Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/hisilicon/qm.c
29520 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright (c) 2019 HiSilicon Limited. */
3
#include <asm/page.h>
4
#include <linux/acpi.h>
5
#include <linux/bitmap.h>
6
#include <linux/dma-mapping.h>
7
#include <linux/idr.h>
8
#include <linux/io.h>
9
#include <linux/irqreturn.h>
10
#include <linux/log2.h>
11
#include <linux/pm_runtime.h>
12
#include <linux/seq_file.h>
13
#include <linux/slab.h>
14
#include <linux/uacce.h>
15
#include <linux/uaccess.h>
16
#include <uapi/misc/uacce/hisi_qm.h>
17
#include <linux/hisi_acc_qm.h>
18
#include "qm_common.h"
19
20
/* eq/aeq irq enable */
21
#define QM_VF_AEQ_INT_SOURCE 0x0
22
#define QM_VF_AEQ_INT_MASK 0x4
23
#define QM_VF_EQ_INT_SOURCE 0x8
24
#define QM_VF_EQ_INT_MASK 0xc
25
26
#define QM_IRQ_VECTOR_MASK GENMASK(15, 0)
27
#define QM_IRQ_TYPE_MASK GENMASK(15, 0)
28
#define QM_IRQ_TYPE_SHIFT 16
29
#define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0)
30
31
/* mailbox */
32
#define QM_MB_PING_ALL_VFS 0xffff
33
#define QM_MB_STATUS_MASK GENMASK(12, 9)
34
35
/* sqc shift */
36
#define QM_SQ_HOP_NUM_SHIFT 0
37
#define QM_SQ_PAGE_SIZE_SHIFT 4
38
#define QM_SQ_BUF_SIZE_SHIFT 8
39
#define QM_SQ_SQE_SIZE_SHIFT 12
40
#define QM_SQ_PRIORITY_SHIFT 0
41
#define QM_SQ_ORDERS_SHIFT 4
42
#define QM_SQ_TYPE_SHIFT 8
43
#define QM_QC_PASID_ENABLE 0x1
44
#define QM_QC_PASID_ENABLE_SHIFT 7
45
46
#define QM_SQ_TYPE_MASK GENMASK(3, 0)
47
#define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1)
48
#define QM_SQC_DISABLE_QP (1U << 6)
49
#define QM_XQC_RANDOM_DATA 0xaaaa
50
51
/* cqc shift */
52
#define QM_CQ_HOP_NUM_SHIFT 0
53
#define QM_CQ_PAGE_SIZE_SHIFT 4
54
#define QM_CQ_BUF_SIZE_SHIFT 8
55
#define QM_CQ_CQE_SIZE_SHIFT 12
56
#define QM_CQ_PHASE_SHIFT 0
57
#define QM_CQ_FLAG_SHIFT 1
58
59
#define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1)
60
#define QM_QC_CQE_SIZE 4
61
#define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1)
62
63
/* eqc shift */
64
#define QM_EQE_AEQE_SIZE (2UL << 12)
65
#define QM_EQC_PHASE_SHIFT 16
66
67
#define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68
#define QM_EQE_CQN_MASK GENMASK(15, 0)
69
70
#define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71
#define QM_AEQE_TYPE_SHIFT 17
72
#define QM_AEQE_TYPE_MASK 0xf
73
#define QM_AEQE_CQN_MASK GENMASK(15, 0)
74
#define QM_CQ_OVERFLOW 0
75
#define QM_EQ_OVERFLOW 1
76
#define QM_CQE_ERROR 2
77
78
#define QM_XQ_DEPTH_SHIFT 16
79
#define QM_XQ_DEPTH_MASK GENMASK(15, 0)
80
81
#define QM_DOORBELL_CMD_SQ 0
82
#define QM_DOORBELL_CMD_CQ 1
83
#define QM_DOORBELL_CMD_EQ 2
84
#define QM_DOORBELL_CMD_AEQ 3
85
86
#define QM_DOORBELL_BASE_V1 0x340
87
#define QM_DB_CMD_SHIFT_V1 16
88
#define QM_DB_INDEX_SHIFT_V1 32
89
#define QM_DB_PRIORITY_SHIFT_V1 48
90
#define QM_PAGE_SIZE 0x0034
91
#define QM_QP_DB_INTERVAL 0x10000
92
#define QM_DB_TIMEOUT_CFG 0x100074
93
#define QM_DB_TIMEOUT_SET 0x1fffff
94
95
#define QM_MEM_START_INIT 0x100040
96
#define QM_MEM_INIT_DONE 0x100044
97
#define QM_VFT_CFG_RDY 0x10006c
98
#define QM_VFT_CFG_OP_WR 0x100058
99
#define QM_VFT_CFG_TYPE 0x10005c
100
#define QM_VFT_CFG 0x100060
101
#define QM_VFT_CFG_OP_ENABLE 0x100054
102
#define QM_PM_CTRL 0x100148
103
#define QM_IDLE_DISABLE BIT(9)
104
105
#define QM_SUB_VERSION_ID 0x210
106
107
#define QM_VFT_CFG_DATA_L 0x100064
108
#define QM_VFT_CFG_DATA_H 0x100068
109
#define QM_SQC_VFT_BUF_SIZE (7ULL << 8)
110
#define QM_SQC_VFT_SQC_SIZE (5ULL << 12)
111
#define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16)
112
#define QM_SQC_VFT_START_SQN_SHIFT 28
113
#define QM_SQC_VFT_VALID (1ULL << 44)
114
#define QM_SQC_VFT_SQN_SHIFT 45
115
#define QM_CQC_VFT_BUF_SIZE (7ULL << 8)
116
#define QM_CQC_VFT_SQC_SIZE (5ULL << 12)
117
#define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16)
118
#define QM_CQC_VFT_VALID (1ULL << 28)
119
120
#define QM_SQC_VFT_BASE_SHIFT_V2 28
121
#define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0)
122
#define QM_SQC_VFT_NUM_SHIFT_V2 45
123
#define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0)
124
#define QM_MAX_QC_TYPE 2
125
126
#define QM_ABNORMAL_INT_SOURCE 0x100000
127
#define QM_ABNORMAL_INT_MASK 0x100004
128
#define QM_ABNORMAL_INT_MASK_VALUE 0x7fff
129
#define QM_ABNORMAL_INT_STATUS 0x100008
130
#define QM_ABNORMAL_INT_SET 0x10000c
131
#define QM_ABNORMAL_INF00 0x100010
132
#define QM_FIFO_OVERFLOW_TYPE 0xc0
133
#define QM_FIFO_OVERFLOW_TYPE_SHIFT 6
134
#define QM_FIFO_OVERFLOW_VF 0x3f
135
#define QM_FIFO_OVERFLOW_QP_SHIFT 16
136
#define QM_ABNORMAL_INF01 0x100014
137
#define QM_DB_TIMEOUT_TYPE 0xc0
138
#define QM_DB_TIMEOUT_TYPE_SHIFT 6
139
#define QM_DB_TIMEOUT_VF 0x3f
140
#define QM_DB_TIMEOUT_QP_SHIFT 16
141
#define QM_ABNORMAL_INF02 0x100018
142
#define QM_AXI_POISON_ERR BIT(22)
143
#define QM_RAS_CE_ENABLE 0x1000ec
144
#define QM_RAS_FE_ENABLE 0x1000f0
145
#define QM_RAS_NFE_ENABLE 0x1000f4
146
#define QM_RAS_CE_THRESHOLD 0x1000f8
147
#define QM_RAS_CE_TIMES_PER_IRQ 1
148
#define QM_OOO_SHUTDOWN_SEL 0x1040f8
149
#define QM_AXI_RRESP_ERR BIT(0)
150
#define QM_DB_TIMEOUT BIT(10)
151
#define QM_OF_FIFO_OF BIT(11)
152
#define QM_RAS_AXI_ERROR (BIT(0) | BIT(1) | BIT(12))
153
154
#define QM_RESET_WAIT_TIMEOUT 400
155
#define QM_PEH_VENDOR_ID 0x1000d8
156
#define ACC_VENDOR_ID_VALUE 0x5a5a
157
#define QM_PEH_DFX_INFO0 0x1000fc
158
#define QM_PEH_DFX_INFO1 0x100100
159
#define QM_PEH_DFX_MASK (BIT(0) | BIT(2))
160
#define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16)
161
#define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3
162
#define ACC_PEH_MSI_DISABLE GENMASK(31, 0)
163
#define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1
164
#define ACC_MASTER_TRANS_RETURN_RW 3
165
#define ACC_MASTER_TRANS_RETURN 0x300150
166
#define ACC_MASTER_GLOBAL_CTRL 0x300000
167
#define ACC_AM_CFG_PORT_WR_EN 0x30001c
168
#define ACC_AM_ROB_ECC_INT_STS 0x300104
169
#define ACC_ROB_ECC_ERR_MULTPL BIT(1)
170
#define QM_MSI_CAP_ENABLE BIT(16)
171
172
/* interfunction communication */
173
#define QM_IFC_READY_STATUS 0x100128
174
#define QM_IFC_INT_SET_P 0x100130
175
#define QM_IFC_INT_CFG 0x100134
176
#define QM_IFC_INT_SOURCE_P 0x100138
177
#define QM_IFC_INT_SOURCE_V 0x0020
178
#define QM_IFC_INT_MASK 0x0024
179
#define QM_IFC_INT_STATUS 0x0028
180
#define QM_IFC_INT_SET_V 0x002C
181
#define QM_PF2VF_PF_W 0x104700
182
#define QM_VF2PF_PF_R 0x104800
183
#define QM_VF2PF_VF_W 0x320
184
#define QM_PF2VF_VF_R 0x380
185
#define QM_IFC_SEND_ALL_VFS GENMASK(6, 0)
186
#define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0)
187
#define QM_IFC_INT_SOURCE_MASK BIT(0)
188
#define QM_IFC_INT_DISABLE BIT(0)
189
#define QM_IFC_INT_STATUS_MASK BIT(0)
190
#define QM_IFC_INT_SET_MASK BIT(0)
191
#define QM_WAIT_DST_ACK 10
192
#define QM_MAX_PF_WAIT_COUNT 10
193
#define QM_MAX_VF_WAIT_COUNT 40
194
#define QM_VF_RESET_WAIT_US 20000
195
#define QM_VF_RESET_WAIT_CNT 3000
196
#define QM_VF2PF_REG_SIZE 4
197
#define QM_IFC_CMD_MASK GENMASK(31, 0)
198
#define QM_IFC_DATA_SHIFT 32
199
#define QM_VF_RESET_WAIT_TIMEOUT_US \
200
(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
201
202
#define POLL_PERIOD 10
203
#define POLL_TIMEOUT 1000
204
#define WAIT_PERIOD_US_MAX 200
205
#define WAIT_PERIOD_US_MIN 100
206
#define MAX_WAIT_COUNTS 1000
207
#define QM_CACHE_WB_START 0x204
208
#define QM_CACHE_WB_DONE 0x208
209
#define QM_FUNC_CAPS_REG 0x3100
210
#define QM_CAPBILITY_VERSION GENMASK(7, 0)
211
212
#define PCI_BAR_2 2
213
#define PCI_BAR_4 4
214
#define QMC_ALIGN(sz) ALIGN(sz, 32)
215
216
#define QM_DBG_READ_LEN 256
217
#define QM_PCI_COMMAND_INVALID ~0
218
#define QM_RESET_STOP_TX_OFFSET 1
219
#define QM_RESET_STOP_RX_OFFSET 2
220
221
#define WAIT_PERIOD 20
222
#define REMOVE_WAIT_DELAY 10
223
224
#define QM_QOS_PARAM_NUM 2
225
#define QM_QOS_MAX_VAL 1000
226
#define QM_QOS_RATE 100
227
#define QM_QOS_EXPAND_RATE 1000
228
#define QM_SHAPER_CIR_B_MASK GENMASK(7, 0)
229
#define QM_SHAPER_CIR_U_MASK GENMASK(10, 8)
230
#define QM_SHAPER_CIR_S_MASK GENMASK(14, 11)
231
#define QM_SHAPER_FACTOR_CIR_U_SHIFT 8
232
#define QM_SHAPER_FACTOR_CIR_S_SHIFT 11
233
#define QM_SHAPER_FACTOR_CBS_B_SHIFT 15
234
#define QM_SHAPER_FACTOR_CBS_S_SHIFT 19
235
#define QM_SHAPER_CBS_B 1
236
#define QM_SHAPER_VFT_OFFSET 6
237
#define QM_QOS_MIN_ERROR_RATE 5
238
#define QM_SHAPER_MIN_CBS_S 8
239
#define QM_QOS_TICK 0x300U
240
#define QM_QOS_DIVISOR_CLK 0x1f40U
241
#define QM_QOS_MAX_CIR_B 200
242
#define QM_QOS_MIN_CIR_B 100
243
#define QM_QOS_MAX_CIR_U 6
244
#define QM_AUTOSUSPEND_DELAY 3000
245
246
/* abnormal status value for stopping queue */
247
#define QM_STOP_QUEUE_FAIL 1
248
#define QM_DUMP_SQC_FAIL 3
249
#define QM_DUMP_CQC_FAIL 4
250
#define QM_FINISH_WAIT 5
251
252
#define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
253
(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
254
((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
255
((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
256
((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
257
258
#define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
259
((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
260
261
#define QM_MK_SQC_W13(priority, orders, alg_type) \
262
(((priority) << QM_SQ_PRIORITY_SHIFT) | \
263
((orders) << QM_SQ_ORDERS_SHIFT) | \
264
(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
265
266
#define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
267
(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
268
((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
269
((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
270
((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
271
272
#define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
273
((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
274
275
enum vft_type {
276
SQC_VFT = 0,
277
CQC_VFT,
278
SHAPER_VFT,
279
};
280
281
enum qm_alg_type {
282
ALG_TYPE_0,
283
ALG_TYPE_1,
284
};
285
286
enum qm_ifc_cmd {
287
QM_PF_FLR_PREPARE = 0x01,
288
QM_PF_SRST_PREPARE,
289
QM_PF_RESET_DONE,
290
QM_VF_PREPARE_DONE,
291
QM_VF_PREPARE_FAIL,
292
QM_VF_START_DONE,
293
QM_VF_START_FAIL,
294
QM_PF_SET_QOS,
295
QM_VF_GET_QOS,
296
};
297
298
enum qm_basic_type {
299
QM_TOTAL_QP_NUM_CAP = 0x0,
300
QM_FUNC_MAX_QP_CAP,
301
QM_XEQ_DEPTH_CAP,
302
QM_QP_DEPTH_CAP,
303
QM_EQ_IRQ_TYPE_CAP,
304
QM_AEQ_IRQ_TYPE_CAP,
305
QM_ABN_IRQ_TYPE_CAP,
306
QM_PF2VF_IRQ_TYPE_CAP,
307
QM_PF_IRQ_NUM_CAP,
308
QM_VF_IRQ_NUM_CAP,
309
};
310
311
enum qm_cap_table_type {
312
QM_CAP_VF = 0x0,
313
QM_AEQE_NUM,
314
QM_SCQE_NUM,
315
QM_EQ_IRQ,
316
QM_AEQ_IRQ,
317
QM_ABNORMAL_IRQ,
318
QM_MB_IRQ,
319
MAX_IRQ_NUM,
320
EXT_BAR_INDEX,
321
};
322
323
static const struct hisi_qm_cap_query_info qm_cap_query_info[] = {
324
{QM_CAP_VF, "QM_CAP_VF ", 0x3100, 0x0, 0x0, 0x6F01},
325
{QM_AEQE_NUM, "QM_AEQE_NUM ", 0x3104, 0x800, 0x4000800, 0x4000800},
326
{QM_SCQE_NUM, "QM_SCQE_NUM ",
327
0x3108, 0x4000400, 0x4000400, 0x4000400},
328
{QM_EQ_IRQ, "QM_EQ_IRQ ", 0x310c, 0x10000, 0x10000, 0x10000},
329
{QM_AEQ_IRQ, "QM_AEQ_IRQ ", 0x3110, 0x0, 0x10001, 0x10001},
330
{QM_ABNORMAL_IRQ, "QM_ABNORMAL_IRQ ", 0x3114, 0x0, 0x10003, 0x10003},
331
{QM_MB_IRQ, "QM_MB_IRQ ", 0x3118, 0x0, 0x0, 0x10002},
332
{MAX_IRQ_NUM, "MAX_IRQ_NUM ", 0x311c, 0x10001, 0x40002, 0x40003},
333
{EXT_BAR_INDEX, "EXT_BAR_INDEX ", 0x3120, 0x0, 0x0, 0x14},
334
};
335
336
static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
337
{QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0},
338
{QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1},
339
{QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1},
340
{QM_SUPPORT_STOP_FUNC, 0x3100, 0, BIT(10), 0x0, 0x0, 0x1},
341
{QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
342
{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
343
{QM_SUPPORT_DAE, 0x3100, 0, BIT(15), 0x0, 0x0, 0x0},
344
};
345
346
static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
347
{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
348
};
349
350
static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
351
{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
352
};
353
354
static const struct hisi_qm_cap_info qm_basic_info[] = {
355
{QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400},
356
{QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400},
357
{QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800},
358
{QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
359
{QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000},
360
{QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001},
361
{QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003},
362
{QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002},
363
{QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4},
364
{QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3},
365
};
366
367
struct qm_mailbox {
368
__le16 w0;
369
__le16 queue_num;
370
__le32 base_l;
371
__le32 base_h;
372
__le32 rsvd;
373
};
374
375
struct qm_doorbell {
376
__le16 queue_num;
377
__le16 cmd;
378
__le16 index;
379
__le16 priority;
380
};
381
382
struct hisi_qm_resource {
383
struct hisi_qm *qm;
384
int distance;
385
struct list_head list;
386
};
387
388
/**
389
* struct qm_hw_err - Structure describing the device errors
390
* @list: hardware error list
391
* @timestamp: timestamp when the error occurred
392
*/
393
struct qm_hw_err {
394
struct list_head list;
395
unsigned long long timestamp;
396
};
397
398
struct hisi_qm_hw_ops {
399
int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
400
void (*qm_db)(struct hisi_qm *qm, u16 qn,
401
u8 cmd, u16 index, u8 priority);
402
int (*debug_init)(struct hisi_qm *qm);
403
void (*hw_error_init)(struct hisi_qm *qm);
404
void (*hw_error_uninit)(struct hisi_qm *qm);
405
enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
406
int (*set_msi)(struct hisi_qm *qm, bool set);
407
408
/* (u64)msg = (u32)data << 32 | (enum qm_ifc_cmd)cmd */
409
int (*set_ifc_begin)(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num);
410
void (*set_ifc_end)(struct hisi_qm *qm);
411
int (*get_ifc)(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num);
412
};
413
414
struct hisi_qm_hw_error {
415
u32 int_msk;
416
const char *msg;
417
};
418
419
static const struct hisi_qm_hw_error qm_hw_error[] = {
420
{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
421
{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
422
{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
423
{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
424
{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
425
{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
426
{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
427
{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
428
{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
429
{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
430
{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
431
{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
432
{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
433
{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
434
{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
435
};
436
437
static const char * const qm_db_timeout[] = {
438
"sq", "cq", "eq", "aeq",
439
};
440
441
static const char * const qm_fifo_overflow[] = {
442
"cq", "eq", "aeq",
443
};
444
445
struct qm_typical_qos_table {
446
u32 start;
447
u32 end;
448
u32 val;
449
};
450
451
/* the qos step is 100 */
452
static struct qm_typical_qos_table shaper_cir_s[] = {
453
{100, 100, 4},
454
{200, 200, 3},
455
{300, 500, 2},
456
{600, 1000, 1},
457
{1100, 100000, 0},
458
};
459
460
static struct qm_typical_qos_table shaper_cbs_s[] = {
461
{100, 200, 9},
462
{300, 500, 11},
463
{600, 1000, 12},
464
{1100, 10000, 16},
465
{10100, 25000, 17},
466
{25100, 50000, 18},
467
{50100, 100000, 19}
468
};
469
470
static void qm_irqs_unregister(struct hisi_qm *qm);
471
static int qm_reset_device(struct hisi_qm *qm);
472
int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp,
473
unsigned int device)
474
{
475
struct pci_dev *pdev;
476
u32 n, q_num;
477
int ret;
478
479
if (!val)
480
return -EINVAL;
481
482
pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL);
483
if (!pdev) {
484
q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2);
485
pr_info("No device found currently, suppose queue number is %u\n",
486
q_num);
487
} else {
488
if (pdev->revision == QM_HW_V1)
489
q_num = QM_QNUM_V1;
490
else
491
q_num = QM_QNUM_V2;
492
493
pci_dev_put(pdev);
494
}
495
496
ret = kstrtou32(val, 10, &n);
497
if (ret || n < QM_MIN_QNUM || n > q_num)
498
return -EINVAL;
499
500
return param_set_int(val, kp);
501
}
502
EXPORT_SYMBOL_GPL(hisi_qm_q_num_set);
503
504
static u32 qm_get_hw_error_status(struct hisi_qm *qm)
505
{
506
return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
507
}
508
509
static u32 qm_get_dev_err_status(struct hisi_qm *qm)
510
{
511
return qm->err_ini->get_dev_hw_err_status(qm);
512
}
513
514
/* Check if the error causes the master ooo block */
515
static bool qm_check_dev_error(struct hisi_qm *qm)
516
{
517
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
518
u32 err_status;
519
520
if (pf_qm->fun_type == QM_HW_VF)
521
return false;
522
523
err_status = qm_get_hw_error_status(pf_qm);
524
if (err_status & pf_qm->err_info.qm_err.shutdown_mask)
525
return true;
526
527
if (pf_qm->err_ini->dev_is_abnormal)
528
return pf_qm->err_ini->dev_is_abnormal(pf_qm);
529
530
return false;
531
}
532
533
static int qm_wait_reset_finish(struct hisi_qm *qm)
534
{
535
int delay = 0;
536
537
/* All reset requests need to be queued for processing */
538
while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
539
msleep(++delay);
540
if (delay > QM_RESET_WAIT_TIMEOUT)
541
return -EBUSY;
542
}
543
544
return 0;
545
}
546
547
static int qm_reset_prepare_ready(struct hisi_qm *qm)
548
{
549
struct pci_dev *pdev = qm->pdev;
550
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
551
552
/*
553
* PF and VF on host doesnot support resetting at the
554
* same time on Kunpeng920.
555
*/
556
if (qm->ver < QM_HW_V3)
557
return qm_wait_reset_finish(pf_qm);
558
559
return qm_wait_reset_finish(qm);
560
}
561
562
static void qm_reset_bit_clear(struct hisi_qm *qm)
563
{
564
struct pci_dev *pdev = qm->pdev;
565
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
566
567
if (qm->ver < QM_HW_V3)
568
clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
569
570
clear_bit(QM_RESETTING, &qm->misc_ctl);
571
}
572
573
static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
574
u64 base, u16 queue, bool op)
575
{
576
mailbox->w0 = cpu_to_le16((cmd) |
577
((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
578
(0x1 << QM_MB_BUSY_SHIFT));
579
mailbox->queue_num = cpu_to_le16(queue);
580
mailbox->base_l = cpu_to_le32(lower_32_bits(base));
581
mailbox->base_h = cpu_to_le32(upper_32_bits(base));
582
mailbox->rsvd = 0;
583
}
584
585
/* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
586
int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
587
{
588
u32 val;
589
590
return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
591
val, !((val >> QM_MB_BUSY_SHIFT) &
592
0x1), POLL_PERIOD, POLL_TIMEOUT);
593
}
594
EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
595
596
/* 128 bit should be written to hardware at one time to trigger a mailbox */
597
static void qm_mb_write(struct hisi_qm *qm, const void *src)
598
{
599
void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
600
601
#if IS_ENABLED(CONFIG_ARM64)
602
unsigned long tmp0 = 0, tmp1 = 0;
603
#endif
604
605
if (!IS_ENABLED(CONFIG_ARM64)) {
606
memcpy_toio(fun_base, src, 16);
607
dma_wmb();
608
return;
609
}
610
611
#if IS_ENABLED(CONFIG_ARM64)
612
asm volatile("ldp %0, %1, %3\n"
613
"stp %0, %1, %2\n"
614
"dmb oshst\n"
615
: "=&r" (tmp0),
616
"=&r" (tmp1),
617
"+Q" (*((char __iomem *)fun_base))
618
: "Q" (*((char *)src))
619
: "memory");
620
#endif
621
}
622
623
static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
624
{
625
int ret;
626
u32 val;
627
628
if (unlikely(hisi_qm_wait_mb_ready(qm))) {
629
dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
630
ret = -EBUSY;
631
goto mb_busy;
632
}
633
634
qm_mb_write(qm, mailbox);
635
636
if (unlikely(hisi_qm_wait_mb_ready(qm))) {
637
dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
638
ret = -ETIMEDOUT;
639
goto mb_busy;
640
}
641
642
val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
643
if (val & QM_MB_STATUS_MASK) {
644
dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
645
ret = -EIO;
646
goto mb_busy;
647
}
648
649
return 0;
650
651
mb_busy:
652
atomic64_inc(&qm->debug.dfx.mb_err_cnt);
653
return ret;
654
}
655
656
int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
657
bool op)
658
{
659
struct qm_mailbox mailbox;
660
int ret;
661
662
qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
663
664
mutex_lock(&qm->mailbox_lock);
665
ret = qm_mb_nolock(qm, &mailbox);
666
mutex_unlock(&qm->mailbox_lock);
667
668
return ret;
669
}
670
EXPORT_SYMBOL_GPL(hisi_qm_mb);
671
672
/* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
673
int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
674
{
675
struct qm_mailbox mailbox;
676
dma_addr_t xqc_dma;
677
void *tmp_xqc;
678
size_t size;
679
int ret;
680
681
switch (cmd) {
682
case QM_MB_CMD_SQC:
683
size = sizeof(struct qm_sqc);
684
tmp_xqc = qm->xqc_buf.sqc;
685
xqc_dma = qm->xqc_buf.sqc_dma;
686
break;
687
case QM_MB_CMD_CQC:
688
size = sizeof(struct qm_cqc);
689
tmp_xqc = qm->xqc_buf.cqc;
690
xqc_dma = qm->xqc_buf.cqc_dma;
691
break;
692
case QM_MB_CMD_EQC:
693
size = sizeof(struct qm_eqc);
694
tmp_xqc = qm->xqc_buf.eqc;
695
xqc_dma = qm->xqc_buf.eqc_dma;
696
break;
697
case QM_MB_CMD_AEQC:
698
size = sizeof(struct qm_aeqc);
699
tmp_xqc = qm->xqc_buf.aeqc;
700
xqc_dma = qm->xqc_buf.aeqc_dma;
701
break;
702
default:
703
dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd);
704
return -EINVAL;
705
}
706
707
/* Setting xqc will fail if master OOO is blocked. */
708
if (qm_check_dev_error(qm)) {
709
dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
710
return -EIO;
711
}
712
713
mutex_lock(&qm->mailbox_lock);
714
if (!op)
715
memcpy(tmp_xqc, xqc, size);
716
717
qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
718
ret = qm_mb_nolock(qm, &mailbox);
719
if (!ret && op)
720
memcpy(xqc, tmp_xqc, size);
721
722
mutex_unlock(&qm->mailbox_lock);
723
724
return ret;
725
}
726
727
static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
728
{
729
u64 doorbell;
730
731
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
732
((u64)index << QM_DB_INDEX_SHIFT_V1) |
733
((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
734
735
writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
736
}
737
738
static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
739
{
740
void __iomem *io_base = qm->io_base;
741
u16 randata = 0;
742
u64 doorbell;
743
744
if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
745
io_base = qm->db_io_base + (u64)qn * qm->db_interval +
746
QM_DOORBELL_SQ_CQ_BASE_V2;
747
else
748
io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
749
750
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
751
((u64)randata << QM_DB_RAND_SHIFT_V2) |
752
((u64)index << QM_DB_INDEX_SHIFT_V2) |
753
((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
754
755
writeq(doorbell, io_base);
756
}
757
758
static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
759
{
760
dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
761
qn, cmd, index);
762
763
qm->ops->qm_db(qm, qn, cmd, index, priority);
764
}
765
766
static void qm_disable_clock_gate(struct hisi_qm *qm)
767
{
768
u32 val;
769
770
/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
771
if (qm->ver < QM_HW_V3)
772
return;
773
774
val = readl(qm->io_base + QM_PM_CTRL);
775
val |= QM_IDLE_DISABLE;
776
writel(val, qm->io_base + QM_PM_CTRL);
777
}
778
779
static int qm_dev_mem_reset(struct hisi_qm *qm)
780
{
781
u32 val;
782
783
writel(0x1, qm->io_base + QM_MEM_START_INIT);
784
return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
785
val & BIT(0), POLL_PERIOD,
786
POLL_TIMEOUT);
787
}
788
789
/**
790
* hisi_qm_get_hw_info() - Get device information.
791
* @qm: The qm which want to get information.
792
* @info_table: Array for storing device information.
793
* @index: Index in info_table.
794
* @is_read: Whether read from reg, 0: not support read from reg.
795
*
796
* This function returns device information the caller needs.
797
*/
798
u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
799
const struct hisi_qm_cap_info *info_table,
800
u32 index, bool is_read)
801
{
802
u32 val;
803
804
switch (qm->ver) {
805
case QM_HW_V1:
806
return info_table[index].v1_val;
807
case QM_HW_V2:
808
return info_table[index].v2_val;
809
default:
810
if (!is_read)
811
return info_table[index].v3_val;
812
813
val = readl(qm->io_base + info_table[index].offset);
814
return (val >> info_table[index].shift) & info_table[index].mask;
815
}
816
}
817
EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
818
819
u32 hisi_qm_get_cap_value(struct hisi_qm *qm,
820
const struct hisi_qm_cap_query_info *info_table,
821
u32 index, bool is_read)
822
{
823
u32 val;
824
825
switch (qm->ver) {
826
case QM_HW_V1:
827
return info_table[index].v1_val;
828
case QM_HW_V2:
829
return info_table[index].v2_val;
830
default:
831
if (!is_read)
832
return info_table[index].v3_val;
833
834
val = readl(qm->io_base + info_table[index].offset);
835
return val;
836
}
837
}
838
EXPORT_SYMBOL_GPL(hisi_qm_get_cap_value);
839
840
static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
841
u16 *high_bits, enum qm_basic_type type)
842
{
843
u32 depth;
844
845
depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
846
*low_bits = depth & QM_XQ_DEPTH_MASK;
847
*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
848
}
849
850
int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
851
u32 dev_algs_size)
852
{
853
struct device *dev = &qm->pdev->dev;
854
char *algs, *ptr;
855
int i;
856
857
if (!qm->uacce)
858
return 0;
859
860
if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
861
dev_err(dev, "algs size %u is equal or larger than %d.\n",
862
dev_algs_size, QM_DEV_ALG_MAX_LEN);
863
return -EINVAL;
864
}
865
866
algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN, GFP_KERNEL);
867
if (!algs)
868
return -ENOMEM;
869
870
for (i = 0; i < dev_algs_size; i++)
871
if (alg_msk & dev_algs[i].alg_msk)
872
strcat(algs, dev_algs[i].alg);
873
874
ptr = strrchr(algs, '\n');
875
if (ptr)
876
*ptr = '\0';
877
878
qm->uacce->algs = algs;
879
880
return 0;
881
}
882
EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
883
884
static u32 qm_get_irq_num(struct hisi_qm *qm)
885
{
886
if (qm->fun_type == QM_HW_PF)
887
return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
888
889
return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
890
}
891
892
static int qm_pm_get_sync(struct hisi_qm *qm)
893
{
894
struct device *dev = &qm->pdev->dev;
895
int ret;
896
897
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
898
return 0;
899
900
ret = pm_runtime_resume_and_get(dev);
901
if (ret < 0) {
902
dev_err(dev, "failed to get_sync(%d).\n", ret);
903
return ret;
904
}
905
906
return 0;
907
}
908
909
static void qm_pm_put_sync(struct hisi_qm *qm)
910
{
911
struct device *dev = &qm->pdev->dev;
912
913
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
914
return;
915
916
pm_runtime_put_autosuspend(dev);
917
}
918
919
static void qm_cq_head_update(struct hisi_qp *qp)
920
{
921
if (qp->qp_status.cq_head == qp->cq_depth - 1) {
922
qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
923
qp->qp_status.cq_head = 0;
924
} else {
925
qp->qp_status.cq_head++;
926
}
927
}
928
929
static void qm_poll_req_cb(struct hisi_qp *qp)
930
{
931
struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
932
struct hisi_qm *qm = qp->qm;
933
934
while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
935
dma_rmb();
936
qp->req_cb(qp, qp->sqe + qm->sqe_size *
937
le16_to_cpu(cqe->sq_head));
938
qm_cq_head_update(qp);
939
cqe = qp->cqe + qp->qp_status.cq_head;
940
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
941
qp->qp_status.cq_head, 0);
942
atomic_dec(&qp->qp_status.used);
943
944
cond_resched();
945
}
946
947
/* set c_flag */
948
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
949
}
950
951
static void qm_work_process(struct work_struct *work)
952
{
953
struct hisi_qm_poll_data *poll_data =
954
container_of(work, struct hisi_qm_poll_data, work);
955
struct hisi_qm *qm = poll_data->qm;
956
u16 eqe_num = poll_data->eqe_num;
957
struct hisi_qp *qp;
958
int i;
959
960
for (i = eqe_num - 1; i >= 0; i--) {
961
qp = &qm->qp_array[poll_data->qp_finish_id[i]];
962
if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
963
continue;
964
965
if (qp->event_cb) {
966
qp->event_cb(qp);
967
continue;
968
}
969
970
if (likely(qp->req_cb))
971
qm_poll_req_cb(qp);
972
}
973
}
974
975
static void qm_get_complete_eqe_num(struct hisi_qm *qm)
976
{
977
struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
978
struct hisi_qm_poll_data *poll_data = NULL;
979
u16 eq_depth = qm->eq_depth;
980
u16 cqn, eqe_num = 0;
981
982
if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
983
atomic64_inc(&qm->debug.dfx.err_irq_cnt);
984
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
985
return;
986
}
987
988
cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
989
if (unlikely(cqn >= qm->qp_num))
990
return;
991
poll_data = &qm->poll_data[cqn];
992
993
while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
994
cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
995
poll_data->qp_finish_id[eqe_num] = cqn;
996
eqe_num++;
997
998
if (qm->status.eq_head == eq_depth - 1) {
999
qm->status.eqc_phase = !qm->status.eqc_phase;
1000
eqe = qm->eqe;
1001
qm->status.eq_head = 0;
1002
} else {
1003
eqe++;
1004
qm->status.eq_head++;
1005
}
1006
1007
if (eqe_num == (eq_depth >> 1) - 1)
1008
break;
1009
}
1010
1011
poll_data->eqe_num = eqe_num;
1012
queue_work(qm->wq, &poll_data->work);
1013
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
1014
}
1015
1016
static irqreturn_t qm_eq_irq(int irq, void *data)
1017
{
1018
struct hisi_qm *qm = data;
1019
1020
/* Get qp id of completed tasks and re-enable the interrupt */
1021
qm_get_complete_eqe_num(qm);
1022
1023
return IRQ_HANDLED;
1024
}
1025
1026
static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
1027
{
1028
struct hisi_qm *qm = data;
1029
u32 val;
1030
1031
val = readl(qm->io_base + QM_IFC_INT_STATUS);
1032
val &= QM_IFC_INT_STATUS_MASK;
1033
if (!val)
1034
return IRQ_NONE;
1035
1036
if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
1037
dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
1038
return IRQ_HANDLED;
1039
}
1040
1041
schedule_work(&qm->cmd_process);
1042
1043
return IRQ_HANDLED;
1044
}
1045
1046
static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1047
{
1048
u32 *addr;
1049
1050
if (qp->is_in_kernel)
1051
return;
1052
1053
addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1054
*addr = 1;
1055
1056
/* make sure setup is completed */
1057
smp_wmb();
1058
}
1059
1060
static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1061
{
1062
struct hisi_qp *qp = &qm->qp_array[qp_id];
1063
1064
qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1065
hisi_qm_stop_qp(qp);
1066
qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1067
}
1068
1069
static void qm_reset_function(struct hisi_qm *qm)
1070
{
1071
struct device *dev = &qm->pdev->dev;
1072
int ret;
1073
1074
if (qm_check_dev_error(qm))
1075
return;
1076
1077
ret = qm_reset_prepare_ready(qm);
1078
if (ret) {
1079
dev_err(dev, "reset function not ready\n");
1080
return;
1081
}
1082
1083
ret = hisi_qm_stop(qm, QM_DOWN);
1084
if (ret) {
1085
dev_err(dev, "failed to stop qm when reset function\n");
1086
goto clear_bit;
1087
}
1088
1089
ret = hisi_qm_start(qm);
1090
if (ret)
1091
dev_err(dev, "failed to start qm when reset function\n");
1092
1093
clear_bit:
1094
qm_reset_bit_clear(qm);
1095
}
1096
1097
static irqreturn_t qm_aeq_thread(int irq, void *data)
1098
{
1099
struct hisi_qm *qm = data;
1100
struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1101
u16 aeq_depth = qm->aeq_depth;
1102
u32 type, qp_id;
1103
1104
atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1105
1106
while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1107
type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1108
QM_AEQE_TYPE_MASK;
1109
qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1110
1111
switch (type) {
1112
case QM_EQ_OVERFLOW:
1113
dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1114
qm_reset_function(qm);
1115
return IRQ_HANDLED;
1116
case QM_CQ_OVERFLOW:
1117
dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1118
qp_id);
1119
fallthrough;
1120
case QM_CQE_ERROR:
1121
qm_disable_qp(qm, qp_id);
1122
break;
1123
default:
1124
dev_err(&qm->pdev->dev, "unknown error type %u\n",
1125
type);
1126
break;
1127
}
1128
1129
if (qm->status.aeq_head == aeq_depth - 1) {
1130
qm->status.aeqc_phase = !qm->status.aeqc_phase;
1131
aeqe = qm->aeqe;
1132
qm->status.aeq_head = 0;
1133
} else {
1134
aeqe++;
1135
qm->status.aeq_head++;
1136
}
1137
}
1138
1139
qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1140
1141
return IRQ_HANDLED;
1142
}
1143
1144
static void qm_init_qp_status(struct hisi_qp *qp)
1145
{
1146
struct hisi_qp_status *qp_status = &qp->qp_status;
1147
1148
qp_status->sq_tail = 0;
1149
qp_status->cq_head = 0;
1150
qp_status->cqc_phase = true;
1151
atomic_set(&qp_status->used, 0);
1152
}
1153
1154
static void qm_init_prefetch(struct hisi_qm *qm)
1155
{
1156
struct device *dev = &qm->pdev->dev;
1157
u32 page_type = 0x0;
1158
1159
if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1160
return;
1161
1162
switch (PAGE_SIZE) {
1163
case SZ_4K:
1164
page_type = 0x0;
1165
break;
1166
case SZ_16K:
1167
page_type = 0x1;
1168
break;
1169
case SZ_64K:
1170
page_type = 0x2;
1171
break;
1172
default:
1173
dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1174
PAGE_SIZE);
1175
}
1176
1177
writel(page_type, qm->io_base + QM_PAGE_SIZE);
1178
}
1179
1180
/*
1181
* acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1182
* is the expected qos calculated.
