Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/intel/keembay/keembay-ocs-hcu-core.c
29524 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Intel Keem Bay OCS HCU Crypto Driver.
4
*
5
* Copyright (C) 2018-2020 Intel Corporation
6
*/
7
8
#include <crypto/engine.h>
9
#include <crypto/hmac.h>
10
#include <crypto/internal/hash.h>
11
#include <crypto/scatterwalk.h>
12
#include <crypto/sha2.h>
13
#include <crypto/sm3.h>
14
#include <linux/completion.h>
15
#include <linux/dma-mapping.h>
16
#include <linux/err.h>
17
#include <linux/interrupt.h>
18
#include <linux/kernel.h>
19
#include <linux/mod_devicetable.h>
20
#include <linux/module.h>
21
#include <linux/platform_device.h>
22
#include <linux/string.h>
23
24
#include "ocs-hcu.h"
25
26
#define DRV_NAME "keembay-ocs-hcu"
27
28
/* Flag marking a final request. */
29
#define REQ_FINAL BIT(0)
30
/* Flag marking a HMAC request. */
31
#define REQ_FLAGS_HMAC BIT(1)
32
/* Flag set when HW HMAC is being used. */
33
#define REQ_FLAGS_HMAC_HW BIT(2)
34
/* Flag set when SW HMAC is being used. */
35
#define REQ_FLAGS_HMAC_SW BIT(3)
36
37
/**
38
* struct ocs_hcu_ctx: OCS HCU Transform context.
39
* @hcu_dev: The OCS HCU device used by the transformation.
40
* @key: The key (used only for HMAC transformations).
41
* @key_len: The length of the key.
42
* @is_sm3_tfm: Whether or not this is an SM3 transformation.
43
* @is_hmac_tfm: Whether or not this is a HMAC transformation.
44
*/
45
struct ocs_hcu_ctx {
46
struct ocs_hcu_dev *hcu_dev;
47
u8 key[SHA512_BLOCK_SIZE];
48
size_t key_len;
49
bool is_sm3_tfm;
50
bool is_hmac_tfm;
51
};
52
53
/**
54
* struct ocs_hcu_rctx - Context for the request.
55
* @hcu_dev: OCS HCU device to be used to service the request.
56
* @flags: Flags tracking request status.
57
* @algo: Algorithm to use for the request.
58
* @blk_sz: Block size of the transformation / request.
59
* @dig_sz: Digest size of the transformation / request.
60
* @dma_list: OCS DMA linked list.
61
* @hash_ctx: OCS HCU hashing context.
62
* @buffer: Buffer to store: partial block of data and SW HMAC
63
* artifacts (ipad, opad, etc.).
64
* @buf_cnt: Number of bytes currently stored in the buffer.
65
* @buf_dma_addr: The DMA address of @buffer (when mapped).
66
* @buf_dma_count: The number of bytes in @buffer currently DMA-mapped.
67
* @sg: Head of the scatterlist entries containing data.
68
* @sg_data_total: Total data in the SG list at any time.
69
* @sg_data_offset: Offset into the data of the current individual SG node.
70
* @sg_dma_nents: Number of sg entries mapped in dma_list.
71
* @nents: Number of entries in the scatterlist.
72
*/
73
struct ocs_hcu_rctx {
74
struct ocs_hcu_dev *hcu_dev;
75
u32 flags;
76
enum ocs_hcu_algo algo;
77
size_t blk_sz;
78
size_t dig_sz;
79
struct ocs_hcu_dma_list *dma_list;
80
struct ocs_hcu_hash_ctx hash_ctx;
81
/*
82
* Buffer is double the block size because we need space for SW HMAC
83
* artifacts, i.e:
84
* - ipad (1 block) + a possible partial block of data.
85
* - opad (1 block) + digest of H(k ^ ipad || m)
86
*/
87
u8 buffer[2 * SHA512_BLOCK_SIZE];
88
size_t buf_cnt;
89
dma_addr_t buf_dma_addr;
90
size_t buf_dma_count;
91
struct scatterlist *sg;
92
unsigned int sg_data_total;
93
unsigned int sg_data_offset;
94
unsigned int sg_dma_nents;
95
unsigned int nents;
96
};
97
98
/**
99
* struct ocs_hcu_drv - Driver data
100
* @dev_list: The list of HCU devices.
101
* @lock: The lock protecting dev_list.
102
*/
103
struct ocs_hcu_drv {
104
struct list_head dev_list;
105
spinlock_t lock; /* Protects dev_list. */
106
};
107
108
static struct ocs_hcu_drv ocs_hcu = {
109
.dev_list = LIST_HEAD_INIT(ocs_hcu.dev_list),
110
.lock = __SPIN_LOCK_UNLOCKED(ocs_hcu.lock),
111
};
112
113
/*
114
* Return the total amount of data in the request; that is: the data in the
115
* request buffer + the data in the sg list.
116
*/
117
static inline unsigned int kmb_get_total_data(struct ocs_hcu_rctx *rctx)
118
{
119
return rctx->sg_data_total + rctx->buf_cnt;
120
}
121
122
/* Move remaining content of scatter-gather list to context buffer. */
123
static int flush_sg_to_ocs_buffer(struct ocs_hcu_rctx *rctx)
124
{
125
size_t count;
126
127
if (rctx->sg_data_total > (sizeof(rctx->buffer) - rctx->buf_cnt)) {
128
WARN(1, "%s: sg data does not fit in buffer\n", __func__);
129
return -EINVAL;
130
}
131
132
while (rctx->sg_data_total) {
133
if (!rctx->sg) {
134
WARN(1, "%s: unexpected NULL sg\n", __func__);
135
return -EINVAL;
136
}
137
/*
138
* If current sg has been fully processed, skip to the next
139
* one.
140
*/
141
if (rctx->sg_data_offset == rctx->sg->length) {
142
rctx->sg = sg_next(rctx->sg);
143
rctx->sg_data_offset = 0;
144
continue;
145
}
146
/*
147
* Determine the maximum data available to copy from the node.
148
* Minimum of the length left in the sg node, or the total data
149
* in the request.
150
*/
151
count = min(rctx->sg->length - rctx->sg_data_offset,
152
rctx->sg_data_total);
153
/* Copy from scatter-list entry to context buffer. */
154
scatterwalk_map_and_copy(&rctx->buffer[rctx->buf_cnt],
155
rctx->sg, rctx->sg_data_offset,
156
count, 0);
157
158
rctx->sg_data_offset += count;
159
rctx->sg_data_total -= count;
160
rctx->buf_cnt += count;
161
}
162
163
return 0;
164
}
165
166
static struct ocs_hcu_dev *kmb_ocs_hcu_find_dev(struct ahash_request *req)
167
{
168
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
169
struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm);
170
171
/* If the HCU device for the request was previously set, return it. */
172
if (tctx->hcu_dev)
173
return tctx->hcu_dev;
174
175
/*
176
* Otherwise, get the first HCU device available (there should be one
177
* and only one device).
178
*/
179
spin_lock_bh(&ocs_hcu.lock);
180
tctx->hcu_dev = list_first_entry_or_null(&ocs_hcu.dev_list,
181
struct ocs_hcu_dev,
182
list);
183
spin_unlock_bh(&ocs_hcu.lock);
184
185
return tctx->hcu_dev;
186
}
187
188
/* Free OCS DMA linked list and DMA-able context buffer. */
189
static void kmb_ocs_hcu_dma_cleanup(struct ahash_request *req,
190
struct ocs_hcu_rctx *rctx)
191
{
192
struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev;
193
struct device *dev = hcu_dev->dev;
194
195
/* