = MHI_EV_CC_EOT;
591
592
dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
593
ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info);
594
if (ret < 0) {
595
dev_err(dev, "Error writing to the channel\n");
596
goto err_exit;
597
}
598
599
buf_left -= tr_len;
600
601
/*
602
* Update the read offset cached in mhi_chan. Actual read offset
603
* will be updated by the completion handler.
604
*/
605
mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
606
} while (buf_left);
607
608
mutex_unlock(&mhi_chan->lock);
609
610
return 0;
611
612
err_exit:
613
mutex_unlock(&mhi_chan->lock);
614
615
return ret;
616
}
617
EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
618
619
static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
620
{
621
size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
622
struct device *dev = &mhi_cntrl->mhi_dev->dev;
623
int ret;
624
625
/* Update the number of event rings (NER) programmed by the host */
626
mhi_ep_mmio_update_ner(mhi_cntrl);
627
628
dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
629
mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
630
631
ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
632
ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
633
cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
634
635
/* Get the channel context base pointer from host */
636
mhi_ep_mmio_get_chc_base(mhi_cntrl);
637
638
/* Allocate and map memory for caching host channel context */
639
ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
640
&mhi_cntrl->ch_ctx_cache_phys,
641
(void __iomem **) &mhi_cntrl->ch_ctx_cache,
642
ch_ctx_host_size);
643
if (ret) {
644
dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
645
return ret;
646
}
647
648
/* Get the event context base pointer from host */
649
mhi_ep_mmio_get_erc_base(mhi_cntrl);
650
651
/* Allocate and map memory for caching host event context */
652
ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
653
&mhi_cntrl->ev_ctx_cache_phys,
654
(void __iomem **) &mhi_cntrl->ev_ctx_cache,
655
ev_ctx_host_size);
656
if (ret) {
657
dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
658
goto err_ch_ctx;
659
}
660
661
/* Get the command context base pointer from host */
662
mhi_ep_mmio_get_crc_base(mhi_cntrl);
663
664
/* Allocate and map memory for caching host command context */
665
ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
666
&mhi_cntrl->cmd_ctx_cache_phys,
667
(void __iomem **) &mhi_cntrl->cmd_ctx_cache,
668
cmd_ctx_host_size);
669
if (ret) {
670
dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
671
goto err_ev_ctx;
672
}
673
674
/* Initialize command ring */
675
ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
676
(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
677
if (ret) {
678
dev_err(dev, "Failed to start the command ring\n");
679
goto err_cmd_ctx;
680
}
681
682
return ret;
683
684
err_cmd_ctx:
685
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
686
(void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
687
688
err_ev_ctx:
689
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
690
(void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
691
692
err_ch_ctx:
693
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
694
(void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
695
696
return ret;
697
}
698
699
static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
700
{
701
size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
702
703
ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
704
ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
705
cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
706
707
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
708
(void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
709
710
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
711
(void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
712
713
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
714
(void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
715
}
716
717
static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
718
{
719
/*
720
* Doorbell interrupts are enabled when the corresponding channel gets started.
721
* Enabling all interrupts here triggers spurious irqs as some of the interrupts
722
* associated with hw channels always get triggered.
723
*/
724
mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
725
mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
726
}
727
728
static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
729
{
730
struct device *dev = &mhi_cntrl->mhi_dev->dev;
731
enum mhi_state state;
732
bool mhi_reset;
733
u32 count = 0;
734
int ret;
735
736
/* Wait for Host to set the M0 state */
737
do {
738
msleep(M0_WAIT_DELAY_MS);
739
mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
740
if (mhi_reset) {
741
/* Clear the MHI reset if host is in reset state */
742
mhi_ep_mmio_clear_reset(mhi_cntrl);
743
dev_info(dev, "Detected Host reset while waiting for M0\n");
744
}
745
count++;
746
} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
747
748
if (state != MHI_STATE_M0) {
749
dev_err(dev, "Host failed to enter M0\n");
750
return -ETIMEDOUT;
751
}
752
753
ret = mhi_ep_cache_host_cfg(mhi_cntrl);
754
if (ret) {
755
dev_err(dev, "Failed to cache host config\n");
756
return ret;
757
}
758
759
mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
760
761
/* Enable all interrupts now */
762
mhi_ep_enable_int(mhi_cntrl);
763
764
return 0;
765
}
766
767
static void mhi_ep_cmd_ring_worker(struct work_struct *work)
768
{
769
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
770
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
771
struct device *dev = &mhi_cntrl->mhi_dev->dev;
772
struct mhi_ring_element *el;
773
int ret;
774
775
/* Update the write offset for the ring */
776
ret = mhi_ep_update_wr_offset(ring);
777
if (ret) {
778
dev_err(dev, "Error updating write offset for ring\n");
779
return;
780
}
781
782
/* Sanity check to make sure there are elements in the ring */
783
if (ring->rd_offset == ring->wr_offset)
784
return;
785
786
/*
787
* Process command ring element till write offset. In case of an error, just try to
788
* process next element.