1183
* the formula:
1184
* IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1185
*
1186
* IR_b * (2 ^ IR_u) * 8000
1187
* IR(Mbps) = -------------------------
1188
* Tick * (2 ^ IR_s)
1189
*/
1190
static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1191
{
1192
return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1193
(QM_QOS_TICK * (1 << cir_s));
1194
}
1195
1196
static u32 acc_shaper_calc_cbs_s(u32 ir)
1197
{
1198
int table_size = ARRAY_SIZE(shaper_cbs_s);
1199
int i;
1200
1201
for (i = 0; i < table_size; i++) {
1202
if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1203
return shaper_cbs_s[i].val;
1204
}
1205
1206
return QM_SHAPER_MIN_CBS_S;
1207
}
1208
1209
static u32 acc_shaper_calc_cir_s(u32 ir)
1210
{
1211
int table_size = ARRAY_SIZE(shaper_cir_s);
1212
int i;
1213
1214
for (i = 0; i < table_size; i++) {
1215
if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1216
return shaper_cir_s[i].val;
1217
}
1218
1219
return 0;
1220
}
1221
1222
static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1223
{
1224
u32 cir_b, cir_u, cir_s, ir_calc;
1225
u32 error_rate;
1226
1227
factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1228
cir_s = acc_shaper_calc_cir_s(ir);
1229
1230
for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1231
for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1232
ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1233
1234
error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1235
if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1236
factor->cir_b = cir_b;
1237
factor->cir_u = cir_u;
1238
factor->cir_s = cir_s;
1239
return 0;
1240
}
1241
}
1242
}
1243
1244
return -EINVAL;
1245
}
1246
1247
static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1248
u32 number, struct qm_shaper_factor *factor)
1249
{
1250
u64 tmp = 0;
1251
1252
if (number > 0) {
1253
switch (type) {
1254
case SQC_VFT:
1255
if (qm->ver == QM_HW_V1) {
1256
tmp = QM_SQC_VFT_BUF_SIZE |
1257
QM_SQC_VFT_SQC_SIZE |
1258
QM_SQC_VFT_INDEX_NUMBER |
1259
QM_SQC_VFT_VALID |
1260
(u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1261
} else {
1262
tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1263
QM_SQC_VFT_VALID |
1264
(u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1265
}
1266
break;
1267
case CQC_VFT:
1268
if (qm->ver == QM_HW_V1) {
1269
tmp = QM_CQC_VFT_BUF_SIZE |
1270
QM_CQC_VFT_SQC_SIZE |
1271
QM_CQC_VFT_INDEX_NUMBER |
1272
QM_CQC_VFT_VALID;
1273
} else {
1274
tmp = QM_CQC_VFT_VALID;
1275
}
1276
break;
1277
case SHAPER_VFT:
1278
if (factor) {
1279
tmp = factor->cir_b |
1280
(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1281
(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1282
(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1283
(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1284
}
1285
break;
1286
}
1287
}
1288
1289
writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1290
writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1291
}
1292
1293
static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1294
u32 fun_num, u32 base, u32 number)
1295
{
1296
struct qm_shaper_factor *factor = NULL;
1297
unsigned int val;
1298
int ret;
1299
1300
if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1301
factor = &qm->factor[fun_num];
1302
1303
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1304
val & BIT(0), POLL_PERIOD,
1305
POLL_TIMEOUT);
1306
if (ret)
1307
return ret;
1308
1309
writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1310
writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1311
if (type == SHAPER_VFT)
1312
fun_num |= base << QM_SHAPER_VFT_OFFSET;
1313
1314
writel(fun_num, qm->io_base + QM_VFT_CFG);
1315
1316
qm_vft_data_cfg(qm, type, base, number, factor);
1317
1318
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1319
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1320
1321
return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1322
val & BIT(0), POLL_PERIOD,
1323
POLL_TIMEOUT);
1324
}
1325
1326
static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1327
{
1328
u32 qos = qm->factor[fun_num].func_qos;
1329
int ret, i;
1330
1331
ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1332
if (ret) {
1333
dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1334
return ret;
1335
}
1336
writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1337
for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1338
/* The base number of queue reuse for different alg type */
1339
ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1340
if (ret)
1341
return ret;
1342
}
1343
1344
return 0;
1345
}
1346
1347
/* The config should be conducted after qm_dev_mem_reset() */
1348
static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1349
u32 number)
1350
{
1351
int ret, i;
1352
1353
for (i = SQC_VFT; i <= CQC_VFT; i++) {
1354
ret = qm_set_vft_common(qm, i, fun_num, base, number);
1355
if (ret)
1356
return ret;
1357
}
1358
1359
/* init default shaper qos val */
1360
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1361
ret = qm_shaper_init_vft(qm, fun_num);
1362
if (ret)
1363
goto back_sqc_cqc;
1364
}
1365
1366
return 0;
1367
back_sqc_cqc:
1368
for (i = SQC_VFT; i <= CQC_VFT; i++)
1369
qm_set_vft_common(qm, i, fun_num, 0, 0);
1370
1371
return ret;
1372
}
1373
1374
static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1375
{
1376
u64 sqc_vft;
1377
int ret;
1378
1379
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1380
if (ret)
1381
return ret;
1382
1383
sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1384
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1385
*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1386
*number = (QM_SQC_VFT_NUM_MASK_V2 &
1387
(sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1388
1389
return 0;
1390
}
1391
1392
static void qm_hw_error_init_v1(struct hisi_qm *qm)
1393
{
1394
writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1395
}
1396
1397
static void qm_hw_error_cfg(struct hisi_qm *qm)
1398
{
1399
struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err;
1400
1401
qm->error_mask = qm_err->nfe | qm_err->ce | qm_err->fe;
1402
/* clear QM hw residual error source */
1403
writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1404
1405
/* configure error type */
1406
writel(qm_err->ce, qm->io_base + QM_RAS_CE_ENABLE);
1407
writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1408
writel(qm_err->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1409
writel(qm_err->fe, qm->io_base + QM_RAS_FE_ENABLE);
1410
}
1411
1412
static void qm_hw_error_init_v2(struct hisi_qm *qm)
1413
{
1414
u32 irq_unmask;
1415
1416
qm_hw_error_cfg(qm);
1417
1418
irq_unmask = ~qm->error_mask;
1419
irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1420
writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1421
}
1422
1423
static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1424
{
1425
u32 irq_mask = qm->error_mask;
1426
1427
irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1428
writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1429
}
1430
1431
static void qm_hw_error_init_v3(struct hisi_qm *qm)
1432
{
1433
u32 irq_unmask;
1434
1435
qm_hw_error_cfg(qm);
1436
1437
/* enable close master ooo when hardware error happened */
1438
writel(qm->err_info.qm_err.shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1439
1440
irq_unmask = ~qm->error_mask;
1441
irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1442
writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1443
}
1444
1445
static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1446
{
1447
u32 irq_mask = qm->error_mask;
1448
1449
irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1450
writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1451
1452
/* disable close master ooo when hardware error happened */
1453
writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1454
}
1455
1456
static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1457
{
1458
const struct hisi_qm_hw_error *err;
1459
struct device *dev = &qm->pdev->dev;
1460
u32 reg_val, type, vf_num, qp_id;
1461
int i;
1462
1463
for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1464
err = &qm_hw_error[i];
1465
if (!(err->int_msk & error_status))
1466
continue;
1467
1468
dev_err(dev, "%s [error status=0x%x] found\n",
1469
err->msg, err->int_msk);
1470
1471
if (err->int_msk & QM_DB_TIMEOUT) {
1472
reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1473
type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1474
QM_DB_TIMEOUT_TYPE_SHIFT;
1475
vf_num = reg_val & QM_DB_TIMEOUT_VF;
1476
qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
1477
dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
1478
qm_db_timeout[type], vf_num, qp_id);
1479
} else if (err->int_msk & QM_OF_FIFO_OF) {
1480
reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1481
type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1482
QM_FIFO_OVERFLOW_TYPE_SHIFT;
1483
vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1484
qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
1485
if (type < ARRAY_SIZE(qm_fifo_overflow))
1486
dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
1487
qm_fifo_overflow[type], vf_num, qp_id);
1488
else
1489
dev_err(dev, "unknown error type\n");
1490
} else if (err->int_msk & QM_AXI_RRESP_ERR) {
1491
reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
1492
if (reg_val & QM_AXI_POISON_ERR)
1493
dev_err(dev, "qm axi poison error happened\n");
1494
}
1495
}
1496
}
1497
1498
static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1499
{
1500
struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err;
1501
u32 error_status;
1502
1503
error_status = qm_get_hw_error_status(qm);
1504
if (error_status & qm->error_mask) {
1505
if (error_status & QM_ECC_MBIT)
1506
qm->err_status.is_qm_ecc_mbit = true;
1507
1508
qm_log_hw_error(qm, error_status);
1509
if (error_status & qm_err->reset_mask) {
1510
/* Disable the same error reporting until device is recovered. */
1511
writel(qm_err->nfe & (~error_status), qm->io_base + QM_RAS_NFE_ENABLE);
1512
return ACC_ERR_NEED_RESET;
1513
}
1514
1515
/* Clear error source if not need reset. */
1516
writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1517
writel(qm_err->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1518
writel(qm_err->ce, qm->io_base + QM_RAS_CE_ENABLE);
1519
}
1520
1521
return ACC_ERR_RECOVERED;
1522
}
1523
1524
static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1525
{
1526
struct qm_mailbox mailbox;
1527
int ret;
1528
1529
qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1530
mutex_lock(&qm->mailbox_lock);
1531
ret = qm_mb_nolock(qm, &mailbox);
1532
if (ret)
1533
goto err_unlock;
1534
1535
*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1536
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1537
1538
err_unlock:
1539
mutex_unlock(&qm->mailbox_lock);
1540
return ret;
1541
}
1542
1543
static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1544
{
1545
u32 val;
1546
1547
if (qm->fun_type == QM_HW_PF)
1548
writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1549
1550
val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1551
val |= QM_IFC_INT_SOURCE_MASK;
1552
writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1553
}
1554
1555
static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1556
{
1557
struct device *dev = &qm->pdev->dev;
1558
enum qm_ifc_cmd cmd;
1559
int ret;
1560
1561
ret = qm->ops->get_ifc(qm, &cmd, NULL, vf_id);
1562
if (ret) {
1563
dev_err(dev, "failed to get command from VF(%u)!\n", vf_id);
1564
return;
1565
}
1566
1567
switch (cmd) {
1568
case QM_VF_PREPARE_FAIL:
1569
dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1570
break;
1571
case QM_VF_START_FAIL:
1572
dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1573
break;
1574
case QM_VF_PREPARE_DONE:
1575
case QM_VF_START_DONE:
1576
break;
1577
default:
1578
dev_err(dev, "unsupported command(0x%x) sent by VF(%u)!\n", cmd, vf_id);
1579
break;
1580
}
1581
}
1582
1583
static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1584
{
1585
struct device *dev = &qm->pdev->dev;
1586
u32 vfs_num = qm->vfs_num;
1587
int cnt = 0;
1588
int ret = 0;
1589
u64 val;
1590
u32 i;
1591
1592
if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1593
return 0;
1594
1595
while (true) {
1596
val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1597
/* All VFs send command to PF, break */
1598
if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1599
break;
1600
1601
if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1602
ret = -EBUSY;
1603
break;
1604
}
1605
1606
msleep(QM_WAIT_DST_ACK);
1607
}
1608
1609
/* PF check VFs msg */
1610
for (i = 1; i <= vfs_num; i++) {
1611
if (val & BIT(i))
1612
qm_handle_vf_msg(qm, i);
1613
else
1614
dev_err(dev, "VF(%u) not ping PF!\n", i);
1615
}
1616
1617
/* PF clear interrupt to ack VFs */
1618
qm_clear_cmd_interrupt(qm, val);
1619
1620
return ret;
1621
}
1622
1623
static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1624
{
1625
u32 val;
1626
1627
val = readl(qm->io_base + QM_IFC_INT_CFG);
1628
val &= ~QM_IFC_SEND_ALL_VFS;
1629
val |= fun_num;
1630
writel(val, qm->io_base + QM_IFC_INT_CFG);
1631
1632
val = readl(qm->io_base + QM_IFC_INT_SET_P);
1633
val |= QM_IFC_INT_SET_MASK;
1634
writel(val, qm->io_base + QM_IFC_INT_SET_P);
1635
}
1636
1637
static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1638
{
1639
u32 val;
1640
1641
val = readl(qm->io_base + QM_IFC_INT_SET_V);
1642
val |= QM_IFC_INT_SET_MASK;
1643
writel(val, qm->io_base + QM_IFC_INT_SET_V);
1644
}
1645
1646
static int qm_ping_single_vf(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1647
{
1648
struct device *dev = &qm->pdev->dev;
1649
int cnt = 0;
1650
u64 val;
1651
int ret;
1652
1653
ret = qm->ops->set_ifc_begin(qm, cmd, data, fun_num);
1654
if (ret) {
1655
dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1656
goto err_unlock;
1657
}
1658
1659
qm_trigger_vf_interrupt(qm, fun_num);
1660
while (true) {
1661
msleep(QM_WAIT_DST_ACK);
1662
val = readq(qm->io_base + QM_IFC_READY_STATUS);
1663
/* if VF respond, PF notifies VF successfully. */
1664
if (!(val & BIT(fun_num)))
1665
goto err_unlock;
1666
1667
if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1668
dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1669
ret = -ETIMEDOUT;
1670
break;
1671
}
1672
}
1673
1674
err_unlock:
1675
qm->ops->set_ifc_end(qm);
1676
return ret;
1677
}
1678
1679
static int qm_ping_all_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
1680
{
1681
struct device *dev = &qm->pdev->dev;
1682
u32 vfs_num = qm->vfs_num;
1683
u64 val = 0;
1684
int cnt = 0;
1685
int ret;
1686
u32 i;
1687
1688
ret = qm->ops->set_ifc_begin(qm, cmd, 0, QM_MB_PING_ALL_VFS);
1689
if (ret) {
1690
dev_err(dev, "failed to send command(0x%x) to all vfs!\n", cmd);
1691
qm->ops->set_ifc_end(qm);
1692
return ret;
1693
}
1694
1695
qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1696
while (true) {
1697
msleep(QM_WAIT_DST_ACK);
1698
val = readq(qm->io_base + QM_IFC_READY_STATUS);
1699
/* If all VFs acked, PF notifies VFs successfully. */
1700
if (!(val & GENMASK(vfs_num, 1))) {
1701
qm->ops->set_ifc_end(qm);
1702
return 0;
1703
}
1704
1705
if (++cnt > QM_MAX_PF_WAIT_COUNT)
1706
break;
1707
}
1708
1709
qm->ops->set_ifc_end(qm);
1710
1711
/* Check which vf respond timeout. */
1712
for (i = 1; i <= vfs_num; i++) {
1713
if (val & BIT(i))
1714
dev_err(dev, "failed to get response from VF(%u)!\n", i);
1715
}
1716
1717
return -ETIMEDOUT;
1718
}
1719
1720
static int qm_ping_pf(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
1721
{
1722
int cnt = 0;
1723
u32 val;
1724
int ret;
1725
1726
ret = qm->ops->set_ifc_begin(qm, cmd, 0, 0);
1727
if (ret) {
1728
dev_err(&qm->pdev->dev, "failed to send command(0x%x) to PF!\n", cmd);
1729
goto unlock;
1730
}
1731
1732
qm_trigger_pf_interrupt(qm);
1733
/* Waiting for PF response */
1734
while (true) {
1735
msleep(QM_WAIT_DST_ACK);
1736
val = readl(qm->io_base + QM_IFC_INT_SET_V);
1737
if (!(val & QM_IFC_INT_STATUS_MASK))
1738
break;
1739
1740
if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1741
ret = -ETIMEDOUT;
1742
break;
1743
}
1744
}
1745
1746
unlock:
1747
qm->ops->set_ifc_end(qm);
1748
1749
return ret;
1750
}
1751
1752
static int qm_drain_qm(struct hisi_qm *qm)
1753
{
1754
return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0);
1755
}
1756
1757
static int qm_stop_qp(struct hisi_qp *qp)
1758
{
1759
return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1760
}
1761
1762
static int qm_set_msi(struct hisi_qm *qm, bool set)
1763
{
1764
struct pci_dev *pdev = qm->pdev;
1765
1766
if (set) {
1767
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1768
0);
1769
} else {
1770
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1771
ACC_PEH_MSI_DISABLE);
1772
if (qm->err_status.is_qm_ecc_mbit ||
1773
qm->err_status.is_dev_ecc_mbit)
1774
return 0;
1775
1776
mdelay(1);
1777
if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1778
return -EFAULT;
1779
}
1780
1781
return 0;
1782
}
1783
1784
static void qm_wait_msi_finish(struct hisi_qm *qm)
1785
{
1786
struct pci_dev *pdev = qm->pdev;
1787
u32 cmd = ~0;
1788
int cnt = 0;
1789
u32 val;
1790
int ret;
1791
1792
while (true) {
1793
pci_read_config_dword(pdev, pdev->msi_cap +
1794
PCI_MSI_PENDING_64, &cmd);
1795
if (!cmd)
1796
break;
1797
1798
if (++cnt > MAX_WAIT_COUNTS) {
1799
pci_warn(pdev, "failed to empty MSI PENDING!\n");
1800
break;
1801
}
1802
1803
udelay(1);
1804
}
1805
1806
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1807
val, !(val & QM_PEH_DFX_MASK),
1808
POLL_PERIOD, POLL_TIMEOUT);
1809
if (ret)
1810
pci_warn(pdev, "failed to empty PEH MSI!\n");
1811
1812
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1813
val, !(val & QM_PEH_MSI_FINISH_MASK),
1814
POLL_PERIOD, POLL_TIMEOUT);
1815
if (ret)
1816
pci_warn(pdev, "failed to finish MSI operation!\n");
1817
}
1818
1819
static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1820
{
1821
struct pci_dev *pdev = qm->pdev;
1822
int ret = -ETIMEDOUT;
1823
u32 cmd, i;
1824
1825
pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1826
if (set)
1827
cmd |= QM_MSI_CAP_ENABLE;
1828
else
1829
cmd &= ~QM_MSI_CAP_ENABLE;
1830
1831
pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1832
if (set) {
1833
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1834
pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1835
if (cmd & QM_MSI_CAP_ENABLE)
1836
return 0;
1837
1838
udelay(1);
1839
}
1840
} else {
1841
udelay(WAIT_PERIOD_US_MIN);
1842
qm_wait_msi_finish(qm);
1843
ret = 0;
1844
}
1845
1846
return ret;
1847
}
1848
1849
static int qm_set_ifc_begin_v3(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1850
{
1851
struct qm_mailbox mailbox;
1852
u64 msg;
1853
1854
msg = cmd | (u64)data << QM_IFC_DATA_SHIFT;
1855
1856
qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, msg, fun_num, 0);
1857
mutex_lock(&qm->mailbox_lock);
1858
return qm_mb_nolock(qm, &mailbox);
1859
}
1860
1861
static void qm_set_ifc_end_v3(struct hisi_qm *qm)
1862
{
1863
mutex_unlock(&qm->mailbox_lock);
1864
}
1865
1866
static int qm_get_ifc_v3(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num)
1867
{
1868
u64 msg;
1869
int ret;
1870
1871
ret = qm_get_mb_cmd(qm, &msg, fun_num);
1872
if (ret)
1873
return ret;
1874
1875
*cmd = msg & QM_IFC_CMD_MASK;
1876
1877
if (data)
1878
*data = msg >> QM_IFC_DATA_SHIFT;
1879
1880
return 0;
1881
}
1882
1883
static int qm_set_ifc_begin_v4(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1884
{
1885
uintptr_t offset;
1886
u64 msg;
1887
1888
if (qm->fun_type == QM_HW_PF)
1889
offset = QM_PF2VF_PF_W;
1890
else
1891
offset = QM_VF2PF_VF_W;
1892
1893
msg = cmd | (u64)data << QM_IFC_DATA_SHIFT;
1894
1895
mutex_lock(&qm->ifc_lock);
1896
writeq(msg, qm->io_base + offset);
1897
1898
return 0;
1899
}
1900
1901
static void qm_set_ifc_end_v4(struct hisi_qm *qm)
1902
{
1903
mutex_unlock(&qm->ifc_lock);
1904
}
1905
1906
static u64 qm_get_ifc_pf(struct hisi_qm *qm, u32 fun_num)
1907
{
1908
uintptr_t offset;
1909
1910
offset = QM_VF2PF_PF_R + QM_VF2PF_REG_SIZE * fun_num;
1911
1912
return (u64)readl(qm->io_base + offset);
1913
}
1914
1915
static u64 qm_get_ifc_vf(struct hisi_qm *qm)
1916
{
1917
return readq(qm->io_base + QM_PF2VF_VF_R);
1918
}
1919
1920
static int qm_get_ifc_v4(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num)
1921
{
1922
u64 msg;
1923
1924
if (qm->fun_type == QM_HW_PF)
1925
msg = qm_get_ifc_pf(qm, fun_num);
1926
else
1927
msg = qm_get_ifc_vf(qm);
1928
1929
*cmd = msg & QM_IFC_CMD_MASK;
1930
1931
if (data)
1932
*data = msg >> QM_IFC_DATA_SHIFT;
1933
1934
return 0;
1935
}
1936
1937
static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1938
.qm_db = qm_db_v1,
1939
.hw_error_init = qm_hw_error_init_v1,
1940
.set_msi = qm_set_msi,
1941
};
1942
1943
static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1944
.get_vft = qm_get_vft_v2,
1945
.qm_db = qm_db_v2,
1946
.hw_error_init = qm_hw_error_init_v2,
1947
.hw_error_uninit = qm_hw_error_uninit_v2,
1948
.hw_error_handle = qm_hw_error_handle_v2,
1949
.set_msi = qm_set_msi,
1950
};
1951
1952
static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1953
.get_vft = qm_get_vft_v2,
1954
.qm_db = qm_db_v2,
1955
.hw_error_init = qm_hw_error_init_v3,
1956
.hw_error_uninit = qm_hw_error_uninit_v3,
1957
.hw_error_handle = qm_hw_error_handle_v2,
1958
.set_msi = qm_set_msi_v3,
1959
.set_ifc_begin = qm_set_ifc_begin_v3,
1960
.set_ifc_end = qm_set_ifc_end_v3,
1961
.get_ifc = qm_get_ifc_v3,
1962
};
1963
1964
static const struct hisi_qm_hw_ops qm_hw_ops_v4 = {
1965
.get_vft = qm_get_vft_v2,
1966
.qm_db = qm_db_v2,
1967
.hw_error_init = qm_hw_error_init_v3,
1968
.hw_error_uninit = qm_hw_error_uninit_v3,
1969
.hw_error_handle = qm_hw_error_handle_v2,
1970
.set_msi = qm_set_msi_v3,
1971
.set_ifc_begin = qm_set_ifc_begin_v4,
1972
.set_ifc_end = qm_set_ifc_end_v4,
1973
.get_ifc = qm_get_ifc_v4,
1974
};
1975
1976
static void *qm_get_avail_sqe(struct hisi_qp *qp)
1977
{
1978
struct hisi_qp_status *qp_status = &qp->qp_status;
1979
u16 sq_tail = qp_status->sq_tail;
1980
1981
if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1982
return NULL;
1983
1984
return qp->sqe + sq_tail * qp->qm->sqe_size;
1985
}
1986
1987
static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1988
{
1989
u64 *addr;
1990
1991
/* Use last 64 bits of DUS to reset status. */
1992
addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1993
*addr = 0;
1994
}
1995
1996
static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1997
{
1998
struct device *dev = &qm->pdev->dev;
1999
struct hisi_qp *qp;
2000
int qp_id;
2001
2002
if (atomic_read(&qm->status.flags) == QM_STOP) {
2003
dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
2004
return ERR_PTR(-EPERM);
2005
}
2006
2007
if (qm->qp_in_used == qm->qp_num) {
2008
dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2009
qm->qp_num);
2010
atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2011
return ERR_PTR(-EBUSY);
2012
}
2013
2014
qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2015
if (qp_id < 0) {
2016
dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2017
qm->qp_num);
2018
atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2019
return ERR_PTR(-EBUSY);
2020
}
2021
2022
qp = &qm->qp_array[qp_id];
2023
hisi_qm_unset_hw_reset(qp);
2024
memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
2025
2026
qp->event_cb = NULL;
2027
qp->req_cb = NULL;
2028
qp->qp_id = qp_id;
2029
qp->alg_type = alg_type;
2030
qp->is_in_kernel = true;
2031
qm->qp_in_used++;
2032
2033
return qp;
2034
}
2035
2036
/**
2037
* hisi_qm_create_qp() - Create a queue pair from qm.
2038
* @qm: The qm we create a qp from.
2039
* @alg_type: Accelerator specific algorithm type in sqc.
2040
*
2041
* Return created qp, negative error code if failed.
2042
*/
2043
static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2044
{
2045
struct hisi_qp *qp;
2046
int ret;
2047
2048
ret = qm_pm_get_sync(qm);
2049
if (ret)
2050
return ERR_PTR(ret);
2051
2052
down_write(&qm->qps_lock);
2053
qp = qm_create_qp_nolock(qm, alg_type);
2054
up_write(&qm->qps_lock);
2055
2056
if (IS_ERR(qp))
2057
qm_pm_put_sync(qm);
2058
2059
return qp;
2060
}
2061
2062
/**
2063
* hisi_qm_release_qp() - Release a qp back to its qm.
2064
* @qp: The qp we want to release.
2065
*
2066
* This function releases the resource of a qp.
2067
*/
2068
static void hisi_qm_release_qp(struct hisi_qp *qp)
2069
{
2070
struct hisi_qm *qm = qp->qm;
2071
2072
down_write(&qm->qps_lock);
2073
2074
qm->qp_in_used--;
2075
idr_remove(&qm->qp_idr, qp->qp_id);
2076
2077
up_write(&qm->qps_lock);
2078
2079
qm_pm_put_sync(qm);
2080
}
2081
2082
static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2083
{
2084
struct hisi_qm *qm = qp->qm;
2085
enum qm_hw_ver ver = qm->ver;
2086
struct qm_sqc sqc = {0};
2087
2088
if (ver == QM_HW_V1) {
2089
sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2090
sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
2091
} else {
2092
sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
2093
sqc.w8 = 0; /* rand_qc */
2094
}
2095
sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2096
sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
2097
sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
2098
sqc.cq_num = cpu_to_le16(qp_id);
2099
sqc.pasid = cpu_to_le16(pasid);
2100
2101
if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2102
sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2103
QM_QC_PASID_ENABLE_SHIFT);
2104
2105
return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
2106
}
2107
2108
static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2109
{
2110
struct hisi_qm *qm = qp->qm;
2111
enum qm_hw_ver ver = qm->ver;
2112
struct qm_cqc cqc = {0};
2113
2114
if (ver == QM_HW_V1) {
2115
cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
2116
cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
2117
} else {
2118
cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2119
cqc.w8 = 0; /* rand_qc */
2120
}
2121
/*
2122
* Enable request finishing interrupts defaultly.
2123
* So, there will be some interrupts until disabling
2124
* this.