789
*/
790
while (ring->rd_offset != ring->wr_offset) {
791
el = &ring->ring_cache[ring->rd_offset];
792
793
ret = mhi_ep_process_cmd_ring(ring, el);
794
if (ret && ret != -ENODEV)
795
dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
796
797
mhi_ep_ring_inc_index(ring);
798
}
799
}
800
801
static void mhi_ep_ch_ring_worker(struct work_struct *work)
802
{
803
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
804
struct device *dev = &mhi_cntrl->mhi_dev->dev;
805
struct mhi_ep_ring_item *itr, *tmp;
806
struct mhi_ep_ring *ring;
807
struct mhi_ep_chan *chan;
808
unsigned long flags;
809
LIST_HEAD(head);
810
int ret;
811
812
spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
813
list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
814
spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
815
816
/* Process each queued channel ring. In case of an error, just process next element. */
817
list_for_each_entry_safe(itr, tmp, &head, node) {
818
list_del(&itr->node);
819
ring = itr->ring;
820
821
chan = &mhi_cntrl->mhi_chan[ring->ch_id];
822
mutex_lock(&chan->lock);
823
824
/*
825
* The ring could've stopped while we waited to grab the (chan->lock), so do
826
* a sanity check before going further.
827
*/
828
if (!ring->started) {
829
mutex_unlock(&chan->lock);
830
kfree(itr);
831
continue;
832
}
833
834
/* Update the write offset for the ring */
835
ret = mhi_ep_update_wr_offset(ring);
836
if (ret) {
837
dev_err(dev, "Error updating write offset for ring\n");
838
mutex_unlock(&chan->lock);
839
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
840
continue;
841
}
842
843
/* Sanity check to make sure there are elements in the ring */
844
if (chan->rd_offset == ring->wr_offset) {
845
mutex_unlock(&chan->lock);
846
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
847
continue;
848
}
849
850
dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
851
ret = mhi_ep_process_ch_ring(ring);
852
if (ret) {
853
dev_err(dev, "Error processing ring for channel (%u): %d\n",
854
ring->ch_id, ret);
855
mutex_unlock(&chan->lock);
856
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
857
continue;
858
}
859
860
mutex_unlock(&chan->lock);
861
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
862
}
863
}
864
865
static void mhi_ep_state_worker(struct work_struct *work)
866
{
867
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
868
struct device *dev = &mhi_cntrl->mhi_dev->dev;
869
struct mhi_ep_state_transition *itr, *tmp;
870
unsigned long flags;
871
LIST_HEAD(head);
872
int ret;
873
874
spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
875
list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
876
spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
877
878
list_for_each_entry_safe(itr, tmp, &head, node) {
879
list_del(&itr->node);
880
dev_dbg(dev, "Handling MHI state transition to %s\n",
881
mhi_state_str(itr->state));
882
883
switch (itr->state) {
884
case MHI_STATE_M0:
885
ret = mhi_ep_set_m0_state(mhi_cntrl);
886
if (ret)
887
dev_err(dev, "Failed to transition to M0 state\n");
888
break;
889
case MHI_STATE_M3:
890
ret = mhi_ep_set_m3_state(mhi_cntrl);
891
if (ret)
892
dev_err(dev, "Failed to transition to M3 state\n");
893
break;
894
default:
895
dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
896
break;
897
}
898
kfree(itr);
899
}
900
}
901
902
static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
903
u32 ch_idx)
904
{
905
struct mhi_ep_ring_item *item;
906
struct mhi_ep_ring *ring;
907
bool work = !!ch_int;
908
LIST_HEAD(head);
909
u32 i;
910
911
/* First add the ring items to a local list */
912
for_each_set_bit(i, &ch_int, 32) {
913
/* Channel index varies for each register: 0, 32, 64, 96 */
914
u32 ch_id = ch_idx + i;
915
916
ring = &mhi_cntrl->mhi_chan[ch_id].ring;
917
item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
918
if (!item)
919
return;
920
921
item->ring = ring;
922
list_add_tail(&item->node, &head);
923
}
924
925
/* Now, splice the local list into ch_db_list and queue the work item */
926
if (work) {
927
spin_lock(&mhi_cntrl->list_lock);
928
list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
929
spin_unlock(&mhi_cntrl->list_lock);
930
931
queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
932
}
933
}
934
935
/*
936
* Channel interrupt statuses are contained in 4 registers each of 32bit length.
937
* For checking all interrupts, we need to loop through each registers and then
938
* check for bits set.
939
*/
940
static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
941
{
942
u32 ch_int, ch_idx, i;
943
944
/* Bail out if there is no channel doorbell interrupt */
945
if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
946
return;
947
948
for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
949
ch_idx = i * MHI_MASK_CH_LEN;
950
951
/* Only process channel interrupt if the mask is enabled */
952
ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
953
if (ch_int) {
954
mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
955
mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
956
mhi_cntrl->chdb[i].status);
957
}
958
}
959
}
960
961
static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
962
enum mhi_state state)
963
{
964
struct mhi_ep_state_transition *item;
965
966
item = kzalloc(sizeof(*item), GFP_ATOMIC);
967
if (!item)
968
return;
969
970
item->state = state;
971
spin_lock(&mhi_cntrl->list_lock);
972
list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
973
spin_unlock(&mhi_cntrl->list_lock);
974
975
queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
976
}
977
978
/*
979
* Interrupt handler that services interrupts raised by the host writing to
980
* MHICTRL and Command ring doorbell (CRDB) registers for state change and
981
* channel interrupts.
982
*/
983
static irqreturn_t mhi_ep_irq(int irq, void *data)
984
{
985
struct mhi_ep_cntrl *mhi_cntrl = data;
986
struct device *dev = &mhi_cntrl->mhi_dev->dev;
987
enum mhi_state state;
988
u32 int_value;
989
bool mhi_reset;
990
991
/* Acknowledge the ctrl interrupt */
992
int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
993
mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
994
995
/* Check for ctrl interrupt */
996
if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
997
dev_dbg(dev, "Processing ctrl interrupt\n");
998
mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
999
if (mhi_reset) {
1000
dev_info(dev, "Host triggered MHI reset!\n");
1001
disable_irq_nosync(mhi_cntrl->irq);
1002
schedule_work(&mhi_cntrl->reset_work);
1003
return IRQ_HANDLED;
1004
}
1005
1006
mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
1007
}
1008
1009
/* Check for command doorbell interrupt */
1010
if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
1011
dev_dbg(dev, "Processing command doorbell interrupt\n");
1012
queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
1013
}
1014
1015
/* Check for channel interrupts */
1016
mhi_ep_check_channel_interrupt(mhi_cntrl);
1017
1018
return IRQ_HANDLED;
1019
}
1020
1021
static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
1022
{
1023
struct mhi_ep_ring *ch_ring, *ev_ring;
1024
struct mhi_result result = {};
1025
struct mhi_ep_chan *mhi_chan;
1026
int i;
1027
1028
/* Stop all the channels */
1029
for (i = 0; i < mhi_cntrl->max_chan; i++) {
1030
mhi_chan = &mhi_cntrl->mhi_chan[i];
1031
if (!mhi_chan->ring.started)
1032
continue;
1033
1034
mutex_lock(&mhi_chan->lock);
1035
/* Send channel disconnect status to client drivers */
1036
if (mhi_chan->xfer_cb) {
1037
result.transaction_status = -ENOTCONN;
1038
result.bytes_xferd = 0;
1039
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1040
}
1041
1042
mhi_chan->state = MHI_CH_STATE_DISABLED;
1043
mutex_unlock(&mhi_chan->lock);
1044
}
1045
1046
flush_workqueue(mhi_cntrl->wq);
1047
1048
/* Destroy devices associated with all channels */
1049
device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
1050
1051
/* Stop and reset the transfer rings */
1052
for (i = 0; i < mhi_cntrl->max_chan; i++) {
1053
mhi_chan = &mhi_cntrl->mhi_chan[i];
1054
if (!mhi_chan->ring.started)
1055
continue;
1056
1057
ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1058