2125
*/
2126
cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2127
cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
2128
cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
2129
cqc.pasid = cpu_to_le16(pasid);
2130
2131
if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2132
cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2133
2134
return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
2135
}
2136
2137
static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2138
{
2139
int ret;
2140
2141
qm_init_qp_status(qp);
2142
2143
ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2144
if (ret)
2145
return ret;
2146
2147
return qm_cq_ctx_cfg(qp, qp_id, pasid);
2148
}
2149
2150
static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2151
{
2152
struct hisi_qm *qm = qp->qm;
2153
struct device *dev = &qm->pdev->dev;
2154
int qp_id = qp->qp_id;
2155
u32 pasid = arg;
2156
int ret;
2157
2158
if (atomic_read(&qm->status.flags) == QM_STOP) {
2159
dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
2160
return -EPERM;
2161
}
2162
2163
ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2164
if (ret)
2165
return ret;
2166
2167
atomic_set(&qp->qp_status.flags, QP_START);
2168
dev_dbg(dev, "queue %d started\n", qp_id);
2169
2170
return 0;
2171
}
2172
2173
/**
2174
* hisi_qm_start_qp() - Start a qp into running.
2175
* @qp: The qp we want to start to run.
2176
* @arg: Accelerator specific argument.
2177
*
2178
* After this function, qp can receive request from user. Return 0 if
2179
* successful, negative error code if failed.
2180
*/
2181
int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2182
{
2183
struct hisi_qm *qm = qp->qm;
2184
int ret;
2185
2186
down_write(&qm->qps_lock);
2187
ret = qm_start_qp_nolock(qp, arg);
2188
up_write(&qm->qps_lock);
2189
2190
return ret;
2191
}
2192
EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2193
2194
/**
2195
* qp_stop_fail_cb() - call request cb.
2196
* @qp: stopped failed qp.
2197
*
2198
* Callback function should be called whether task completed or not.
2199
*/
2200
static void qp_stop_fail_cb(struct hisi_qp *qp)
2201
{
2202
int qp_used = atomic_read(&qp->qp_status.used);
2203
u16 cur_tail = qp->qp_status.sq_tail;
2204
u16 sq_depth = qp->sq_depth;
2205
u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2206
struct hisi_qm *qm = qp->qm;
2207
u16 pos;
2208
int i;
2209
2210
for (i = 0; i < qp_used; i++) {
2211
pos = (i + cur_head) % sq_depth;
2212
qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2213
atomic_dec(&qp->qp_status.used);
2214
}
2215
}
2216
2217
static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id)
2218
{
2219
struct device *dev = &qm->pdev->dev;
2220
struct qm_sqc sqc;
2221
struct qm_cqc cqc;
2222
int ret, i = 0;
2223
2224
while (++i) {
2225
ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1);
2226
if (ret) {
2227
dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2228
*state = QM_DUMP_SQC_FAIL;
2229
return ret;
2230
}
2231
2232
ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1);
2233
if (ret) {
2234
dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2235
*state = QM_DUMP_CQC_FAIL;
2236
return ret;
2237
}
2238
2239
if ((sqc.tail == cqc.tail) &&
2240
(QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2241
break;
2242
2243
if (i == MAX_WAIT_COUNTS) {
2244
dev_err(dev, "Fail to empty queue %u!\n", qp_id);
2245
*state = QM_STOP_QUEUE_FAIL;
2246
return -ETIMEDOUT;
2247
}
2248
2249
usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2250
}
2251
2252
return 0;
2253
}
2254
2255
/**
2256
* qm_drain_qp() - Drain a qp.
2257
* @qp: The qp we want to drain.
2258
*
2259
* If the device does not support stopping queue by sending mailbox,
2260
* determine whether the queue is cleared by judging the tail pointers of
2261
* sq and cq.
2262
*/
2263
static int qm_drain_qp(struct hisi_qp *qp)
2264
{
2265
struct hisi_qm *qm = qp->qm;
2266
u32 state = 0;
2267
int ret;
2268
2269
/* No need to judge if master OOO is blocked. */
2270
if (qm_check_dev_error(qm))
2271
return 0;
2272
2273
/* HW V3 supports drain qp by device */
2274
if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2275
ret = qm_stop_qp(qp);
2276
if (ret) {
2277
dev_err(&qm->pdev->dev, "Failed to stop qp!\n");
2278
state = QM_STOP_QUEUE_FAIL;
2279
goto set_dev_state;
2280
}
2281
return ret;
2282
}
2283
2284
ret = qm_wait_qp_empty(qm, &state, qp->qp_id);
2285
if (ret)
2286
goto set_dev_state;
2287
2288
return 0;
2289
2290
set_dev_state:
2291
if (qm->debug.dev_dfx.dev_timeout)
2292
qm->debug.dev_dfx.dev_state = state;
2293
2294
return ret;
2295
}
2296
2297
static void qm_stop_qp_nolock(struct hisi_qp *qp)
2298
{
2299
struct hisi_qm *qm = qp->qm;
2300
struct device *dev = &qm->pdev->dev;
2301
int ret;
2302
2303
/*
2304
* It is allowed to stop and release qp when reset, If the qp is
2305
* stopped when reset but still want to be released then, the
2306
* is_resetting flag should be set negative so that this qp will not
2307
* be restarted after reset.
2308
*/
2309
if (atomic_read(&qp->qp_status.flags) != QP_START) {
2310
qp->is_resetting = false;
2311
return;
2312
}
2313
2314
atomic_set(&qp->qp_status.flags, QP_STOP);
2315
2316
/* V3 supports direct stop function when FLR prepare */
2317
if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) {
2318
ret = qm_drain_qp(qp);
2319
if (ret)
2320
dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id);
2321
}
2322
2323
flush_workqueue(qm->wq);
2324
if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2325
qp_stop_fail_cb(qp);
2326
2327
dev_dbg(dev, "stop queue %u!", qp->qp_id);
2328
}
2329
2330
/**
2331
* hisi_qm_stop_qp() - Stop a qp in qm.
2332
* @qp: The qp we want to stop.
2333
*
2334
* This function is reverse of hisi_qm_start_qp.
2335
*/
2336
void hisi_qm_stop_qp(struct hisi_qp *qp)
2337
{
2338
down_write(&qp->qm->qps_lock);
2339
qm_stop_qp_nolock(qp);
2340
up_write(&qp->qm->qps_lock);
2341
}
2342
EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2343
2344
/**
2345
* hisi_qp_send() - Queue up a task in the hardware queue.
2346
* @qp: The qp in which to put the message.
2347
* @msg: The message.
2348
*
2349
* This function will return -EBUSY if qp is currently full, and -EAGAIN
2350
* if qp related qm is resetting.
2351
*
2352
* Note: This function may run with qm_irq_thread and ACC reset at same time.
2353
* It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2354
* reset may happen, we have no lock here considering performance. This
2355
* causes current qm_db sending fail or can not receive sended sqe. QM
2356
* sync/async receive function should handle the error sqe. ACC reset
2357
* done function should clear used sqe to 0.
2358
*/
2359
int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2360
{
2361
struct hisi_qp_status *qp_status = &qp->qp_status;
2362
u16 sq_tail = qp_status->sq_tail;
2363
u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2364
void *sqe = qm_get_avail_sqe(qp);
2365
2366
if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2367
atomic_read(&qp->qm->status.flags) == QM_STOP ||
2368
qp->is_resetting)) {
2369
dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2370
return -EAGAIN;
2371
}
2372
2373
if (!sqe)
2374
return -EBUSY;
2375
2376
memcpy(sqe, msg, qp->qm->sqe_size);
2377
2378
qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2379
atomic_inc(&qp->qp_status.used);
2380
qp_status->sq_tail = sq_tail_next;
2381
2382
return 0;
2383
}
2384
EXPORT_SYMBOL_GPL(hisi_qp_send);
2385
2386
static void hisi_qm_cache_wb(struct hisi_qm *qm)
2387
{
2388
unsigned int val;
2389
2390
if (qm->ver == QM_HW_V1)
2391
return;
2392
2393
writel(0x1, qm->io_base + QM_CACHE_WB_START);
2394
if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2395
val, val & BIT(0), POLL_PERIOD,
2396
POLL_TIMEOUT))
2397
dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2398
}
2399
2400
static void qm_qp_event_notifier(struct hisi_qp *qp)
2401
{
2402
wake_up_interruptible(&qp->uacce_q->wait);
2403
}
2404
2405
/* This function returns free number of qp in qm. */
2406
static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2407
{
2408
struct hisi_qm *qm = uacce->priv;
2409
int ret;
2410
2411
down_read(&qm->qps_lock);
2412
ret = qm->qp_num - qm->qp_in_used;
2413
up_read(&qm->qps_lock);
2414
2415
return ret;
2416
}
2417
2418
static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2419
{
2420
int i;
2421
2422
for (i = 0; i < qm->qp_num; i++)
2423
qm_set_qp_disable(&qm->qp_array[i], offset);
2424
}
2425
2426
static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2427
unsigned long arg,
2428
struct uacce_queue *q)
2429
{
2430
struct hisi_qm *qm = uacce->priv;
2431
struct hisi_qp *qp;
2432
u8 alg_type = 0;
2433
2434
qp = hisi_qm_create_qp(qm, alg_type);
2435
if (IS_ERR(qp))
2436
return PTR_ERR(qp);
2437
2438
q->priv = qp;
2439
q->uacce = uacce;
2440
qp->uacce_q = q;
2441
qp->event_cb = qm_qp_event_notifier;
2442
qp->pasid = arg;
2443
qp->is_in_kernel = false;
2444
2445
return 0;
2446
}
2447
2448
static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2449
{
2450
struct hisi_qp *qp = q->priv;
2451
2452
hisi_qm_release_qp(qp);
2453
}
2454
2455
/* map sq/cq/doorbell to user space */
2456
static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2457
struct vm_area_struct *vma,
2458
struct uacce_qfile_region *qfr)
2459
{
2460
struct hisi_qp *qp = q->priv;
2461
struct hisi_qm *qm = qp->qm;
2462
resource_size_t phys_base = qm->db_phys_base +
2463
qp->qp_id * qm->db_interval;
2464
size_t sz = vma->vm_end - vma->vm_start;
2465
struct pci_dev *pdev = qm->pdev;
2466
struct device *dev = &pdev->dev;
2467
unsigned long vm_pgoff;
2468
int ret;
2469
2470
switch (qfr->type) {
2471
case UACCE_QFRT_MMIO:
2472
if (qm->ver == QM_HW_V1) {
2473
if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2474
return -EINVAL;
2475
} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2476
if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2477
QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2478
return -EINVAL;
2479
} else {
2480
if (sz > qm->db_interval)
2481
return -EINVAL;
2482
}
2483
2484
vm_flags_set(vma, VM_IO);
2485
2486
return remap_pfn_range(vma, vma->vm_start,
2487
phys_base >> PAGE_SHIFT,
2488
sz, pgprot_noncached(vma->vm_page_prot));
2489
case UACCE_QFRT_DUS:
2490
if (sz != qp->qdma.size)
2491
return -EINVAL;
2492
2493
/*
2494
* dma_mmap_coherent() requires vm_pgoff as 0
2495
* restore vm_pfoff to initial value for mmap()
2496
*/
2497
vm_pgoff = vma->vm_pgoff;
2498
vma->vm_pgoff = 0;
2499
ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2500
qp->qdma.dma, sz);
2501
vma->vm_pgoff = vm_pgoff;
2502
return ret;
2503
2504
default:
2505
return -EINVAL;
2506
}
2507
}
2508
2509
static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2510
{
2511
struct hisi_qp *qp = q->priv;
2512
2513
return hisi_qm_start_qp(qp, qp->pasid);
2514
}
2515
2516
static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2517
{
2518
struct hisi_qp *qp = q->priv;
2519
struct hisi_qm *qm = qp->qm;
2520
struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx;
2521
u32 i = 0;
2522
2523
hisi_qm_stop_qp(qp);
2524
2525
if (!dev_dfx->dev_timeout || !dev_dfx->dev_state)
2526
return;
2527
2528
/*
2529
* After the queue fails to be stopped,
2530
* wait for a period of time before releasing the queue.
2531
*/
2532
while (++i) {
2533
msleep(WAIT_PERIOD);
2534
2535
/* Since dev_timeout maybe modified, check i >= dev_timeout */
2536
if (i >= dev_dfx->dev_timeout) {
2537
dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n",
2538
qp->qp_id, dev_dfx->dev_state);
2539
dev_dfx->dev_state = QM_FINISH_WAIT;
2540
break;
2541
}
2542
}
2543
}
2544
2545
static int hisi_qm_is_q_updated(struct uacce_queue *q)
2546
{
2547
struct hisi_qp *qp = q->priv;
2548
struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2549
int updated = 0;
2550
2551
while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2552
/* make sure to read data from memory */
2553
dma_rmb();
2554
qm_cq_head_update(qp);
2555
cqe = qp->cqe + qp->qp_status.cq_head;
2556
updated = 1;
2557
}
2558
2559
return updated;
2560
}
2561
2562
static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2563
{
2564
struct hisi_qm *qm = q->uacce->priv;
2565
struct hisi_qp *qp = q->priv;
2566
2567
down_write(&qm->qps_lock);
2568
qp->alg_type = type;
2569
up_write(&qm->qps_lock);
2570
}
2571
2572
static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2573
unsigned long arg)
2574
{
2575
struct hisi_qp *qp = q->priv;
2576
struct hisi_qp_info qp_info;
2577
struct hisi_qp_ctx qp_ctx;
2578
2579
if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2580
if (copy_from_user(&qp_ctx, (void __user *)arg,
2581
sizeof(struct hisi_qp_ctx)))
2582
return -EFAULT;
2583
2584
if (qp_ctx.qc_type > QM_MAX_QC_TYPE)
2585
return -EINVAL;
2586
2587
qm_set_sqctype(q, qp_ctx.qc_type);
2588
qp_ctx.id = qp->qp_id;
2589
2590
if (copy_to_user((void __user *)arg, &qp_ctx,
2591
sizeof(struct hisi_qp_ctx)))
2592
return -EFAULT;
2593
2594
return 0;
2595
} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2596
if (copy_from_user(&qp_info, (void __user *)arg,
2597
sizeof(struct hisi_qp_info)))
2598
return -EFAULT;
2599
2600
qp_info.sqe_size = qp->qm->sqe_size;
2601
qp_info.sq_depth = qp->sq_depth;
2602
qp_info.cq_depth = qp->cq_depth;
2603
2604
if (copy_to_user((void __user *)arg, &qp_info,
2605
sizeof(struct hisi_qp_info)))
2606
return -EFAULT;
2607
2608
return 0;
2609
}
2610
2611
return -EINVAL;
2612
}
2613
2614
/**
2615
* qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2616
* according to user's configuration of error threshold.
2617
* @qm: the uacce device
2618
*/
2619
static int qm_hw_err_isolate(struct hisi_qm *qm)
2620
{
2621
struct qm_hw_err *err, *tmp, *hw_err;
2622
struct qm_err_isolate *isolate;
2623
u32 count = 0;
2624
2625
isolate = &qm->isolate_data;
2626
2627
#define SECONDS_PER_HOUR 3600
2628
2629
/* All the hw errs are processed by PF driver */
2630
if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2631
return 0;
2632
2633
hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2634
if (!hw_err)
2635
return -ENOMEM;
2636
2637
/*
2638
* Time-stamp every slot AER error. Then check the AER error log when the
2639
* next device AER error occurred. if the device slot AER error count exceeds
2640
* the setting error threshold in one hour, the isolated state will be set
2641
* to true. And the AER error logs that exceed one hour will be cleared.
2642
*/
2643
mutex_lock(&isolate->isolate_lock);
2644
hw_err->timestamp = jiffies;
2645
list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2646
if ((hw_err->timestamp - err->timestamp) / HZ >
2647
SECONDS_PER_HOUR) {
2648
list_del(&err->list);
2649
kfree(err);
2650
} else {
2651
count++;
2652
}
2653
}
2654
list_add(&hw_err->list, &isolate->qm_hw_errs);
2655
mutex_unlock(&isolate->isolate_lock);
2656
2657
if (count >= isolate->err_threshold)
2658
isolate->is_isolate = true;
2659
2660
return 0;
2661
}
2662
2663
static void qm_hw_err_destroy(struct hisi_qm *qm)
2664
{
2665
struct qm_hw_err *err, *tmp;
2666
2667
mutex_lock(&qm->isolate_data.isolate_lock);
2668
list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2669
list_del(&err->list);
2670
kfree(err);
2671
}
2672
mutex_unlock(&qm->isolate_data.isolate_lock);
2673
}
2674
2675
static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2676
{
2677
struct hisi_qm *qm = uacce->priv;
2678
struct hisi_qm *pf_qm;
2679
2680
if (uacce->is_vf)
2681
pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2682
else
2683
pf_qm = qm;
2684
2685
return pf_qm->isolate_data.is_isolate ?
2686
UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2687
}
2688
2689
static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2690
{
2691
struct hisi_qm *qm = uacce->priv;
2692
2693
/* Must be set by PF */
2694
if (uacce->is_vf)
2695
return -EPERM;
2696
2697
if (qm->isolate_data.is_isolate)
2698
return -EPERM;
2699
2700
qm->isolate_data.err_threshold = num;
2701
2702
/* After the policy is updated, need to reset the hardware err list */
2703
qm_hw_err_destroy(qm);
2704
2705
return 0;
2706
}
2707
2708
static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2709
{
2710
struct hisi_qm *qm = uacce->priv;
2711
struct hisi_qm *pf_qm;
2712
2713
if (uacce->is_vf) {
2714
pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2715
return pf_qm->isolate_data.err_threshold;
2716
}
2717
2718
return qm->isolate_data.err_threshold;
2719
}
2720
2721
static const struct uacce_ops uacce_qm_ops = {
2722
.get_available_instances = hisi_qm_get_available_instances,
2723
.get_queue = hisi_qm_uacce_get_queue,
2724
.put_queue = hisi_qm_uacce_put_queue,
2725
.start_queue = hisi_qm_uacce_start_queue,
2726
.stop_queue = hisi_qm_uacce_stop_queue,
2727
.mmap = hisi_qm_uacce_mmap,
2728
.ioctl = hisi_qm_uacce_ioctl,
2729
.is_q_updated = hisi_qm_is_q_updated,
2730
.get_isolate_state = hisi_qm_get_isolate_state,
2731
.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2732
.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2733
};
2734
2735
static void qm_remove_uacce(struct hisi_qm *qm)
2736
{
2737
struct uacce_device *uacce = qm->uacce;
2738
2739
if (qm->use_sva) {
2740
qm_hw_err_destroy(qm);
2741
uacce_remove(uacce);
2742
qm->uacce = NULL;
2743
}
2744
}
2745
2746
static void qm_uacce_api_ver_init(struct hisi_qm *qm)
2747
{
2748
struct uacce_device *uacce = qm->uacce;
2749
2750
switch (qm->ver) {
2751
case QM_HW_V1:
2752
uacce->api_ver = HISI_QM_API_VER_BASE;
2753
break;
2754
case QM_HW_V2:
2755
uacce->api_ver = HISI_QM_API_VER2_BASE;
2756
break;
2757
case QM_HW_V3:
2758
case QM_HW_V4:
2759
uacce->api_ver = HISI_QM_API_VER3_BASE;
2760
break;
2761
default:
2762
uacce->api_ver = HISI_QM_API_VER5_BASE;
2763
break;
2764
}
2765
}
2766
2767
static int qm_alloc_uacce(struct hisi_qm *qm)
2768
{
2769
struct pci_dev *pdev = qm->pdev;
2770
struct uacce_device *uacce;
2771
unsigned long mmio_page_nr;
2772
unsigned long dus_page_nr;
2773
u16 sq_depth, cq_depth;
2774
struct uacce_interface interface = {
2775
.flags = UACCE_DEV_SVA,
2776
.ops = &uacce_qm_ops,
2777
};
2778
int ret;
2779
2780
ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2781
sizeof(interface.name));
2782
if (ret < 0)
2783
return -ENAMETOOLONG;
2784
2785
uacce = uacce_alloc(&pdev->dev, &interface);
2786
if (IS_ERR(uacce))
2787
return PTR_ERR(uacce);
2788
2789
if (uacce->flags & UACCE_DEV_SVA) {
2790
qm->use_sva = true;
2791
} else {
2792
/* only consider sva case */
2793
qm_remove_uacce(qm);
2794
return -EINVAL;
2795
}
2796
2797
uacce->is_vf = pdev->is_virtfn;
2798
uacce->priv = qm;
2799
2800
if (qm->ver == QM_HW_V1)
2801
mmio_page_nr = QM_DOORBELL_PAGE_NR;
2802
else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2803
mmio_page_nr = QM_DOORBELL_PAGE_NR +
2804
QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2805
else
2806
mmio_page_nr = qm->db_interval / PAGE_SIZE;
2807
2808
qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2809
2810
/* Add one more page for device or qp status */
2811
dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2812
sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >>
2813
PAGE_SHIFT;
2814
2815
uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2816
uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr;
2817
2818
qm->uacce = uacce;
2819
qm_uacce_api_ver_init(qm);
2820
INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2821
mutex_init(&qm->isolate_data.isolate_lock);
2822
2823
return 0;
2824
}
2825
2826
/**
2827
* qm_frozen() - Try to froze QM to cut continuous queue request. If
2828
* there is user on the QM, return failure without doing anything.
2829
* @qm: The qm needed to be fronzen.
2830
*
2831
* This function frozes QM, then we can do SRIOV disabling.
2832
*/
2833
static int qm_frozen(struct hisi_qm *qm)
2834
{
2835
if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2836
return 0;
2837
2838
down_write(&qm->qps_lock);
2839
2840
if (!qm->qp_in_used) {
2841
qm->qp_in_used = qm->qp_num;
2842
up_write(&qm->qps_lock);
2843
set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2844
return 0;
2845
}
2846
2847
up_write(&qm->qps_lock);
2848
2849
return -EBUSY;
2850
}
2851
2852
static int qm_try_frozen_vfs(struct pci_dev *pdev,
2853
struct hisi_qm_list *qm_list)
2854
{
2855
struct hisi_qm *qm, *vf_qm;
2856
struct pci_dev *dev;
2857
int ret = 0;
2858
2859
if (!qm_list || !pdev)
2860
return -EINVAL;
2861
2862
/* Try to frozen all the VFs as disable SRIOV */
2863
mutex_lock(&qm_list->lock);
2864
list_for_each_entry(qm, &qm_list->list, list) {
2865
dev = qm->pdev;
2866
if (dev == pdev)
2867
continue;
2868
if (pci_physfn(dev) == pdev) {
2869
vf_qm = pci_get_drvdata(dev);
2870
ret = qm_frozen(vf_qm);
2871
if (ret)
2872
goto frozen_fail;
2873
}
2874
}
2875
2876
frozen_fail:
2877
mutex_unlock(&qm_list->lock);
2878
2879
return ret;
2880
}
2881
2882
/**
2883
* hisi_qm_wait_task_finish() - Wait until the task is finished
2884
* when removing the driver.