mutex_lock(&mhi_chan->lock);
1059
mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1060
mutex_unlock(&mhi_chan->lock);
1061
}
1062
1063
/* Stop and reset the event rings */
1064
for (i = 0; i < mhi_cntrl->event_rings; i++) {
1065
ev_ring = &mhi_cntrl->mhi_event[i].ring;
1066
if (!ev_ring->started)
1067
continue;
1068
1069
mutex_lock(&mhi_cntrl->event_lock);
1070
mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1071
mutex_unlock(&mhi_cntrl->event_lock);
1072
}
1073
1074
/* Stop and reset the command ring */
1075
mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1076
1077
mhi_ep_free_host_cfg(mhi_cntrl);
1078
mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1079
1080
mhi_cntrl->enabled = false;
1081
}
1082
1083
static void mhi_ep_reset_worker(struct work_struct *work)
1084
{
1085
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1086
enum mhi_state cur_state;
1087
1088
mhi_ep_power_down(mhi_cntrl);
1089
1090
mutex_lock(&mhi_cntrl->state_lock);
1091
1092
/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1093
mhi_ep_mmio_reset(mhi_cntrl);
1094
cur_state = mhi_cntrl->mhi_state;
1095
1096
/*
1097
* Only proceed further if the reset is due to SYS_ERR. The host will
1098
* issue reset during shutdown also and we don't need to do re-init in
1099
* that case.
1100
*/
1101
if (cur_state == MHI_STATE_SYS_ERR)
1102
mhi_ep_power_up(mhi_cntrl);
1103
1104
mutex_unlock(&mhi_cntrl->state_lock);
1105
}
1106
1107
/*
1108
* We don't need to do anything special other than setting the MHI SYS_ERR
1109
* state. The host will reset all contexts and issue MHI RESET so that we
1110
* could also recover from error state.
1111
*/
1112
void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1113
{
1114
struct device *dev = &mhi_cntrl->mhi_dev->dev;
1115
int ret;
1116
1117
ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1118
if (ret)
1119
return;
1120
1121
/* Signal host that the device went to SYS_ERR state */
1122
ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1123
if (ret)
1124
dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1125
}
1126
1127
int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1128
{
1129
struct device *dev = &mhi_cntrl->mhi_dev->dev;
1130
int ret, i;
1131
1132
/*
1133
* Mask all interrupts until the state machine is ready. Interrupts will
1134
* be enabled later with mhi_ep_enable().
1135
*/
1136
mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1137
mhi_ep_mmio_init(mhi_cntrl);
1138
1139
mhi_cntrl->mhi_event = kcalloc(mhi_cntrl->event_rings,
1140
sizeof(*mhi_cntrl->mhi_event),
1141
GFP_KERNEL);
1142
if (!mhi_cntrl->mhi_event)
1143
return -ENOMEM;
1144
1145
/* Initialize command, channel and event rings */
1146
mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1147
for (i = 0; i < mhi_cntrl->max_chan; i++)
1148
mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1149
for (i = 0; i < mhi_cntrl->event_rings; i++)
1150
mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1151
1152
mhi_cntrl->mhi_state = MHI_STATE_RESET;
1153
1154
/* Set AMSS EE before signaling ready state */
1155
mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1156
1157
/* All set, notify the host that we are ready */
1158
ret = mhi_ep_set_ready_state(mhi_cntrl);
1159
if (ret)
1160
goto err_free_event;
1161
1162
dev_dbg(dev, "READY state notification sent to the host\n");
1163
1164
ret = mhi_ep_enable(mhi_cntrl);
1165
if (ret) {
1166
dev_err(dev, "Failed to enable MHI endpoint\n");
1167
goto err_free_event;
1168
}
1169
1170
enable_irq(mhi_cntrl->irq);
1171
mhi_cntrl->enabled = true;
1172
1173
return 0;
1174
1175
err_free_event:
1176
kfree(mhi_cntrl->mhi_event);
1177
1178
return ret;
1179
}
1180
EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1181
1182
void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1183
{
1184
if (mhi_cntrl->enabled) {
1185
mhi_ep_abort_transfer(mhi_cntrl);
1186
kfree(mhi_cntrl->mhi_event);
1187
disable_irq(mhi_cntrl->irq);
1188
}
1189
}
1190
EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1191
1192
void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1193
{
1194
struct mhi_ep_chan *mhi_chan;
1195
u32 tmp;
1196
int i;
1197
1198
for (i = 0; i < mhi_cntrl->max_chan; i++) {
1199
mhi_chan = &mhi_cntrl->mhi_chan[i];
1200
1201
if (!mhi_chan->mhi_dev)
1202
continue;
1203
1204
mutex_lock(&mhi_chan->lock);
1205
/* Skip if the channel is not currently running */
1206
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1207
if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1208
mutex_unlock(&mhi_chan->lock);
1209
continue;
1210
}
1211
1212
dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1213
/* Set channel state to SUSPENDED */
1214
mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1215
tmp &= ~CHAN_CTX_CHSTATE_MASK;
1216
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1217
mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1218
mutex_unlock(&mhi_chan->lock);
1219
}
1220
}
1221
1222
void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1223
{
1224
struct mhi_ep_chan *mhi_chan;
1225
u32 tmp;
1226
int i;
1227
1228
for (i = 0; i < mhi_cntrl->max_chan; i++) {
1229
mhi_chan = &mhi_cntrl->mhi_chan[i];
1230
1231
if (!mhi_chan->mhi_dev)
1232
continue;
1233
1234
mutex_lock(&mhi_chan->lock);
1235
/* Skip if the channel is not currently suspended */
1236
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1237
if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1238
mutex_unlock(&mhi_chan->lock);
1239
continue;
1240
}
1241
1242
dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1243
/* Set channel state to RUNNING */
1244
mhi_chan->state = MHI_CH_STATE_RUNNING;
1245
tmp &= ~CHAN_CTX_CHSTATE_MASK;
1246
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1247
mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1248
mutex_unlock(&mhi_chan->lock);
1249
}
1250
}
1251
1252
static void mhi_ep_release_device(struct device *dev)
1253
{
1254
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1255
1256
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1257
mhi_dev->mhi_cntrl->mhi_dev = NULL;
1258
1259
/*
1260
* We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1261
* devices for the channels will only get created in mhi_ep_create_device()
1262
* if the mhi_dev associated with it is NULL.
1263
*/
1264
if (mhi_dev->ul_chan)
1265
mhi_dev->ul_chan->mhi_dev = NULL;
1266
1267
if (mhi_dev->dl_chan)
1268
mhi_dev->dl_chan->mhi_dev = NULL;
1269
1270
kfree(mhi_dev);
1271
}
1272
1273
static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1274
enum mhi_device_type dev_type)
1275
{
1276
struct mhi_ep_device *mhi_dev;
1277
struct device *dev;
1278
1279
mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1280
if (!mhi_dev)
1281
return ERR_PTR(-ENOMEM);
1282
1283
dev = &mhi_dev->dev;
1284
device_initialize(dev);
1285
dev->bus = &mhi_ep_bus_type;
1286
dev->release = mhi_ep_release_device;
1287
1288
/* Controller device is always allocated first */
1289
if (dev_type == MHI_DEVICE_CONTROLLER)
1290
/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1291
dev->parent = mhi_cntrl->cntrl_dev;
1292
else
1293
/* for MHI client devices, parent is the MHI controller device */
1294
dev->parent = &mhi_cntrl->mhi_dev->dev;
1295
1296
mhi_dev->mhi_cntrl = mhi_cntrl;
1297
mhi_dev->dev_type = dev_type;
1298
1299
return mhi_dev;
1300
}
1301
1302
/*
1303
* MHI channels are always defined in pairs with UL as the even numbered
1304
* channel and DL as odd numbered one. This function gets UL channel (primary)
1305
* as the ch_id and always looks after the next entry in channel list for
1306
* the corresponding DL channel (secondary).