2885
* @qm: The qm needed to wait for the task to finish.
2886
* @qm_list: The list of all available devices.
2887
*/
2888
void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2889
{
2890
while (qm_frozen(qm) ||
2891
((qm->fun_type == QM_HW_PF) &&
2892
qm_try_frozen_vfs(qm->pdev, qm_list))) {
2893
msleep(WAIT_PERIOD);
2894
}
2895
2896
while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2897
test_bit(QM_RESETTING, &qm->misc_ctl))
2898
msleep(WAIT_PERIOD);
2899
2900
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2901
flush_work(&qm->cmd_process);
2902
2903
udelay(REMOVE_WAIT_DELAY);
2904
}
2905
EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2906
2907
static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2908
{
2909
struct device *dev = &qm->pdev->dev;
2910
struct qm_dma *qdma;
2911
int i;
2912
2913
for (i = num - 1; i >= 0; i--) {
2914
qdma = &qm->qp_array[i].qdma;
2915
dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2916
kfree(qm->poll_data[i].qp_finish_id);
2917
}
2918
2919
kfree(qm->poll_data);
2920
kfree(qm->qp_array);
2921
}
2922
2923
static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2924
u16 sq_depth, u16 cq_depth)
2925
{
2926
struct device *dev = &qm->pdev->dev;
2927
size_t off = qm->sqe_size * sq_depth;
2928
struct hisi_qp *qp;
2929
int ret = -ENOMEM;
2930
2931
qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2932
GFP_KERNEL);
2933
if (!qm->poll_data[id].qp_finish_id)
2934
return -ENOMEM;
2935
2936
qp = &qm->qp_array[id];
2937
qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2938
GFP_KERNEL);
2939
if (!qp->qdma.va)
2940
goto err_free_qp_finish_id;
2941
2942
qp->sqe = qp->qdma.va;
2943
qp->sqe_dma = qp->qdma.dma;
2944
qp->cqe = qp->qdma.va + off;
2945
qp->cqe_dma = qp->qdma.dma + off;
2946
qp->qdma.size = dma_size;
2947
qp->sq_depth = sq_depth;
2948
qp->cq_depth = cq_depth;
2949
qp->qm = qm;
2950
qp->qp_id = id;
2951
2952
return 0;
2953
2954
err_free_qp_finish_id:
2955
kfree(qm->poll_data[id].qp_finish_id);
2956
return ret;
2957
}
2958
2959
static void hisi_qm_pre_init(struct hisi_qm *qm)
2960
{
2961
struct pci_dev *pdev = qm->pdev;
2962
2963
if (qm->ver == QM_HW_V1)
2964
qm->ops = &qm_hw_ops_v1;
2965
else if (qm->ver == QM_HW_V2)
2966
qm->ops = &qm_hw_ops_v2;
2967
else if (qm->ver == QM_HW_V3)
2968
qm->ops = &qm_hw_ops_v3;
2969
else
2970
qm->ops = &qm_hw_ops_v4;
2971
2972
pci_set_drvdata(pdev, qm);
2973
mutex_init(&qm->mailbox_lock);
2974
mutex_init(&qm->ifc_lock);
2975
init_rwsem(&qm->qps_lock);
2976
qm->qp_in_used = 0;
2977
if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2978
if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2979
dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2980
}
2981
}
2982
2983
static void qm_cmd_uninit(struct hisi_qm *qm)
2984
{
2985
u32 val;
2986
2987
if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2988
return;
2989
2990
val = readl(qm->io_base + QM_IFC_INT_MASK);
2991
val |= QM_IFC_INT_DISABLE;
2992
writel(val, qm->io_base + QM_IFC_INT_MASK);
2993
}
2994
2995
static void qm_cmd_init(struct hisi_qm *qm)
2996
{
2997
u32 val;
2998
2999
if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3000
return;
3001
3002
/* Clear communication interrupt source */
3003
qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3004
3005
/* Enable pf to vf communication reg. */
3006
val = readl(qm->io_base + QM_IFC_INT_MASK);
3007
val &= ~QM_IFC_INT_DISABLE;
3008
writel(val, qm->io_base + QM_IFC_INT_MASK);
3009
}
3010
3011
static void qm_put_pci_res(struct hisi_qm *qm)
3012
{
3013
struct pci_dev *pdev = qm->pdev;
3014
3015
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
3016
iounmap(qm->db_io_base);
3017
3018
iounmap(qm->io_base);
3019
pci_release_mem_regions(pdev);
3020
}
3021
3022
static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3023
{
3024
struct pci_dev *pdev = qm->pdev;
3025
3026
pci_free_irq_vectors(pdev);
3027
qm_put_pci_res(qm);
3028
pci_disable_device(pdev);
3029
}
3030
3031
static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
3032
{
3033
if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
3034
writel(state, qm->io_base + QM_VF_STATE);
3035
}
3036
3037
static void hisi_qm_unint_work(struct hisi_qm *qm)
3038
{
3039
destroy_workqueue(qm->wq);
3040
}
3041
3042
static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
3043
{
3044
struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
3045
struct device *dev = &qm->pdev->dev;
3046
3047
dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
3048
}
3049
3050
static void hisi_qm_memory_uninit(struct hisi_qm *qm)
3051
{
3052
struct device *dev = &qm->pdev->dev;
3053
3054
hisi_qp_memory_uninit(qm, qm->qp_num);
3055
hisi_qm_free_rsv_buf(qm);
3056
if (qm->qdma.va) {
3057
hisi_qm_cache_wb(qm);
3058
dma_free_coherent(dev, qm->qdma.size,
3059
qm->qdma.va, qm->qdma.dma);
3060
}
3061
3062
idr_destroy(&qm->qp_idr);
3063
3064
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3065
kfree(qm->factor);
3066
}
3067
3068
/**
3069
* hisi_qm_uninit() - Uninitialize qm.
3070
* @qm: The qm needed uninit.
3071
*
3072
* This function uninits qm related device resources.
3073
*/
3074
void hisi_qm_uninit(struct hisi_qm *qm)
3075
{
3076
qm_cmd_uninit(qm);
3077
hisi_qm_unint_work(qm);
3078
3079
down_write(&qm->qps_lock);
3080
hisi_qm_memory_uninit(qm);
3081
hisi_qm_set_state(qm, QM_NOT_READY);
3082
up_write(&qm->qps_lock);
3083
3084
qm_remove_uacce(qm);
3085
qm_irqs_unregister(qm);
3086
hisi_qm_pci_uninit(qm);
3087
}
3088
EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3089
3090
/**
3091
* hisi_qm_get_vft() - Get vft from a qm.
3092
* @qm: The qm we want to get its vft.
3093
* @base: The base number of queue in vft.
3094
* @number: The number of queues in vft.
3095
*
3096
* We can allocate multiple queues to a qm by configuring virtual function
3097
* table. We get related configures by this function. Normally, we call this
3098
* function in VF driver to get the queue information.
3099
*
3100
* qm hw v1 does not support this interface.
3101
*/
3102
static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3103
{
3104
if (!base || !number)
3105
return -EINVAL;
3106
3107
if (!qm->ops->get_vft) {
3108
dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3109
return -EINVAL;
3110
}
3111
3112
return qm->ops->get_vft(qm, base, number);
3113
}
3114
3115
/**
3116
* hisi_qm_set_vft() - Set vft to a qm.
3117
* @qm: The qm we want to set its vft.
3118
* @fun_num: The function number.
3119
* @base: The base number of queue in vft.
3120
* @number: The number of queues in vft.
3121
*
3122
* This function is alway called in PF driver, it is used to assign queues
3123
* among PF and VFs.
3124
*
3125
* Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3126
* Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3127
* (VF function number 0x2)
3128
*/
3129
static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3130
u32 number)
3131
{
3132
u32 max_q_num = qm->ctrl_qp_num;
3133
3134
if (base >= max_q_num || number > max_q_num ||
3135
(base + number) > max_q_num)
3136
return -EINVAL;
3137
3138
return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3139
}
3140
3141
static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3142
{
3143
struct hisi_qm_status *status = &qm->status;
3144
3145
status->eq_head = 0;
3146
status->aeq_head = 0;
3147
status->eqc_phase = true;
3148
status->aeqc_phase = true;
3149
}
3150
3151
static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3152
{
3153
/* Clear eq/aeq interrupt source */
3154
qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3155
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3156
3157
writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3158
writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3159
}
3160
3161
static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3162
{
3163
writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3164
writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3165
}
3166
3167
static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3168
{
3169
struct qm_eqc eqc = {0};
3170
3171
eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3172
eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3173
if (qm->ver == QM_HW_V1)
3174
eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3175
eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3176
3177
return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
3178
}
3179
3180
static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3181
{
3182
struct qm_aeqc aeqc = {0};
3183
3184
aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3185
aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3186
aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3187
3188
return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
3189
}
3190
3191
static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3192
{
3193
struct device *dev = &qm->pdev->dev;
3194
int ret;
3195
3196
qm_init_eq_aeq_status(qm);
3197
3198
/* Before starting the dev, clear the memory and then configure to device using. */
3199
memset(qm->qdma.va, 0, qm->qdma.size);
3200
3201
ret = qm_eq_ctx_cfg(qm);
3202
if (ret) {
3203
dev_err(dev, "Set eqc failed!\n");
3204
return ret;
3205
}
3206
3207
return qm_aeq_ctx_cfg(qm);
3208
}
3209
3210
static int __hisi_qm_start(struct hisi_qm *qm)
3211
{
3212
struct device *dev = &qm->pdev->dev;
3213
int ret;
3214
3215
if (!qm->qdma.va) {
3216
dev_err(dev, "qm qdma is NULL!\n");
3217
return -EINVAL;
3218
}
3219
3220
if (qm->fun_type == QM_HW_PF) {
3221
ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3222
if (ret)
3223
return ret;
3224
}
3225
3226
ret = qm_eq_aeq_ctx_cfg(qm);
3227
if (ret)
3228
return ret;
3229
3230
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3231
if (ret)
3232
return ret;
3233
3234
ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3235
if (ret)
3236
return ret;
3237
3238
qm_init_prefetch(qm);
3239
qm_enable_eq_aeq_interrupts(qm);
3240
3241
return 0;
3242
}
3243
3244
/**
3245
* hisi_qm_start() - start qm
3246
* @qm: The qm to be started.
3247
*
3248
* This function starts a qm, then we can allocate qp from this qm.
3249
*/
3250
int hisi_qm_start(struct hisi_qm *qm)
3251
{
3252
struct device *dev = &qm->pdev->dev;
3253
int ret = 0;
3254
3255
down_write(&qm->qps_lock);
3256
3257
dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3258
3259
if (!qm->qp_num) {
3260
dev_err(dev, "qp_num should not be 0\n");
3261
ret = -EINVAL;
3262
goto err_unlock;
3263
}
3264
3265
ret = __hisi_qm_start(qm);
3266
if (ret)
3267
goto err_unlock;
3268
3269
atomic_set(&qm->status.flags, QM_WORK);
3270
hisi_qm_set_state(qm, QM_READY);
3271
3272
err_unlock:
3273
up_write(&qm->qps_lock);
3274
return ret;
3275
}
3276
EXPORT_SYMBOL_GPL(hisi_qm_start);
3277
3278
static int qm_restart(struct hisi_qm *qm)
3279
{
3280
struct device *dev = &qm->pdev->dev;
3281
struct hisi_qp *qp;
3282
int ret, i;
3283
3284
ret = hisi_qm_start(qm);
3285
if (ret < 0)
3286
return ret;
3287
3288
down_write(&qm->qps_lock);
3289
for (i = 0; i < qm->qp_num; i++) {
3290
qp = &qm->qp_array[i];
3291
if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3292
qp->is_resetting == true && qp->is_in_kernel == true) {
3293
ret = qm_start_qp_nolock(qp, 0);
3294
if (ret < 0) {
3295
dev_err(dev, "Failed to start qp%d!\n", i);
3296
3297
up_write(&qm->qps_lock);
3298
return ret;
3299
}
3300
qp->is_resetting = false;
3301
}
3302
}
3303
up_write(&qm->qps_lock);
3304
3305
return 0;
3306
}
3307
3308
/* Stop started qps in reset flow */
3309
static void qm_stop_started_qp(struct hisi_qm *qm)
3310
{
3311
struct hisi_qp *qp;
3312
int i;
3313
3314
for (i = 0; i < qm->qp_num; i++) {
3315
qp = &qm->qp_array[i];
3316
if (atomic_read(&qp->qp_status.flags) == QP_START) {
3317
qp->is_resetting = true;
3318
qm_stop_qp_nolock(qp);
3319
}
3320
}
3321
}
3322
3323
/**
3324
* qm_invalid_queues() - invalid all queues in use.
3325
* @qm: The qm in which the queues will be invalidated.
3326
*
3327
* This function invalid all queues in use. If the doorbell command is sent
3328
* to device in user space after the device is reset, the device discards
3329
* the doorbell command.
3330
*/
3331
static void qm_invalid_queues(struct hisi_qm *qm)
3332
{
3333
struct hisi_qp *qp;
3334
struct qm_sqc *sqc;
3335
struct qm_cqc *cqc;
3336
int i;
3337
3338
/*
3339
* Normal stop queues is no longer used and does not need to be
3340
* invalid queues.
3341
*/
3342
if (qm->status.stop_reason == QM_NORMAL)
3343
return;
3344
3345
if (qm->status.stop_reason == QM_DOWN)
3346
hisi_qm_cache_wb(qm);
3347
3348
for (i = 0; i < qm->qp_num; i++) {
3349
qp = &qm->qp_array[i];
3350
if (!qp->is_resetting)
3351
continue;
3352
3353
/* Modify random data and set sqc close bit to invalid queue. */
3354
sqc = qm->sqc + i;
3355
cqc = qm->cqc + i;
3356
sqc->w8 = cpu_to_le16(QM_XQC_RANDOM_DATA);
3357
sqc->w13 = cpu_to_le16(QM_SQC_DISABLE_QP);
3358
cqc->w8 = cpu_to_le16(QM_XQC_RANDOM_DATA);
3359
if (qp->is_in_kernel)
3360
memset(qp->qdma.va, 0, qp->qdma.size);
3361
}
3362
}
3363
3364
/**
3365
* hisi_qm_stop() - Stop a qm.
3366
* @qm: The qm which will be stopped.
3367
* @r: The reason to stop qm.
3368
*
3369
* This function stops qm and its qps, then qm can not accept request.
3370
* Related resources are not released at this state, we can use hisi_qm_start
3371
* to let qm start again.
3372
*/
3373
int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3374
{
3375
struct device *dev = &qm->pdev->dev;
3376
int ret = 0;
3377
3378
down_write(&qm->qps_lock);
3379
3380
if (atomic_read(&qm->status.flags) == QM_STOP)
3381
goto err_unlock;
3382
3383
/* Stop all the request sending at first. */
3384
atomic_set(&qm->status.flags, QM_STOP);
3385
qm->status.stop_reason = r;
3386
3387
if (qm->status.stop_reason != QM_NORMAL) {
3388
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3389
/*
3390
* When performing soft reset, the hardware will no longer
3391
* do tasks, and the tasks in the device will be flushed
3392
* out directly since the master ooo is closed.
3393
*/
3394
if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) &&
3395
r != QM_SOFT_RESET) {
3396
ret = qm_drain_qm(qm);
3397
if (ret) {
3398
dev_err(dev, "failed to drain qm!\n");
3399
goto err_unlock;
3400
}
3401
}
3402
3403
qm_stop_started_qp(qm);
3404
3405
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3406
}
3407
3408
qm_disable_eq_aeq_interrupts(qm);
3409
if (qm->fun_type == QM_HW_PF) {
3410
ret = hisi_qm_set_vft(qm, 0, 0, 0);
3411
if (ret < 0) {
3412
dev_err(dev, "Failed to set vft!\n");
3413
ret = -EBUSY;
3414
goto err_unlock;
3415
}
3416
}
3417
3418
qm_invalid_queues(qm);
3419
qm->status.stop_reason = QM_NORMAL;
3420
3421
err_unlock:
3422
up_write(&qm->qps_lock);
3423
return ret;
3424
}
3425
EXPORT_SYMBOL_GPL(hisi_qm_stop);
3426
3427
static void qm_hw_error_init(struct hisi_qm *qm)
3428
{
3429
if (!qm->ops->hw_error_init) {
3430
dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3431
return;
3432
}
3433
3434
qm->ops->hw_error_init(qm);
3435
}
3436
3437
static void qm_hw_error_uninit(struct hisi_qm *qm)
3438
{
3439
if (!qm->ops->hw_error_uninit) {
3440
dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3441
return;
3442
}
3443
3444
qm->ops->hw_error_uninit(qm);
3445
}
3446
3447
static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3448
{
3449
if (!qm->ops->hw_error_handle) {
3450
dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3451
return ACC_ERR_NONE;
3452
}
3453
3454
return qm->ops->hw_error_handle(qm);
3455
}
3456
3457
/**
3458
* hisi_qm_dev_err_init() - Initialize device error configuration.
3459
* @qm: The qm for which we want to do error initialization.
3460
*
3461
* Initialize QM and device error related configuration.
3462
*/
3463
void hisi_qm_dev_err_init(struct hisi_qm *qm)
3464
{
3465
if (qm->fun_type == QM_HW_VF)
3466
return;
3467
3468
qm_hw_error_init(qm);
3469
3470
if (!qm->err_ini->hw_err_enable) {
3471
dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3472
return;
3473
}
3474
qm->err_ini->hw_err_enable(qm);
3475
}
3476
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3477
3478
/**
3479
* hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3480
* @qm: The qm for which we want to do error uninitialization.
3481
*
3482
* Uninitialize QM and device error related configuration.
3483
*/
3484
void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3485
{
3486
if (qm->fun_type == QM_HW_VF)
3487
return;
3488
3489
qm_hw_error_uninit(qm);
3490
3491
if (!qm->err_ini->hw_err_disable) {
3492
dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3493
return;
3494
}
3495
qm->err_ini->hw_err_disable(qm);
3496
}
3497
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3498
3499
/**
3500
* hisi_qm_free_qps() - free multiple queue pairs.
3501
* @qps: The queue pairs need to be freed.
3502
* @qp_num: The num of queue pairs.
3503
*/
3504
void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3505
{
3506
int i;
3507
3508
if (!qps || qp_num <= 0)
3509
return;
3510
3511
for (i = qp_num - 1; i >= 0; i--)
3512
hisi_qm_release_qp(qps[i]);
3513
}
3514
EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3515
3516
static void free_list(struct list_head *head)
3517
{
3518
struct hisi_qm_resource *res, *tmp;
3519
3520
list_for_each_entry_safe(res, tmp, head, list) {
3521
list_del(&res->list);
3522
kfree(res);
3523
}
3524
}
3525
3526
static int hisi_qm_sort_devices(int node, struct list_head *head,
3527
struct hisi_qm_list *qm_list)
3528
{
3529
struct hisi_qm_resource *res, *tmp;
3530
struct hisi_qm *qm;
3531
struct list_head *n;
3532
struct device *dev;
3533
int dev_node;
3534
3535
list_for_each_entry(qm, &qm_list->list, list) {
3536
dev = &qm->pdev->dev;
3537
3538
dev_node = dev_to_node(dev);
3539
if (dev_node < 0)
3540
dev_node = 0;
3541
3542
res = kzalloc(sizeof(*res), GFP_KERNEL);
3543
if (!res)
3544
return -ENOMEM;
3545
3546
res->qm = qm;
3547
res->distance = node_distance(dev_node, node);
3548
n = head;
3549
list_for_each_entry(tmp, head, list) {
3550
if (res->distance < tmp->distance) {
3551
n = &tmp->list;
3552
break;
3553
}
3554
}
3555
list_add_tail(&res->list, n);
3556
}
3557
3558
return 0;
3559
}
3560
3561
/**
3562
* hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3563
* @qm_list: The list of all available devices.
3564
* @qp_num: The number of queue pairs need created.
3565
* @alg_type: The algorithm type.
3566
* @node: The numa node.
3567
* @qps: The queue pairs need created.
3568
*
3569
* This function will sort all available device according to numa distance.
3570
* Then try to create all queue pairs from one device, if all devices do
3571
* not meet the requirements will return error.
3572
*/
3573
int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3574
u8 alg_type, int node, struct hisi_qp **qps)
3575
{
3576
struct hisi_qm_resource *tmp;
3577
int ret = -ENODEV;
3578
LIST_HEAD(head);
3579
int i;
3580
3581
if (!qps || !qm_list || qp_num <= 0)
3582
return -EINVAL;
3583
3584
mutex_lock(&qm_list->lock);
3585
if (hisi_qm_sort_devices(node, &head, qm_list)) {
3586
mutex_unlock(&qm_list->lock);
3587
goto err;
3588
}
3589
3590
list_for_each_entry(tmp, &head, list) {
3591
for (i = 0; i < qp_num; i++) {
3592
qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3593
if (IS_ERR(qps[i])) {
3594
hisi_qm_free_qps(qps, i);
3595
break;
3596
}
3597
}
3598
3599
if (i == qp_num) {
3600
ret = 0;
3601
break;
3602
}
3603
}
3604
3605
mutex_unlock(&qm_list->lock);
3606
if (ret)
3607
pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3608
node, alg_type, qp_num);
3609
3610
err:
3611
free_list(&head);
3612
return ret;
3613
}
3614
EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3615
3616
static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3617
{
3618
u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3619
u32 max_qp_num = qm->max_qp_num;
3620
u32 q_base = qm->qp_num;
3621
int ret;
3622
3623
if (!num_vfs)
3624
return -EINVAL;
3625
3626
vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3627
3628
/* If vfs_q_num is less than num_vfs, return error. */
3629
if (vfs_q_num < num_vfs)
3630
return -EINVAL;
3631
3632
q_num = vfs_q_num / num_vfs;
3633
remain_q_num = vfs_q_num % num_vfs;
3634
3635
for (i = num_vfs; i > 0; i--) {
3636
/*
3637
* if q_num + remain_q_num > max_qp_num in last vf, divide the
3638
* remaining queues equally.