1307
*/
1308
static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1309
{
1310
struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1311
struct device *dev = mhi_cntrl->cntrl_dev;
1312
struct mhi_ep_device *mhi_dev;
1313
int ret;
1314
1315
/* Check if the channel name is same for both UL and DL */
1316
if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1317
dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1318
mhi_chan->name, mhi_chan[1].name);
1319
return -EINVAL;
1320
}
1321
1322
mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1323
if (IS_ERR(mhi_dev))
1324
return PTR_ERR(mhi_dev);
1325
1326
/* Configure primary channel */
1327
mhi_dev->ul_chan = mhi_chan;
1328
get_device(&mhi_dev->dev);
1329
mhi_chan->mhi_dev = mhi_dev;
1330
1331
/* Configure secondary channel as well */
1332
mhi_chan++;
1333
mhi_dev->dl_chan = mhi_chan;
1334
get_device(&mhi_dev->dev);
1335
mhi_chan->mhi_dev = mhi_dev;
1336
1337
/* Channel name is same for both UL and DL */
1338
mhi_dev->name = mhi_chan->name;
1339
ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1340
dev_name(&mhi_cntrl->mhi_dev->dev),
1341
mhi_dev->name);
1342
if (ret) {
1343
put_device(&mhi_dev->dev);
1344
return ret;
1345
}
1346
1347
ret = device_add(&mhi_dev->dev);
1348
if (ret)
1349
put_device(&mhi_dev->dev);
1350
1351
return ret;
1352
}
1353
1354
static int mhi_ep_destroy_device(struct device *dev, void *data)
1355
{
1356
struct mhi_ep_device *mhi_dev;
1357
struct mhi_ep_cntrl *mhi_cntrl;
1358
struct mhi_ep_chan *ul_chan, *dl_chan;
1359
1360
if (dev->bus != &mhi_ep_bus_type)
1361
return 0;
1362
1363
mhi_dev = to_mhi_ep_device(dev);
1364
mhi_cntrl = mhi_dev->mhi_cntrl;
1365
1366
/* Only destroy devices created for channels */
1367
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1368
return 0;
1369
1370
ul_chan = mhi_dev->ul_chan;
1371
dl_chan = mhi_dev->dl_chan;
1372
1373
if (ul_chan)
1374
put_device(&ul_chan->mhi_dev->dev);
1375
1376
if (dl_chan)
1377
put_device(&dl_chan->mhi_dev->dev);
1378
1379
dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1380
mhi_dev->name);
1381
1382
/* Notify the client and remove the device from MHI bus */
1383
device_del(dev);
1384
put_device(dev);
1385
1386
return 0;
1387
}
1388
1389
static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1390
const struct mhi_ep_cntrl_config *config)
1391
{
1392
const struct mhi_ep_channel_config *ch_cfg;
1393
struct device *dev = mhi_cntrl->cntrl_dev;
1394
u32 chan, i;
1395
int ret = -EINVAL;
1396
1397
mhi_cntrl->max_chan = config->max_channels;
1398
1399
/*
1400
* Allocate max_channels supported by the MHI endpoint and populate
1401
* only the defined channels
1402
*/
1403
mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1404
GFP_KERNEL);
1405
if (!mhi_cntrl->mhi_chan)
1406
return -ENOMEM;
1407
1408
for (i = 0; i < config->num_channels; i++) {
1409
struct mhi_ep_chan *mhi_chan;
1410
1411
ch_cfg = &config->ch_cfg[i];
1412
1413
chan = ch_cfg->num;
1414
if (chan >= mhi_cntrl->max_chan) {
1415
dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1416
chan, mhi_cntrl->max_chan);
1417
goto error_chan_cfg;
1418
}
1419
1420
/* Bi-directional and direction less channels are not supported */
1421
if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1422
dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1423
ch_cfg->dir, chan);
1424
goto error_chan_cfg;
1425
}
1426
1427
mhi_chan = &mhi_cntrl->mhi_chan[chan];
1428
mhi_chan->name = ch_cfg->name;
1429
mhi_chan->chan = chan;
1430
mhi_chan->dir = ch_cfg->dir;
1431
mutex_init(&mhi_chan->lock);
1432
}
1433
1434
return 0;
1435
1436
error_chan_cfg:
1437
kfree(mhi_cntrl->mhi_chan);
1438
1439
return ret;
1440
}
1441
1442
/*
1443
* Allocate channel and command rings here. Event rings will be allocated
1444
* in mhi_ep_power_up() as the config comes from the host.
1445
*/
1446
int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1447
const struct mhi_ep_cntrl_config *config)
1448
{
1449
struct mhi_ep_device *mhi_dev;
1450
int ret;
1451
1452
if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1453
return -EINVAL;
1454
1455
if (!mhi_cntrl->read_sync || !mhi_cntrl->write_sync ||
1456
!mhi_cntrl->read_async || !mhi_cntrl->write_async)
1457
return -EINVAL;
1458
1459
ret = mhi_ep_chan_init(mhi_cntrl, config);
1460
if (ret)
1461
return ret;
1462
1463
mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1464
if (!mhi_cntrl->mhi_cmd) {
1465
ret = -ENOMEM;
1466
goto err_free_ch;
1467
}
1468
1469
mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1470
sizeof(struct mhi_ring_element), 0,
1471
0, NULL);
1472
if (!mhi_cntrl->ev_ring_el_cache) {
1473
ret = -ENOMEM;
1474
goto err_free_cmd;
1475
}
1476
1477
mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1478
0, NULL);
1479
if (!mhi_cntrl->tre_buf_cache) {
1480
ret = -ENOMEM;
1481
goto err_destroy_ev_ring_el_cache;
1482
}
1483
1484
mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1485
sizeof(struct mhi_ep_ring_item), 0,
1486
0, NULL);
1487
if (!mhi_cntrl->ring_item_cache) {
1488
ret = -ENOMEM;
1489
goto err_destroy_tre_buf_cache;
1490
}
1491
1492
INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1493
INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1494
INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1495
INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1496
1497
mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1498
if (!mhi_cntrl->wq) {
1499
ret = -ENOMEM;
1500
goto err_destroy_ring_item_cache;
1501
}
1502
1503
INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1504
INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1505
spin_lock_init(&mhi_cntrl->list_lock);
1506
mutex_init(&mhi_cntrl->state_lock);
1507
mutex_init(&mhi_cntrl->event_lock);
1508
1509
/* Set MHI version and AMSS EE before enumeration */
1510
mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1511
mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1512
1513
/* Set controller index */
1514
ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1515
if (ret < 0)
1516
goto err_destroy_wq;
1517
1518
mhi_cntrl->index = ret;
1519
1520
irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1521
ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1522
"doorbell_irq", mhi_cntrl);
1523
if (ret) {
1524
dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1525
goto err_ida_free;
1526
}
1527
1528
/* Allocate the controller device */
1529
mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1530
if (IS_ERR(mhi_dev)) {
1531
dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1532
ret = PTR_ERR(mhi_dev);
1533
goto err_free_irq;
1534
}
1535
1536
ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1537
if (ret)
1538
goto err_put_dev;
1539
1540
mhi_dev->name = dev_name(&mhi_dev->dev);
1541
mhi_cntrl->mhi_dev = mhi_dev;
1542
1543
ret = device_add(&mhi_dev->dev);
1544
if (ret)
1545
goto err_put_dev;
1546
1547
dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1548
1549
return 0;
1550
1551
err_put_dev:
1552
put_device(&mhi_dev->dev);
1553
err_free_irq:
1554
free_irq(mhi_cntrl->irq, mhi_cntrl);
1555
err_ida_free:
1556
ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1557
err_destroy_wq:
1558
destroy_workqueue(mhi_cntrl->wq);
1559
err_destroy_ring_item_cache:
1560
kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1561
err_destroy_ev_ring_el_cache:
1562
kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1563
err_destroy_tre_buf_cache:
1564
kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1565
err_free_cmd:
1566
kfree(mhi_cntrl->mhi_cmd);
1567
err_free_ch:
1568
kfree(mhi_cntrl->mhi_chan);
1569
1570
return ret;
1571
}
1572
EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1573
1574
/*
1575
* It is expected that the controller drivers will power down the MHI EP stack
1576
* using "mhi_ep_power_down()" before calling this function to unregister themselves.