3639
*/
3640
if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3641
act_q_num = q_num + remain_q_num;
3642
remain_q_num = 0;
3643
} else if (remain_q_num > 0) {
3644
act_q_num = q_num + 1;
3645
remain_q_num--;
3646
} else {
3647
act_q_num = q_num;
3648
}
3649
3650
act_q_num = min(act_q_num, max_qp_num);
3651
ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3652
if (ret) {
3653
for (j = num_vfs; j > i; j--)
3654
hisi_qm_set_vft(qm, j, 0, 0);
3655
return ret;
3656
}
3657
q_base += act_q_num;
3658
}
3659
3660
return 0;
3661
}
3662
3663
static void qm_clear_vft_config(struct hisi_qm *qm)
3664
{
3665
u32 i;
3666
3667
/*
3668
* When disabling SR-IOV, clear the configuration of each VF in the hardware
3669
* sequentially. Failure to clear a single VF should not affect the clearing
3670
* operation of other VFs.
3671
*/
3672
for (i = 1; i <= qm->vfs_num; i++)
3673
(void)hisi_qm_set_vft(qm, i, 0, 0);
3674
3675
qm->vfs_num = 0;
3676
}
3677
3678
static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3679
{
3680
struct device *dev = &qm->pdev->dev;
3681
u32 ir = qos * QM_QOS_RATE;
3682
int ret, total_vfs, i;
3683
3684
total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3685
if (fun_index > total_vfs)
3686
return -EINVAL;
3687
3688
qm->factor[fun_index].func_qos = qos;
3689
3690
ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3691
if (ret) {
3692
dev_err(dev, "failed to calculate shaper parameter!\n");
3693
return -EINVAL;
3694
}
3695
3696
for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3697
/* The base number of queue reuse for different alg type */
3698
ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3699
if (ret) {
3700
dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3701
return -EINVAL;
3702
}
3703
}
3704
3705
return 0;
3706
}
3707
3708
static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3709
{
3710
u64 cir_u = 0, cir_b = 0, cir_s = 0;
3711
u64 shaper_vft, ir_calc, ir;
3712
unsigned int val;
3713
u32 error_rate;
3714
int ret;
3715
3716
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3717
val & BIT(0), POLL_PERIOD,
3718
POLL_TIMEOUT);
3719
if (ret)
3720
return 0;
3721
3722
writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3723
writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3724
writel(fun_index, qm->io_base + QM_VFT_CFG);
3725
3726
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3727
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3728
3729
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3730
val & BIT(0), POLL_PERIOD,
3731
POLL_TIMEOUT);
3732
if (ret)
3733
return 0;
3734
3735
shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3736
((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3737
3738
cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3739
cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3740
cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3741
3742
cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3743
cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3744
3745
ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3746
3747
ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3748
3749
error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3750
if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3751
pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3752
return 0;
3753
}
3754
3755
return ir;
3756
}
3757
3758
static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3759
{
3760
struct device *dev = &qm->pdev->dev;
3761
u32 qos;
3762
int ret;
3763
3764
qos = qm_get_shaper_vft_qos(qm, fun_num);
3765
if (!qos) {
3766
dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3767
return;
3768
}
3769
3770
ret = qm_ping_single_vf(qm, QM_PF_SET_QOS, qos, fun_num);
3771
if (ret)
3772
dev_err(dev, "failed to send command(0x%x) to VF(%u)!\n", QM_PF_SET_QOS, fun_num);
3773
}
3774
3775
static int qm_vf_read_qos(struct hisi_qm *qm)
3776
{
3777
int cnt = 0;
3778
int ret = -EINVAL;
3779
3780
/* reset mailbox qos val */
3781
qm->mb_qos = 0;
3782
3783
/* vf ping pf to get function qos */
3784
ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3785
if (ret) {
3786
pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3787
return ret;
3788
}
3789
3790
while (true) {
3791
msleep(QM_WAIT_DST_ACK);
3792
if (qm->mb_qos)
3793
break;
3794
3795
if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3796
pci_err(qm->pdev, "PF ping VF timeout!\n");
3797
return -ETIMEDOUT;
3798
}
3799
}
3800
3801
return ret;
3802
}
3803
3804
static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3805
size_t count, loff_t *pos)
3806
{
3807
struct hisi_qm *qm = filp->private_data;
3808
char tbuf[QM_DBG_READ_LEN];
3809
u32 qos_val, ir;
3810
int ret;
3811
3812
ret = hisi_qm_get_dfx_access(qm);
3813
if (ret)
3814
return ret;
3815
3816
/* Mailbox and reset cannot be operated at the same time */
3817
if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3818
pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3819
ret = -EAGAIN;
3820
goto err_put_dfx_access;
3821
}
3822
3823
if (qm->fun_type == QM_HW_PF) {
3824
ir = qm_get_shaper_vft_qos(qm, 0);
3825
} else {
3826
ret = qm_vf_read_qos(qm);
3827
if (ret)
3828
goto err_get_status;
3829
ir = qm->mb_qos;
3830
}
3831
3832
qos_val = ir / QM_QOS_RATE;
3833
ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3834
3835
ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3836
3837
err_get_status:
3838
clear_bit(QM_RESETTING, &qm->misc_ctl);
3839
err_put_dfx_access:
3840
hisi_qm_put_dfx_access(qm);
3841
return ret;
3842
}
3843
3844
static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3845
unsigned long *val,
3846
unsigned int *fun_index)
3847
{
3848
const struct bus_type *bus_type = qm->pdev->dev.bus;
3849
char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3850
char val_buf[QM_DBG_READ_LEN] = {0};
3851
struct pci_dev *pdev;
3852
struct device *dev;
3853
int ret;
3854
3855
ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3856
if (ret != QM_QOS_PARAM_NUM)
3857
return -EINVAL;
3858
3859
ret = kstrtoul(val_buf, 10, val);
3860
if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3861
pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3862
return -EINVAL;
3863
}
3864
3865
dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3866
if (!dev) {
3867
pci_err(qm->pdev, "input pci bdf number is error!\n");
3868
return -ENODEV;
3869
}
3870
3871
pdev = container_of(dev, struct pci_dev, dev);
3872
if (pci_physfn(pdev) != qm->pdev) {
3873
pci_err(qm->pdev, "the pdev input does not match the pf!\n");
3874
return -EINVAL;
3875
}
3876
3877
*fun_index = pdev->devfn;
3878
3879
return 0;
3880
}
3881
3882
static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3883
size_t count, loff_t *pos)
3884
{
3885
struct hisi_qm *qm = filp->private_data;
3886
char tbuf[QM_DBG_READ_LEN];
3887
unsigned int fun_index;
3888
unsigned long val;
3889
int len, ret;
3890
3891
if (*pos != 0)
3892
return 0;
3893
3894
if (count >= QM_DBG_READ_LEN)
3895
return -ENOSPC;
3896
3897
len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3898
if (len < 0)
3899
return len;
3900
3901
tbuf[len] = '\0';
3902
ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3903
if (ret)
3904
return ret;
3905
3906
/* Mailbox and reset cannot be operated at the same time */
3907
if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3908
pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3909
return -EAGAIN;
3910
}
3911
3912
ret = qm_pm_get_sync(qm);
3913
if (ret) {
3914
ret = -EINVAL;
3915
goto err_get_status;
3916
}
3917
3918
ret = qm_func_shaper_enable(qm, fun_index, val);
3919
if (ret) {
3920
pci_err(qm->pdev, "failed to enable function shaper!\n");
3921
ret = -EINVAL;
3922
goto err_put_sync;
3923
}
3924
3925
pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3926
fun_index, val);
3927
ret = count;
3928
3929
err_put_sync:
3930
qm_pm_put_sync(qm);
3931
err_get_status:
3932
clear_bit(QM_RESETTING, &qm->misc_ctl);
3933
return ret;
3934
}
3935
3936
static const struct file_operations qm_algqos_fops = {
3937
.owner = THIS_MODULE,
3938
.open = simple_open,
3939
.read = qm_algqos_read,
3940
.write = qm_algqos_write,
3941
};
3942
3943
/**
3944
* hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3945
* @qm: The qm for which we want to add debugfs files.
3946
*
3947
* Create function qos debugfs files, VF ping PF to get function qos.
3948
*/
3949
void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3950
{
3951
if (qm->fun_type == QM_HW_PF)
3952
debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3953
qm, &qm_algqos_fops);
3954
else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3955
debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3956
qm, &qm_algqos_fops);
3957
}
3958
3959
static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3960
{
3961
int i;
3962
3963
for (i = 1; i <= total_func; i++)
3964
qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3965
}
3966
3967
/**
3968
* hisi_qm_sriov_enable() - enable virtual functions
3969
* @pdev: the PCIe device
3970
* @max_vfs: the number of virtual functions to enable
3971
*
3972
* Returns the number of enabled VFs. If there are VFs enabled already or
3973
* max_vfs is more than the total number of device can be enabled, returns
3974
* failure.
3975
*/
3976
int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3977
{
3978
struct hisi_qm *qm = pci_get_drvdata(pdev);
3979
int pre_existing_vfs, num_vfs, total_vfs, ret;
3980
3981
ret = qm_pm_get_sync(qm);
3982
if (ret)
3983
return ret;
3984
3985
total_vfs = pci_sriov_get_totalvfs(pdev);
3986
pre_existing_vfs = pci_num_vf(pdev);
3987
if (pre_existing_vfs) {
3988
pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3989
pre_existing_vfs);
3990
goto err_put_sync;
3991
}
3992
3993
if (max_vfs > total_vfs) {
3994
pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3995
ret = -ERANGE;
3996
goto err_put_sync;
3997
}
3998
3999
num_vfs = max_vfs;
4000
4001
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
4002
hisi_qm_init_vf_qos(qm, num_vfs);
4003
4004
ret = qm_vf_q_assign(qm, num_vfs);
4005
if (ret) {
4006
pci_err(pdev, "Can't assign queues for VF!\n");
4007
goto err_put_sync;
4008
}
4009
4010
qm->vfs_num = num_vfs;
4011
ret = pci_enable_sriov(pdev, num_vfs);
4012
if (ret) {
4013
pci_err(pdev, "Can't enable VF!\n");
4014
qm_clear_vft_config(qm);
4015
goto err_put_sync;
4016
}
4017
4018
pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4019
4020
return num_vfs;
4021
4022
err_put_sync:
4023
qm_pm_put_sync(qm);
4024
return ret;
4025
}
4026
EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4027
4028
/**
4029
* hisi_qm_sriov_disable - disable virtual functions
4030
* @pdev: the PCI device.
4031
* @is_frozen: true when all the VFs are frozen.
4032
*
4033
* Return failure if there are VFs assigned already or VF is in used.
4034
*/
4035
int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4036
{
4037
struct hisi_qm *qm = pci_get_drvdata(pdev);
4038
4039
if (pci_vfs_assigned(pdev)) {
4040
pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4041
return -EPERM;
4042
}
4043
4044
/* While VF is in used, SRIOV cannot be disabled. */
4045
if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4046
pci_err(pdev, "Task is using its VF!\n");
4047
return -EBUSY;
4048
}
4049
4050
pci_disable_sriov(pdev);
4051
qm_clear_vft_config(qm);
4052
qm_pm_put_sync(qm);
4053
4054
return 0;
4055
}
4056
EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4057
4058
/**
4059
* hisi_qm_sriov_configure - configure the number of VFs
4060
* @pdev: The PCI device
4061
* @num_vfs: The number of VFs need enabled
4062
*
4063
* Enable SR-IOV according to num_vfs, 0 means disable.
4064
*/
4065
int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4066
{
4067
if (num_vfs == 0)
4068
return hisi_qm_sriov_disable(pdev, false);
4069
else
4070
return hisi_qm_sriov_enable(pdev, num_vfs);
4071
}
4072
EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4073
4074
static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4075
{
4076
if (!qm->err_ini->get_err_result) {
4077
dev_err(&qm->pdev->dev, "Device doesn't support reset!\n");
4078
return ACC_ERR_NONE;
4079
}
4080
4081
return qm->err_ini->get_err_result(qm);
4082
}
4083
4084
static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4085
{
4086
enum acc_err_result qm_ret, dev_ret;
4087
4088
/* log qm error */
4089
qm_ret = qm_hw_error_handle(qm);
4090
4091
/* log device error */
4092
dev_ret = qm_dev_err_handle(qm);
4093
4094
return (qm_ret == ACC_ERR_NEED_RESET ||
4095
dev_ret == ACC_ERR_NEED_RESET) ?
4096
ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4097
}
4098
4099
/**
4100
* hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4101
* @pdev: The PCI device which need report error.
4102
* @state: The connectivity between CPU and device.
4103
*
4104
* We register this function into PCIe AER handlers, It will report device or
4105
* qm hardware error status when error occur.
4106
*/
4107
pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4108
pci_channel_state_t state)
4109
{
4110
struct hisi_qm *qm = pci_get_drvdata(pdev);
4111
enum acc_err_result ret;
4112
4113
if (pdev->is_virtfn)
4114
return PCI_ERS_RESULT_NONE;
4115
4116
pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4117
if (state == pci_channel_io_perm_failure)
4118
return PCI_ERS_RESULT_DISCONNECT;
4119
4120
ret = qm_process_dev_error(qm);
4121
if (ret == ACC_ERR_NEED_RESET)
4122
return PCI_ERS_RESULT_NEED_RESET;
4123
4124
return PCI_ERS_RESULT_RECOVERED;
4125
}
4126
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4127
4128
static int qm_check_req_recv(struct hisi_qm *qm)
4129
{
4130
struct pci_dev *pdev = qm->pdev;
4131
int ret;
4132
u32 val;
4133
4134
if (qm->ver >= QM_HW_V3)
4135
return 0;
4136
4137
writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4138
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4139
(val == ACC_VENDOR_ID_VALUE),
4140
POLL_PERIOD, POLL_TIMEOUT);
4141
if (ret) {
4142
dev_err(&pdev->dev, "Fails to read QM reg!\n");
4143
return ret;
4144
}
4145
4146
writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4147
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4148
(val == PCI_VENDOR_ID_HUAWEI),
4149
POLL_PERIOD, POLL_TIMEOUT);
4150
if (ret)
4151
dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4152
4153
return ret;
4154
}
4155
4156
static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4157
{
4158
struct pci_dev *pdev = qm->pdev;
4159
u16 cmd;
4160
int i;
4161
4162
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4163
if (set)
4164
cmd |= PCI_COMMAND_MEMORY;
4165
else
4166
cmd &= ~PCI_COMMAND_MEMORY;
4167
4168
pci_write_config_word(pdev, PCI_COMMAND, cmd);
4169
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4170
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4171
if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4172
return 0;
4173
4174
udelay(1);
4175
}
4176
4177
return -ETIMEDOUT;
4178
}
4179
4180
static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4181
{
4182
struct pci_dev *pdev = qm->pdev;
4183
u16 sriov_ctrl;
4184
int pos;
4185
int i;
4186
4187
/*
4188
* Since function qm_set_vf_mse is called only after SRIOV is enabled,
4189
* pci_find_ext_capability cannot return 0, pos does not need to be
4190
* checked.
4191
*/
4192
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4193
pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4194
if (set)
4195
sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4196
else
4197
sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4198
pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4199
4200
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4201
pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4202
if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4203
ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4204
return 0;
4205
4206
udelay(1);
4207
}
4208
4209
return -ETIMEDOUT;
4210
}
4211
4212
static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4213
{
4214
u32 nfe_enb = 0;
4215
4216
/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4217
if (qm->ver >= QM_HW_V3)
4218
return;
4219
4220
if (!qm->err_status.is_dev_ecc_mbit &&
4221
qm->err_status.is_qm_ecc_mbit &&
4222
qm->err_ini->close_axi_master_ooo) {
4223
qm->err_ini->close_axi_master_ooo(qm);
4224
} else if (qm->err_status.is_dev_ecc_mbit &&
4225
!qm->err_status.is_qm_ecc_mbit &&
4226
!qm->err_ini->close_axi_master_ooo) {
4227
nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4228
writel(nfe_enb & ~qm->err_info.qm_err.ecc_2bits_mask,
4229
qm->io_base + QM_RAS_NFE_ENABLE);
4230
writel(qm->err_info.qm_err.ecc_2bits_mask, qm->io_base + QM_ABNORMAL_INT_SET);
4231
}
4232
}
4233
4234
static int qm_vf_reset_prepare(struct hisi_qm *qm,
4235
enum qm_stop_reason stop_reason)
4236
{
4237
struct hisi_qm_list *qm_list = qm->qm_list;
4238
struct pci_dev *pdev = qm->pdev;
4239
struct pci_dev *virtfn;
4240
struct hisi_qm *vf_qm;
4241
int ret = 0;
4242
4243
mutex_lock(&qm_list->lock);
4244
list_for_each_entry(vf_qm, &qm_list->list, list) {
4245
virtfn = vf_qm->pdev;
4246
if (virtfn == pdev)
4247
continue;
4248
4249
if (pci_physfn(virtfn) == pdev) {
4250
/* save VFs PCIE BAR configuration */
4251
pci_save_state(virtfn);
4252
4253
ret = hisi_qm_stop(vf_qm, stop_reason);
4254
if (ret)
4255
goto stop_fail;
4256
}
4257
}
4258
4259
stop_fail:
4260
mutex_unlock(&qm_list->lock);
4261
return ret;
4262
}
4263
4264
static int qm_try_stop_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd,
4265
enum qm_stop_reason stop_reason)
4266
{
4267
struct pci_dev *pdev = qm->pdev;
4268
int ret;
4269
4270
if (!qm->vfs_num)
4271
return 0;
4272
4273
/* Kunpeng930 supports to notify VFs to stop before PF reset */
4274
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4275
ret = qm_ping_all_vfs(qm, cmd);
4276
if (ret)
4277
pci_err(pdev, "failed to send command to all VFs before PF reset!\n");
4278
} else {
4279
ret = qm_vf_reset_prepare(qm, stop_reason);
4280
if (ret)
4281
pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4282
}
4283
4284
return ret;
4285
}
4286
4287
static int qm_controller_reset_prepare(struct hisi_qm *qm)
4288
{
4289
struct pci_dev *pdev = qm->pdev;
4290
int ret;
4291
4292
if (qm->err_ini->set_priv_status) {
4293
ret = qm->err_ini->set_priv_status(qm);
4294
if (ret)
4295
return ret;
4296
}
4297
4298
ret = qm_reset_prepare_ready(qm);
4299
if (ret) {
4300
pci_err(pdev, "Controller reset not ready!\n");
4301
return ret;
4302
}
4303
4304
qm_dev_ecc_mbit_handle(qm);
4305
4306
/* PF obtains the information of VF by querying the register. */
4307
qm_cmd_uninit(qm);
4308
4309
/* Whether VFs stop successfully, soft reset will continue. */
4310
ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4311
if (ret)
4312
pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4313
4314
ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4315
if (ret) {
4316
pci_err(pdev, "Fails to stop QM!\n");
4317
qm_reset_bit_clear(qm);
4318
return ret;
4319
}
4320
4321
if (qm->use_sva) {
4322
ret = qm_hw_err_isolate(qm);
4323
if (ret)
4324
pci_err(pdev, "failed to isolate hw err!\n");
4325
}
4326
4327
ret = qm_wait_vf_prepare_finish(qm);
4328
if (ret)
4329
pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4330
4331
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4332
4333
return 0;
4334
}
4335
4336
static int qm_master_ooo_check(struct hisi_qm *qm)
4337
{
4338
u32 val;
4339
int ret;
4340
4341
/* Check the ooo register of the device before resetting the device. */
4342
writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4343
ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4344
val, (val == ACC_MASTER_TRANS_RETURN_RW),
4345
POLL_PERIOD, POLL_TIMEOUT);
4346
if (ret)
4347
pci_warn(qm->pdev, "Bus lock! Please reset system.\n");
4348
4349
return ret;
4350
}
4351
4352
static int qm_soft_reset_prepare(struct hisi_qm *qm)
4353
{
4354
struct pci_dev *pdev = qm->pdev;
4355
int ret;
4356
4357
/* Ensure all doorbells and mailboxes received by QM */
4358
ret = qm_check_req_recv(qm);
4359
if (ret)
4360
return ret;
4361
4362
if (qm->vfs_num) {
4363
ret = qm_set_vf_mse(qm, false);
4364
if (ret) {
4365
pci_err(pdev, "Fails to disable vf MSE bit.\n");
4366
return ret;
4367
}
4368
}
4369
4370
ret = qm->ops->set_msi(qm, false);
4371
if (ret) {
4372
pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4373
return ret;
4374
}
4375
4376
ret = qm_master_ooo_check(qm);
4377
if (ret)
4378
return ret;
4379
4380
if (qm->err_ini->close_sva_prefetch)
4381
qm->err_ini->close_sva_prefetch(qm);
4382
4383
ret = qm_set_pf_mse(qm, false);
4384
if (ret)
4385
pci_err(pdev, "Fails to disable pf MSE bit.\n");
4386
4387
return ret;
4388
}
4389
4390
static int qm_reset_device(struct hisi_qm *qm)
4391
{
4392
struct pci_dev *pdev = qm->pdev;
4393
4394
/* The reset related sub-control registers are not in PCI BAR */
4395
if (ACPI_HANDLE(&pdev->dev)) {
4396
unsigned long long value = 0;
4397
acpi_status s;
4398
4399
s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4400
qm->err_info.acpi_rst,
4401
NULL, &value);
4402
if (ACPI_FAILURE(s)) {
4403
pci_err(pdev, "NO controller reset method!\n");
4404
return -EIO;
4405
}
4406
4407
if (value) {
4408
pci_err(pdev, "Reset step %llu failed!\n", value);
4409
return -EIO;
4410
}
4411
4412
return 0;
4413
}
4414
4415
pci_err(pdev, "No reset method!\n");
4416
return -EINVAL;
4417
}
4418
4419
static int qm_soft_reset(struct hisi_qm *qm)
4420
{
4421
int ret;
4422
4423
ret = qm_soft_reset_prepare(qm);
4424
if (ret)
4425
return ret;
4426
4427
return qm_reset_device(qm);
4428
}
4429
4430
static int qm_vf_reset_done(struct hisi_qm *qm)
4431
{
4432
struct hisi_qm_list *qm_list = qm->qm_list;
4433
struct pci_dev *pdev = qm->pdev;
4434
struct pci_dev *virtfn;
4435
struct hisi_qm *vf_qm;
4436
int ret = 0;
4437
4438
mutex_lock(&qm_list->lock);
4439
list_for_each_entry(vf_qm, &qm_list->list, list) {
4440
virtfn = vf_qm->pdev;
4441
if (virtfn == pdev)
4442
continue;
4443
4444
if (pci_physfn(virtfn) == pdev) {
4445
/* enable VFs PCIE BAR configuration */
4446
pci_restore_state(virtfn);
4447
4448
ret = qm_restart(vf_qm);
4449
if (ret)
4450
goto restart_fail;
4451
}
4452
}
4453
4454
restart_fail:
4455
mutex_unlock(&qm_list->lock);
4456
return ret;
4457
}
4458
4459
static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
4460
{
4461
struct pci_dev *pdev = qm->pdev;
4462
int ret;
4463
4464
if (!qm->vfs_num)
4465
return 0;
4466
4467
ret = qm_vf_q_assign(qm, qm->vfs_num);
4468
if (ret) {
4469
pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4470
return ret;
4471
}
4472
4473
/* Kunpeng930 supports to notify VFs to start after PF reset. */
4474
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4475
ret = qm_ping_all_vfs(qm, cmd);
4476
if (ret)
4477
pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4478
} else {
4479
ret = qm_vf_reset_done(qm);
4480
if (ret)
4481
pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4482
}
4483
4484
return ret;
4485
}
4486
4487
static int qm_dev_hw_init(struct hisi_qm *qm)
4488
{
4489
return qm->err_ini->hw_init(qm);
4490
}
4491
4492
static void qm_restart_prepare(struct hisi_qm *qm)
4493
{
4494
u32 value;
4495
4496
if (qm->ver >= QM_HW_V3)
4497
return;
4498
4499
if (!qm->err_status.is_qm_ecc_mbit &&
4500
!qm->err_status.is_dev_ecc_mbit)
4501
return;
4502
4503
/* temporarily close the OOO port used for PEH to write out MSI */
4504
value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4505
writel(value & ~qm->err_info.msi_wr_port,
4506
qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4507
4508
/* clear dev ecc 2bit error source if having */
4509
value = qm_get_dev_err_status(qm) & qm->err_info.dev_err.ecc_2bits_mask;
4510
if (value && qm->err_ini->clear_dev_hw_err_status)
4511
qm->err_ini->clear_dev_hw_err_status(qm, value);
4512
4513
/* clear QM ecc mbit error source */
4514
writel(qm->err_info.qm_err.ecc_2bits_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4515
4516
/* clear AM Reorder Buffer ecc mbit source */
4517
writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4518
}
4519
4520
static void qm_restart_done(struct hisi_qm *qm)
4521
{
4522
u32 value;
4523
4524
if (qm->ver >= QM_HW_V3)
4525
goto clear_flags;
4526
4527
if (!qm->err_status.is_qm_ecc_mbit &&
4528
!qm->err_status.is_dev_ecc_mbit)
4529
return;
4530
4531
/* open the OOO port for PEH to write out MSI */
4532
value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4533
value |= qm->err_info.msi_wr_port;
4534
writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4535
4536
clear_flags:
4537
qm->err_status.is_qm_ecc_mbit = false;
4538
qm->err_status.is_dev_ecc_mbit = false;
4539
}
4540
4541
static void qm_disable_axi_error(struct hisi_qm *qm)
4542
{
4543
struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err;
4544
u32 val;
4545
4546
val = ~(qm->error_mask & (~QM_RAS_AXI_ERROR));
4547
writel(val, qm->io_base + QM_ABNORMAL_INT_MASK);
4548
if (qm->ver > QM_HW_V2)
4549
writel(qm_err->shutdown_mask & (~QM_RAS_AXI_ERROR),
4550
qm->io_base + QM_OOO_SHUTDOWN_SEL);
4551
4552
if (qm->err_ini->disable_axi_error)
4553
qm->err_ini->disable_axi_error(qm);
4554
}
4555
4556
static void qm_enable_axi_error(struct hisi_qm *qm)
4557
{
4558
/* clear axi error source */
4559
writel(QM_RAS_AXI_ERROR, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4560
4561
writel(~qm->error_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
4562
if (qm->ver > QM_HW_V2)
4563
writel(qm->err_info.qm_err.shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
4564
4565
if (qm->err_ini->enable_axi_error)
4566
qm->err_ini->enable_axi_error(qm);
4567
}
4568
4569
static int qm_controller_reset_done(struct hisi_qm *qm)
4570
{
4571
struct pci_dev *pdev = qm->pdev;
4572
int ret;
4573
4574
ret = qm->ops->set_msi(qm, true);
4575
if (ret) {
4576
pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4577
return ret;
4578
}
4579
4580
ret = qm_set_pf_mse(qm, true);
4581
if (ret) {
4582
pci_err(pdev, "Fails to enable pf MSE bit!\n");
4583
return ret;
4584
}
4585
4586
if (qm->vfs_num) {
4587
ret = qm_set_vf_mse(qm, true);
4588
if (ret) {
4589
pci_err(pdev, "Fails to enable vf MSE bit!\n");
4590
return ret;
4591
}
4592
}
4593
4594
ret = qm_dev_hw_init(qm);
4595
if (ret) {
4596
pci_err(pdev, "Failed to init device\n");
4597
return ret;
4598
}
4599
4600
qm_restart_prepare(qm);
4601
hisi_qm_dev_err_init(qm);
4602
qm_disable_axi_error(qm);
4603
if (qm->err_ini->open_axi_master_ooo)
4604
qm->err_ini->open_axi_master_ooo(qm);
4605
4606
ret = qm_dev_mem_reset(qm);
4607
if (ret) {
4608
pci_err(pdev, "failed to reset device memory\n");
4609
return ret;
4610
}
4611
4612
ret = qm_restart(qm);
4613
if (ret) {
4614
pci_err(pdev, "Failed to start QM!\n");
4615
return ret;
4616
}
4617
4618
ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4619
if (ret)
4620
pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4621
4622
ret = qm_wait_vf_prepare_finish(qm);
4623
if (ret)
4624
pci_err(pdev, "failed to start by vfs in soft reset!\n");
4625
qm_enable_axi_error(qm);
4626
qm_cmd_init(qm);
4627
qm_restart_done(qm);
4628
4629
qm_reset_bit_clear(qm);
4630
4631
return 0;
4632
}
4633
4634
static int qm_controller_reset(struct hisi_qm *qm)
4635
{
4636
struct pci_dev *pdev = qm->pdev;
4637
int ret;
4638
4639
pci_info(pdev, "Controller resetting...\n");
4640
4641
ret = qm_controller_reset_prepare(qm);
4642
if (ret) {
4643
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4644
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4645
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4646
return ret;
4647
}
4648
4649
hisi_qm_show_last_dfx_regs(qm);
4650
if (qm->err_ini->show_last_dfx_regs)
4651
qm->err_ini->show_last_dfx_regs(qm);
4652
4653
ret = qm_soft_reset(qm);
4654
if (ret)
4655
goto err_reset;
4656
4657
ret = qm_controller_reset_done(qm);
4658
if (ret)
4659
goto err_reset;
4660
4661
pci_info(pdev, "Controller reset complete\n");
4662
4663
return 0;
4664
4665
err_reset:
4666
pci_err(pdev, "Controller reset failed (%d)\n", ret);
4667
qm_reset_bit_clear(qm);
4668
4669
/* if resetting fails, isolate the device */
4670
if (qm->use_sva)
4671
qm->isolate_data.is_isolate = true;
4672
return ret;
4673
}
4674
4675
/**
4676
* hisi_qm_dev_slot_reset() - slot reset
4677
* @pdev: the PCIe device
4678
*
4679
* This function offers QM relate PCIe device reset interface. Drivers which
4680
* use QM can use this function as slot_reset in its struct pci_error_handlers.
4681
*/
4682
pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4683
{
4684
struct hisi_qm *qm = pci_get_drvdata(pdev);
4685
int ret;
4686
4687
if (pdev->is_virtfn)
4688
return PCI_ERS_RESULT_RECOVERED;
4689
4690
/* reset pcie device controller */
4691
ret = qm_controller_reset(qm);
4692
if (ret) {
4693
pci_err(pdev, "Controller reset failed (%d)\n", ret);
4694
return PCI_ERS_RESULT_DISCONNECT;
4695
}
4696
4697
return PCI_ERS_RESULT_RECOVERED;
4698
}
4699
EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4700
4701
void hisi_qm_reset_prepare(struct pci_dev *pdev)
4702
{
4703
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4704
struct hisi_qm *qm = pci_get_drvdata(pdev);
4705
u32 delay = 0;
4706
int ret;
4707
4708
hisi_qm_dev_err_uninit(pf_qm);
4709
4710
/*
4711
* Check whether there is an ECC mbit error, If it occurs, need to
4712
* wait for soft reset to fix it.
4713
*/
4714
while (qm_check_dev_error(qm)) {
4715
msleep(++delay);
4716
if (delay > QM_RESET_WAIT_TIMEOUT)
4717
return;
4718
}
4719
4720
ret = qm_reset_prepare_ready(qm);
4721
if (ret) {
4722
pci_err(pdev, "FLR not ready!\n");
4723
return;
4724
}
4725
4726
/* PF obtains the information of VF by querying the register. */
4727
if (qm->fun_type == QM_HW_PF)
4728
qm_cmd_uninit(qm);
4729
4730
ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4731
if (ret)
4732
pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4733
4734
ret = hisi_qm_stop(qm, QM_DOWN);
4735
if (ret) {
4736
pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4737
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4738
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4739
return;
4740
}
4741
4742
ret = qm_wait_vf_prepare_finish(qm);
4743
if (ret)
4744
pci_err(pdev, "failed to stop by vfs in FLR!\n");
4745
4746
pci_info(pdev, "FLR resetting...\n");
4747
}
4748
EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4749
4750
static bool qm_flr_reset_complete(struct pci_dev *pdev)
4751
{
4752
struct pci_dev *pf_pdev = pci_physfn(pdev);
4753
struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4754
u32 id;
4755
4756
pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4757
if (id == QM_PCI_COMMAND_INVALID) {
4758
pci_err(pdev, "Device can not be used!\n");
4759
return false;
4760
}
4761
4762
return true;
4763
}
4764
4765
void hisi_qm_reset_done(struct pci_dev *pdev)
4766
{
4767
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4768
struct hisi_qm *qm = pci_get_drvdata(pdev);
4769
int ret;
4770
4771
if (qm->fun_type == QM_HW_PF) {
4772
ret = qm_dev_hw_init(qm);
4773
if (ret) {
4774
pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4775
goto flr_done;
4776
}
4777
}
4778
4779
hisi_qm_dev_err_init(pf_qm);
4780
4781
ret = qm_restart(qm);
4782
if (ret) {
4783
pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4784
goto flr_done;
4785
}
4786
4787
ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4788
if (ret)
4789
pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4790
4791
ret = qm_wait_vf_prepare_finish(qm);
4792
if (ret)
4793
pci_err(pdev, "failed to start by vfs in FLR!\n");
4794
4795
flr_done:
4796
if (qm->fun_type == QM_HW_PF)
4797
qm_cmd_init(qm);
4798
4799
if (qm_flr_reset_complete(pdev))
4800
pci_info(pdev, "FLR reset complete\n");
4801
4802
qm_reset_bit_clear(qm);
4803
}
4804
EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4805
4806
static irqreturn_t qm_rsvd_irq(int irq, void *data)
4807
{
4808
struct hisi_qm *qm = data;
4809
4810
dev_info(&qm->pdev->dev, "Reserved interrupt, ignore!\n");
4811
4812
return IRQ_HANDLED;
4813
}
4814
4815
static irqreturn_t qm_abnormal_irq(int irq, void *data)
4816
{
4817
struct hisi_qm *qm = data;
4818
enum acc_err_result ret;
4819
4820
atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4821
ret = qm_process_dev_error(qm);
4822
if (ret == ACC_ERR_NEED_RESET &&
4823
!test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4824
!test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4825
schedule_work(&qm->rst_work);
4826
4827
return IRQ_HANDLED;
4828
}
4829
4830
/**
4831
* hisi_qm_dev_shutdown() - Shutdown device.
4832
* @pdev: The device will be shutdown.
4833
*
4834
* This function will stop qm when OS shutdown or rebooting.
4835
*/
4836
void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4837
{
4838
struct hisi_qm *qm = pci_get_drvdata(pdev);
4839
int ret;
4840
4841
ret = hisi_qm_stop(qm, QM_DOWN);
4842
if (ret)
4843
dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4844
}
4845
EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4846
4847
static void hisi_qm_controller_reset(struct work_struct *rst_work)
4848
{
4849
struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4850
int ret;
4851
4852
ret = qm_pm_get_sync(qm);
4853
if (ret) {
4854
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4855
return;
4856
}
4857
4858
/* reset pcie device controller */
4859
ret = qm_controller_reset(qm);
4860
if (ret)
4861
dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4862
4863
qm_pm_put_sync(qm);
4864
}
4865
4866
static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4867
enum qm_stop_reason stop_reason)
4868
{
4869
enum qm_ifc_cmd cmd = QM_VF_PREPARE_DONE;
4870
struct pci_dev *pdev = qm->pdev;
4871
int ret;
4872
4873
ret = qm_reset_prepare_ready(qm);
4874
if (ret) {
4875
dev_err(&pdev->dev, "reset prepare not ready!\n");
4876
atomic_set(&qm->status.flags, QM_STOP);
4877
cmd = QM_VF_PREPARE_FAIL;
4878
goto err_prepare;
4879
}
4880
4881
ret = hisi_qm_stop(qm, stop_reason);
4882
if (ret) {
4883
dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4884
atomic_set(&qm->status.flags, QM_STOP);
4885
cmd = QM_VF_PREPARE_FAIL;
4886
goto err_prepare;
4887
} else {
4888
goto out;
4889
}
4890
4891
err_prepare:
4892
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4893
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4894
out:
4895
pci_save_state(pdev);
4896
ret = qm_ping_pf(qm, cmd);
4897
if (ret)
4898
dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4899
}
4900
4901
static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4902
{
4903
enum qm_ifc_cmd cmd = QM_VF_START_DONE;
4904
struct pci_dev *pdev = qm->pdev;
4905
int ret;
4906
4907
pci_restore_state(pdev);
4908
ret = hisi_qm_start(qm);
4909
if (ret) {
4910
dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4911
cmd = QM_VF_START_FAIL;
4912
}
4913
4914
qm_cmd_init(qm);
4915
ret = qm_ping_pf(qm, cmd);
4916
if (ret)
4917
dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4918
4919
qm_reset_bit_clear(qm);
4920
}
4921
4922
static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4923
{
4924
struct device *dev = &qm->pdev->dev;
4925
u32 val, cmd;
4926
int ret;
4927
4928
/* Wait for reset to finish */
4929
ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4930
val == BIT(0), QM_VF_RESET_WAIT_US,
4931
QM_VF_RESET_WAIT_TIMEOUT_US);
4932
/* hardware completion status should be available by this time */
4933
if (ret) {
4934
dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4935
return -ETIMEDOUT;
4936
}
4937
4938
/*
4939
* Whether message is got successfully,
4940
* VF needs to ack PF by clearing the interrupt.
4941
*/
4942
ret = qm->ops->get_ifc(qm, &cmd, NULL, 0);
4943
qm_clear_cmd_interrupt(qm, 0);
4944
if (ret) {
4945
dev_err(dev, "failed to get command from PF in reset done!\n");
4946
return ret;
4947
}
4948
4949
if (cmd != QM_PF_RESET_DONE) {
4950
dev_err(dev, "the command(0x%x) is not reset done!\n", cmd);
4951
ret = -EINVAL;
4952
}
4953
4954
return ret;
4955
}
4956
4957
static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4958
enum qm_stop_reason stop_reason)
4959
{
4960
struct device *dev = &qm->pdev->dev;
4961
int ret;
4962
4963
dev_info(dev, "device reset start...\n");
4964
4965
/* The message is obtained by querying the register during resetting */
4966
qm_cmd_uninit(qm);
4967
qm_pf_reset_vf_prepare(qm, stop_reason);
4968
4969
ret = qm_wait_pf_reset_finish(qm);
4970
if (ret)
4971
goto err_get_status;
4972
4973
qm_pf_reset_vf_done(qm);
4974
4975
dev_info(dev, "device reset done.\n");
4976
4977
return;
4978
4979
err_get_status:
4980
qm_cmd_init(qm);
4981
qm_reset_bit_clear(qm);
4982
}
4983
4984
static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4985
{
4986
struct device *dev = &qm->pdev->dev;
4987
enum qm_ifc_cmd cmd;
4988
u32 data;
4989
int ret;
4990
4991
/*
4992
* Get the msg from source by sending mailbox. Whether message is got
4993
* successfully, destination needs to ack source by clearing the interrupt.
4994
*/
4995
ret = qm->ops->get_ifc(qm, &cmd, &data, fun_num);
4996
qm_clear_cmd_interrupt(qm, BIT(fun_num));
4997
if (ret) {
4998
dev_err(dev, "failed to get command from source!\n");
4999
return;
5000
}
5001
5002
switch (cmd) {
5003
case QM_PF_FLR_PREPARE:
5004
qm_pf_reset_vf_process(qm, QM_DOWN);
5005
break;
5006
case QM_PF_SRST_PREPARE:
5007
qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5008
break;
5009
case QM_VF_GET_QOS:
5010
qm_vf_get_qos(qm, fun_num);
5011
break;
5012
case QM_PF_SET_QOS:
5013
qm->mb_qos = data;
5014
break;
5015
default:
5016
dev_err(dev, "unsupported command(0x%x) sent by function(%u)!\n", cmd, fun_num);
5017
break;
5018
}
5019
}
5020
5021
static void qm_cmd_process(struct work_struct *cmd_process)
5022
{
5023
struct hisi_qm *qm = container_of(cmd_process,
5024
struct hisi_qm, cmd_process);
5025
u32 vfs_num = qm->vfs_num;
5026
u64 val;
5027
u32 i;
5028
5029
if (qm->fun_type == QM_HW_PF) {
5030
val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5031
if (!val)
5032
return;
5033
5034
for (i = 1; i <= vfs_num; i++) {
5035
if (val & BIT(i))
5036
qm_handle_cmd_msg(qm, i);
5037
}
5038
5039
return;
5040
}
5041
5042
qm_handle_cmd_msg(qm, 0);
5043
}
5044
5045
/**
5046
* hisi_qm_alg_register() - Register alg to crypto.
5047
* @qm: The qm needs add.
5048
* @qm_list: The qm list.
5049
* @guard: Guard of qp_num.
5050
*
5051
* Register algorithm to crypto when the function is satisfy guard.
5052
*/
5053
int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
5054
{
5055
struct device *dev = &qm->pdev->dev;
5056
5057
if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5058
dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5059
return 0;
5060
}
5061
5062
if (qm->qp_num < guard) {
5063
dev_info(dev, "qp_num is less than task need.\n");
5064
return 0;
5065
}
5066
5067
return qm_list->register_to_crypto(qm);
5068
}
5069
EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5070
5071
/**
5072
* hisi_qm_alg_unregister() - Unregister alg from crypto.
5073
* @qm: The qm needs delete.
5074
* @qm_list: The qm list.
5075
* @guard: Guard of qp_num.
5076
*
5077
* Unregister algorithm from crypto when the last function is satisfy guard.
5078
*/
5079
void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
5080
{
5081
if (qm->ver <= QM_HW_V2 && qm->use_sva)
5082
return;
5083
5084
if (qm->qp_num < guard)
5085
return;
5086
5087
qm_list->unregister_from_crypto(qm);
5088
}
5089
EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5090
5091
static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
5092
{
5093
struct pci_dev *pdev = qm->pdev;
5094
u32 irq_vector, val;
5095
5096
if (qm->fun_type == QM_HW_VF && qm->ver < QM_HW_V3)
5097
return;
5098
5099
val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
5100
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5101
return;
5102
5103
irq_vector = val & QM_IRQ_VECTOR_MASK;
5104
free_irq(pci_irq_vector(pdev, irq_vector), qm);
5105
}
5106
5107
static int qm_register_abnormal_irq(struct hisi_qm *qm)
5108
{
5109
struct pci_dev *pdev = qm->pdev;
5110
u32 irq_vector, val;
5111
int ret;
5112
5113
val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
5114
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5115
return 0;
5116
irq_vector = val & QM_IRQ_VECTOR_MASK;
5117
5118
/* For VF, this is a reserved interrupt in V3 version. */
5119
if (qm->fun_type == QM_HW_VF) {
5120
if (qm->ver < QM_HW_V3)
5121
return 0;
5122
5123
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_rsvd_irq,
5124
IRQF_NO_AUTOEN, qm->dev_name, qm);
5125
if (ret) {
5126
dev_err(&pdev->dev, "failed to request reserved irq, ret = %d!\n", ret);
5127
return ret;
5128
}
5129
return 0;
5130
}
5131
5132
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
5133
if (ret)
5134
dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d!\n", ret);
5135
5136
return ret;
5137
}
5138
5139
static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
5140
{
5141
struct pci_dev *pdev = qm->pdev;
5142
u32 irq_vector, val;
5143
5144
val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
5145
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5146
return;
5147
5148
irq_vector = val & QM_IRQ_VECTOR_MASK;
5149
free_irq(pci_irq_vector(pdev, irq_vector), qm);
5150
}
5151
5152
static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
5153
{
5154
struct pci_dev *pdev = qm->pdev;
5155
u32 irq_vector, val;
5156
int ret;
5157
5158
val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
5159
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5160
return 0;
5161
5162
irq_vector = val & QM_IRQ_VECTOR_MASK;
5163
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
5164
if (ret)
5165
dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
5166
5167
return ret;
5168
}
5169
5170
static void qm_unregister_aeq_irq(struct hisi_qm *qm)
5171
{
5172
struct pci_dev *pdev = qm->pdev;
5173
u32 irq_vector, val;
5174
5175
val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
5176
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5177
return;
5178
5179
irq_vector = val & QM_IRQ_VECTOR_MASK;
5180
free_irq(pci_irq_vector(pdev, irq_vector), qm);
5181
}
5182
5183
static int qm_register_aeq_irq(struct hisi_qm *qm)
5184
{
5185
struct pci_dev *pdev = qm->pdev;
5186
u32 irq_vector, val;
5187
int ret;
5188
5189
val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
5190
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5191
return 0;
5192
5193
irq_vector = val & QM_IRQ_VECTOR_MASK;
5194
ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
5195
qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
5196
if (ret)
5197
dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5198
5199
return ret;
5200
}
5201
5202
static void qm_unregister_eq_irq(struct hisi_qm *qm)
5203
{
5204
struct pci_dev *pdev = qm->pdev;
5205
u32 irq_vector, val;
5206
5207
val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5208
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5209
return;
5210
5211
irq_vector = val & QM_IRQ_VECTOR_MASK;
5212
free_irq(pci_irq_vector(pdev, irq_vector), qm);
5213
}
5214
5215
static int qm_register_eq_irq(struct hisi_qm *qm)
5216
{
5217
struct pci_dev *pdev = qm->pdev;
5218
u32 irq_vector, val;
5219
int ret;
5220
5221
val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5222
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5223
return 0;
5224
5225
irq_vector = val & QM_IRQ_VECTOR_MASK;
5226
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5227
if (ret)
5228
dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5229
5230
return ret;
5231
}
5232
5233
static void qm_irqs_unregister(struct hisi_qm *qm)
5234
{
5235
qm_unregister_mb_cmd_irq(qm);
5236
qm_unregister_abnormal_irq(qm);
5237
qm_unregister_aeq_irq(qm);
5238
qm_unregister_eq_irq(qm);
5239
}
5240
5241
static int qm_irqs_register(struct hisi_qm *qm)
5242
{
5243
int ret;
5244
5245
ret = qm_register_eq_irq(qm);
5246
if (ret)
5247
return ret;
5248
5249
ret = qm_register_aeq_irq(qm);
5250
if (ret)
5251
goto free_eq_irq;
5252
5253
ret = qm_register_abnormal_irq(qm);
5254
if (ret)
5255
goto free_aeq_irq;
5256
5257
ret = qm_register_mb_cmd_irq(qm);
5258
if (ret)
5259
goto free_abnormal_irq;
5260
5261
return 0;
5262
5263
free_abnormal_irq:
5264
qm_unregister_abnormal_irq(qm);
5265
free_aeq_irq:
5266
qm_unregister_aeq_irq(qm);
5267
free_eq_irq:
5268
qm_unregister_eq_irq(qm);
5269
return ret;
5270
}
5271
5272
static int qm_get_qp_num(struct hisi_qm *qm)
5273
{
5274
struct device *dev = &qm->pdev->dev;
5275
bool is_db_isolation;
5276
5277
/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5278
if (qm->fun_type == QM_HW_VF) {
5279
if (qm->ver != QM_HW_V1)
5280
/* v2 starts to support get vft by mailbox */
5281
return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5282
5283
return 0;
5284
}
5285
5286
is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5287
qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5288
qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5289
QM_FUNC_MAX_QP_CAP, is_db_isolation);
5290
5291
if (qm->qp_num <= qm->max_qp_num)
5292
return 0;
5293
5294
if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5295
/* Check whether the set qp number is valid */
5296
dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5297
qm->qp_num, qm->max_qp_num);
5298
return -EINVAL;
5299
}
5300
5301
dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5302
qm->qp_num, qm->max_qp_num);
5303
qm->qp_num = qm->max_qp_num;
5304
qm->debug.curr_qm_qp_num = qm->qp_num;
5305
5306
return 0;
5307
}
5308
5309
static int qm_pre_store_caps(struct hisi_qm *qm)
5310
{
5311
struct hisi_qm_cap_record *qm_cap;
5312
struct pci_dev *pdev = qm->pdev;
5313
size_t i, size;
5314
5315
size = ARRAY_SIZE(qm_cap_query_info);
5316
qm_cap = devm_kcalloc(&pdev->dev, sizeof(*qm_cap), size, GFP_KERNEL);
5317
if (!qm_cap)
5318
return -ENOMEM;
5319
5320
for (i = 0; i < size; i++) {
5321
qm_cap[i].type = qm_cap_query_info[i].type;
5322
qm_cap[i].name = qm_cap_query_info[i].name;
5323
qm_cap[i].cap_val = hisi_qm_get_cap_value(qm, qm_cap_query_info,
5324
i, qm->cap_ver);
5325
}
5326
5327
qm->cap_tables.qm_cap_table = qm_cap;
5328
qm->cap_tables.qm_cap_size = size;
5329
5330
return 0;
5331
}
5332
5333
static int qm_get_hw_caps(struct hisi_qm *qm)
5334
{
5335
const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5336
qm_cap_info_pf : qm_cap_info_vf;
5337
u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5338
ARRAY_SIZE(qm_cap_info_vf);
5339
u32 val, i;
5340
5341
/* Doorbell isolate register is a independent register. */
5342
val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5343
if (val)
5344
set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5345
5346
if (qm->ver >= QM_HW_V3) {
5347
val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5348
qm->cap_ver = val & QM_CAPBILITY_VERSION;
5349
}
5350
5351
/* Get PF/VF common capbility */
5352
for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5353
val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5354
if (val)
5355
set_bit(qm_cap_info_comm[i].type, &qm->caps);
5356
}
5357
5358
/* Get PF/VF different capbility */
5359
for (i = 0; i < size; i++) {
5360
val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5361
if (val)
5362
set_bit(cap_info[i].type, &qm->caps);
5363
}
5364
5365
/* Fetch and save the value of qm capability registers */
5366
return qm_pre_store_caps(qm);
5367
}
5368
5369
static void qm_get_version(struct hisi_qm *qm)
5370
{
5371
struct pci_dev *pdev = qm->pdev;
5372
u32 sub_version_id;
5373
5374
qm->ver = pdev->revision;
5375
5376
if (pdev->revision == QM_HW_V3) {
5377
sub_version_id = readl(qm->io_base + QM_SUB_VERSION_ID);
5378
if (sub_version_id)
5379
qm->ver = sub_version_id;
5380
}
5381
}
5382
5383
static int qm_get_pci_res(struct hisi_qm *qm)
5384
{
5385
struct pci_dev *pdev = qm->pdev;
5386
struct device *dev = &pdev->dev;
5387
int ret;
5388
5389
ret = pci_request_mem_regions(pdev, qm->dev_name);
5390
if (ret < 0) {
5391
dev_err(dev, "Failed to request mem regions!\n");
5392
return ret;
5393
}
5394
5395
qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5396
qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5397
if (!qm->io_base) {
5398
ret = -EIO;
5399
goto err_request_mem_regions;
5400
}
5401
5402
qm_get_version(qm);
5403
5404
ret = qm_get_hw_caps(qm);
5405
if (ret)
5406
goto err_ioremap;
5407
5408
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5409
qm->db_interval = QM_QP_DB_INTERVAL;
5410
qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5411
qm->db_io_base = ioremap(qm->db_phys_base,
5412
pci_resource_len(pdev, PCI_BAR_4));
5413
if (!qm->db_io_base) {
5414
ret = -EIO;
5415
goto err_ioremap;
5416
}
5417
} else {
5418
qm->db_phys_base = qm->phys_base;
5419
qm->db_io_base = qm->io_base;
5420
qm->db_interval = 0;
5421
}
5422
5423
hisi_qm_pre_init(qm);
5424
ret = qm_get_qp_num(qm);
5425
if (ret)
5426
goto err_db_ioremap;
5427
5428
return 0;
5429
5430
err_db_ioremap:
5431
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5432
iounmap(qm->db_io_base);
5433
err_ioremap:
5434
iounmap(qm->io_base);
5435
err_request_mem_regions:
5436
pci_release_mem_regions(pdev);
5437
return ret;
5438
}
5439
5440
static int qm_clear_device(struct hisi_qm *qm)
5441
{
5442
acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev);
5443
int ret;
5444
5445
if (qm->fun_type == QM_HW_VF)
5446
return 0;
5447
5448
/* Device does not support reset, return */
5449
if (!qm->err_ini->err_info_init)
5450
return 0;
5451
qm->err_ini->err_info_init(qm);
5452
5453
if (!handle)
5454
return 0;
5455
5456
/* No reset method, return */
5457
if (!acpi_has_method(handle, qm->err_info.acpi_rst))
5458
return 0;
5459
5460
ret = qm_master_ooo_check(qm);
5461
if (ret) {
5462
writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5463
return ret;
5464
}
5465
5466
if (qm->err_ini->set_priv_status) {
5467
ret = qm->err_ini->set_priv_status(qm);
5468
if (ret) {
5469
writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5470
return ret;
5471
}
5472
}
5473
5474
return qm_reset_device(qm);
5475
}
5476
5477
static int hisi_qm_pci_init(struct hisi_qm *qm)
5478
{
5479
struct pci_dev *pdev = qm->pdev;
5480
struct device *dev = &pdev->dev;
5481
unsigned int num_vec;
5482
int ret;
5483
5484
ret = pci_enable_device_mem(pdev);
5485
if (ret < 0) {
5486
dev_err(dev, "Failed to enable device mem!\n");
5487
return ret;
5488
}
5489
5490
ret = qm_get_pci_res(qm);
5491
if (ret)
5492
goto err_disable_pcidev;
5493
5494
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5495
if (ret < 0)
5496
goto err_get_pci_res;
5497
pci_set_master(pdev);
5498
5499
num_vec = qm_get_irq_num(qm);
5500
if (!num_vec) {
5501
dev_err(dev, "Device irq num is zero!\n");
5502
ret = -EINVAL;
5503
goto err_get_pci_res;
5504
}
5505
num_vec = roundup_pow_of_two(num_vec);
5506
ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5507
if (ret < 0) {
5508
dev_err(dev, "Failed to enable MSI vectors!\n");
5509
goto err_get_pci_res;
5510
}
5511
5512
ret = qm_clear_device(qm);
5513
if (ret)
5514
goto err_free_vectors;
5515
5516
return 0;
5517
5518
err_free_vectors:
5519
pci_free_irq_vectors(pdev);
5520
err_get_pci_res:
5521
qm_put_pci_res(qm);
5522
err_disable_pcidev:
5523
pci_disable_device(pdev);
5524
return ret;
5525
}
5526
5527
static int hisi_qm_init_work(struct hisi_qm *qm)
5528
{
5529
int i;
5530
5531
for (i = 0; i < qm->qp_num; i++)
5532
INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5533
5534
if (qm->fun_type == QM_HW_PF)
5535
INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5536
5537
if (qm->ver > QM_HW_V2)
5538
INIT_WORK(&qm->cmd_process, qm_cmd_process);
5539
5540
qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5541
WQ_UNBOUND, num_online_cpus(),
5542
pci_name(qm->pdev));
5543
if (!qm->wq) {
5544
pci_err(qm->pdev, "failed to alloc workqueue!\n");
5545
return -ENOMEM;
5546
}
5547
5548
return 0;
5549
}
5550
5551
static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5552
{
5553
struct device *dev = &qm->pdev->dev;
5554
u16 sq_depth, cq_depth;
5555
size_t qp_dma_size;
5556
int i, ret;
5557
5558
qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5559
if (!qm->qp_array)
5560
return -ENOMEM;
5561
5562
qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5563
if (!qm->poll_data) {
5564
kfree(qm->qp_array);
5565
return -ENOMEM;
5566
}
5567
5568
qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5569
5570
/* one more page for device or qp statuses */
5571
qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5572
qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5573
for (i = 0; i < qm->qp_num; i++) {
5574
qm->poll_data[i].qm = qm;
5575
ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5576
if (ret)
5577
goto err_init_qp_mem;
5578
5579
dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5580
}
5581
5582
return 0;
5583
err_init_qp_mem:
5584
hisi_qp_memory_uninit(qm, i);
5585
5586
return ret;
5587
}
5588
5589
static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5590
{
5591
struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5592
struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5593
struct device *dev = &qm->pdev->dev;
5594
size_t off = 0;
5595
5596
#define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5597
(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5598
(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5599
off += QMC_ALIGN(sizeof(struct qm_##type)); \
5600
} while (0)
5601
5602
xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5603
QMC_ALIGN(sizeof(struct qm_aeqc)) +
5604
QMC_ALIGN(sizeof(struct qm_sqc)) +
5605
QMC_ALIGN(sizeof(struct qm_cqc));
5606
xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5607
&xqc_dma->dma, GFP_KERNEL);
5608
if (!xqc_dma->va)
5609
return -ENOMEM;
5610
5611
QM_XQC_BUF_INIT(xqc_buf, eqc);
5612
QM_XQC_BUF_INIT(xqc_buf, aeqc);
5613
QM_XQC_BUF_INIT(xqc_buf, sqc);
5614
QM_XQC_BUF_INIT(xqc_buf, cqc);
5615
5616
return 0;
5617
}
5618
5619
static int hisi_qm_memory_init(struct hisi_qm *qm)
5620
{
5621
struct device *dev = &qm->pdev->dev;
5622
int ret, total_func;
5623
size_t off = 0;
5624
5625
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5626
total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5627
qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5628
if (!qm->factor)
5629
return -ENOMEM;
5630
5631
/* Only the PF value needs to be initialized */
5632
qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5633
}
5634
5635
#define QM_INIT_BUF(qm, type, num) do { \
5636
(qm)->type = ((qm)->qdma.va + (off)); \
5637
(qm)->type##_dma = (qm)->qdma.dma + (off); \
5638
off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5639
} while (0)
5640
5641
idr_init(&qm->qp_idr);
5642
qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5643
qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5644
QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5645
QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5646
QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5647
qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5648
GFP_ATOMIC);
5649
dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5650
if (!qm->qdma.va) {
5651
ret = -ENOMEM;
5652
goto err_destroy_idr;
5653
}
5654
5655
QM_INIT_BUF(qm, eqe, qm->eq_depth);
5656
QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5657
QM_INIT_BUF(qm, sqc, qm->qp_num);
5658
QM_INIT_BUF(qm, cqc, qm->qp_num);
5659
5660
ret = hisi_qm_alloc_rsv_buf(qm);
5661
if (ret)
5662
goto err_free_qdma;
5663
5664
ret = hisi_qp_alloc_memory(qm);
5665
if (ret)
5666
goto err_free_reserve_buf;
5667
5668
return 0;
5669
5670
err_free_reserve_buf:
5671
hisi_qm_free_rsv_buf(qm);
5672
err_free_qdma:
5673
dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5674
err_destroy_idr:
5675
idr_destroy(&qm->qp_idr);
5676
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5677
kfree(qm->factor);
5678
5679
return ret;
5680
}
5681
5682
/**
5683
* hisi_qm_init() - Initialize configures about qm.
5684
* @qm: The qm needing init.
5685
*
5686
* This function init qm, then we can call hisi_qm_start to put qm into work.
5687
*/
5688
int hisi_qm_init(struct hisi_qm *qm)
5689
{
5690
struct pci_dev *pdev = qm->pdev;
5691
struct device *dev = &pdev->dev;
5692
int ret;
5693
5694
ret = hisi_qm_pci_init(qm);
5695
if (ret)
5696
return ret;
5697
5698
ret = qm_irqs_register(qm);
5699
if (ret)
5700
goto err_pci_init;
5701
5702
if (qm->fun_type == QM_HW_PF) {
5703
/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5704
writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5705
qm_disable_clock_gate(qm);
5706
ret = qm_dev_mem_reset(qm);
5707
if (ret) {
5708
dev_err(dev, "failed to reset device memory\n");
5709
goto err_irq_register;
5710
}
5711
}
5712
5713
if (qm->mode == UACCE_MODE_SVA) {
5714
ret = qm_alloc_uacce(qm);
5715
if (ret < 0)
5716
dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5717
}
5718
5719
ret = hisi_qm_memory_init(qm);
5720
if (ret)
5721
goto err_alloc_uacce;
5722
5723
ret = hisi_qm_init_work(qm);
5724
if (ret)
5725
goto err_free_qm_memory;
5726
5727
qm_cmd_init(qm);
5728
5729
return 0;
5730
5731
err_free_qm_memory:
5732
hisi_qm_memory_uninit(qm);
5733
err_alloc_uacce:
5734
qm_remove_uacce(qm);
5735
err_irq_register:
5736
qm_irqs_unregister(qm);
5737
err_pci_init:
5738
hisi_qm_pci_uninit(qm);
5739
return ret;
5740
}
5741
EXPORT_SYMBOL_GPL(hisi_qm_init);
5742
5743
/**
5744
* hisi_qm_get_dfx_access() - Try to get dfx access.
5745
* @qm: pointer to accelerator device.
5746
*
5747
* Try to get dfx access, then user can get message.
5748
*
5749
* If device is in suspended, return failure, otherwise
5750
* bump up the runtime PM usage counter.
5751
*/
5752
int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5753
{
5754
struct device *dev = &qm->pdev->dev;
5755
5756
if (pm_runtime_suspended(dev)) {
5757
dev_info(dev, "can not read/write - device in suspended.\n");
5758
return -EAGAIN;
5759
}
5760
5761
return qm_pm_get_sync(qm);
5762
}
5763
EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5764
5765
/**
5766
* hisi_qm_put_dfx_access() - Put dfx access.
5767
* @qm: pointer to accelerator device.
5768
*
5769
* Put dfx access, drop runtime PM usage counter.
5770
*/
5771
void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5772
{
5773
qm_pm_put_sync(qm);
5774
}
5775
EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5776
5777
/**
5778
* hisi_qm_pm_init() - Initialize qm runtime PM.
5779
* @qm: pointer to accelerator device.
5780
*
5781
* Function that initialize qm runtime PM.
5782
*/
5783
void hisi_qm_pm_init(struct hisi_qm *qm)
5784
{
5785
struct device *dev = &qm->pdev->dev;
5786
5787
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5788
return;
5789
5790
pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5791
pm_runtime_use_autosuspend(dev);
5792
pm_runtime_put_noidle(dev);
5793
}
5794
EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5795
5796
/**
5797
* hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5798
* @qm: pointer to accelerator device.
5799
*
5800
* Function that uninitialize qm runtime PM.
5801
*/
5802
void hisi_qm_pm_uninit(struct hisi_qm *qm)
5803
{
5804
struct device *dev = &qm->pdev->dev;
5805
5806
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5807
return;
5808
5809
pm_runtime_get_noresume(dev);
5810
pm_runtime_dont_use_autosuspend(dev);
5811
}
5812
EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5813
5814
static int qm_prepare_for_suspend(struct hisi_qm *qm)
5815
{
5816
struct pci_dev *pdev = qm->pdev;
5817
int ret;
5818
5819
ret = qm->ops->set_msi(qm, false);
5820
if (ret) {
5821
pci_err(pdev, "failed to disable MSI before suspending!\n");
5822
return ret;
5823
}
5824
5825
ret = qm_master_ooo_check(qm);
5826
if (ret)
5827
return ret;
5828
5829
if (qm->err_ini->set_priv_status) {
5830
ret = qm->err_ini->set_priv_status(qm);
5831
if (ret)
5832
return ret;
5833
}
5834
5835
ret = qm_set_pf_mse(qm, false);
5836
if (ret)
5837
pci_err(pdev, "failed to disable MSE before suspending!\n");
5838
5839
return ret;
5840
}
5841
5842
static int qm_rebuild_for_resume(struct hisi_qm *qm)
5843
{
5844
struct pci_dev *pdev = qm->pdev;
5845
int ret;
5846
5847
ret = qm_set_pf_mse(qm, true);
5848
if (ret) {
5849
pci_err(pdev, "failed to enable MSE after resuming!\n");
5850
return ret;
5851
}
5852
5853
ret = qm->ops->set_msi(qm, true);
5854
if (ret) {
5855
pci_err(pdev, "failed to enable MSI after resuming!\n");
5856
return ret;
5857
}
5858
5859
ret = qm_dev_hw_init(qm);
5860
if (ret) {
5861
pci_err(pdev, "failed to init device after resuming\n");
5862
return ret;
5863
}
5864
5865
qm_cmd_init(qm);
5866
hisi_qm_dev_err_init(qm);
5867
/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5868
writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5869
qm_disable_clock_gate(qm);
5870
ret = qm_dev_mem_reset(qm);
5871
if (ret)
5872
pci_err(pdev, "failed to reset device memory\n");
5873
5874
return ret;
5875
}
5876
5877
/**
5878
* hisi_qm_suspend() - Runtime suspend of given device.
5879
* @dev: device to suspend.
5880
*
5881
* Function that suspend the device.
5882
*/
5883
int hisi_qm_suspend(struct device *dev)
5884
{
5885
struct pci_dev *pdev = to_pci_dev(dev);
5886
struct hisi_qm *qm = pci_get_drvdata(pdev);
5887
int ret;
5888
5889
pci_info(pdev, "entering suspended state\n");
5890
5891
ret = hisi_qm_stop(qm, QM_NORMAL);
5892
if (ret) {
5893
pci_err(pdev, "failed to stop qm(%d)\n", ret);
5894
return ret;
5895
}
5896
5897
ret = qm_prepare_for_suspend(qm);
5898
if (ret)
5899
pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5900
5901
return ret;
5902
}
5903
EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5904
5905
/**
5906
* hisi_qm_resume() - Runtime resume of given device.
5907
* @dev: device to resume.
5908
*
5909
* Function that resume the device.
5910
*/
5911
int hisi_qm_resume(struct device *dev)
5912
{
5913
struct pci_dev *pdev = to_pci_dev(dev);
5914
struct hisi_qm *qm = pci_get_drvdata(pdev);
5915
int ret;
5916
5917
pci_info(pdev, "resuming from suspend state\n");
5918
5919
ret = qm_rebuild_for_resume(qm);
5920
if (ret) {
5921
pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5922
return ret;
5923
}
5924
5925
ret = hisi_qm_start(qm);
5926
if (ret) {
5927
if (qm_check_dev_error(qm)) {
5928
pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5929
return 0;
5930
}
5931
5932
pci_err(pdev, "failed to start qm(%d)!\n", ret);
5933
}
5934
5935
return ret;
5936
}
5937
EXPORT_SYMBOL_GPL(hisi_qm_resume);
5938
5939
MODULE_LICENSE("GPL v2");
5940
MODULE_AUTHOR("Zhou Wang <[email protected]>");
5941
MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5942
5943