1577
*/
1578
void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1579
{
1580
struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1581
1582
destroy_workqueue(mhi_cntrl->wq);
1583
1584
free_irq(mhi_cntrl->irq, mhi_cntrl);
1585
1586
kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1587
kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1588
kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1589
kfree(mhi_cntrl->mhi_cmd);
1590
kfree(mhi_cntrl->mhi_chan);
1591
1592
device_del(&mhi_dev->dev);
1593
put_device(&mhi_dev->dev);
1594
1595
ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1596
}
1597
EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1598
1599
static int mhi_ep_driver_probe(struct device *dev)
1600
{
1601
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1602
struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1603
struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1604
struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1605
1606
ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1607
dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1608
1609
return mhi_drv->probe(mhi_dev, mhi_dev->id);
1610
}
1611
1612
static int mhi_ep_driver_remove(struct device *dev)
1613
{
1614
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1615
struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1616
struct mhi_result result = {};
1617
struct mhi_ep_chan *mhi_chan;
1618
int dir;
1619
1620
/* Skip if it is a controller device */
1621
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1622
return 0;
1623
1624
/* Disconnect the channels associated with the driver */
1625
for (dir = 0; dir < 2; dir++) {
1626
mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1627
1628
if (!mhi_chan)
1629
continue;
1630
1631
mutex_lock(&mhi_chan->lock);
1632
/* Send channel disconnect status to the client driver */
1633
if (mhi_chan->xfer_cb) {
1634
result.transaction_status = -ENOTCONN;
1635
result.bytes_xferd = 0;
1636
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1637
}
1638
1639
mhi_chan->state = MHI_CH_STATE_DISABLED;
1640
mhi_chan->xfer_cb = NULL;
1641
mutex_unlock(&mhi_chan->lock);
1642
}
1643
1644
/* Remove the client driver now */
1645
mhi_drv->remove(mhi_dev);
1646
1647
return 0;
1648
}
1649
1650
int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1651
{
1652
struct device_driver *driver = &mhi_drv->driver;
1653
1654
if (!mhi_drv->probe || !mhi_drv->remove)
1655
return -EINVAL;
1656
1657
/* Client drivers should have callbacks defined for both channels */
1658
if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1659
return -EINVAL;
1660
1661
driver->bus = &mhi_ep_bus_type;
1662
driver->owner = owner;
1663
driver->probe = mhi_ep_driver_probe;
1664
driver->remove = mhi_ep_driver_remove;
1665
1666
return driver_register(driver);
1667
}
1668
EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1669
1670
void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1671
{
1672
driver_unregister(&mhi_drv->driver);
1673
}
1674
EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1675
1676
static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1677
{
1678
const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1679
1680
return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1681
mhi_dev->name);
1682
}
1683
1684
static int mhi_ep_match(struct device *dev, const struct device_driver *drv)
1685
{
1686
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1687
const struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1688
const struct mhi_device_id *id;
1689
1690
/*
1691
* If the device is a controller type then there is no client driver
1692
* associated with it
1693
*/
1694
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1695
return 0;
1696
1697
for (id = mhi_drv->id_table; id->chan[0]; id++)
1698
if (!strcmp(mhi_dev->name, id->chan)) {
1699
mhi_dev->id = id;
1700
return 1;
1701
}
1702
1703
return 0;
1704
};
1705
1706
struct bus_type mhi_ep_bus_type = {
1707
.name = "mhi_ep",
1708
.dev_name = "mhi_ep",
1709
.match = mhi_ep_match,
1710
.uevent = mhi_ep_uevent,
1711
};
1712
1713
static int __init mhi_ep_init(void)
1714
{
1715
return bus_register(&mhi_ep_bus_type);
1716
}
1717
1718
static void __exit mhi_ep_exit(void)
1719
{
1720
bus_unregister(&mhi_ep_bus_type);
1721
}
1722
1723
postcore_initcall(mhi_ep_init);
1724
module_exit(mhi_ep_exit);
1725
1726
MODULE_LICENSE("GPL v2");
1727
MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1728
MODULE_AUTHOR("Manivannan Sadhasivam <[email protected]>");
1729
1730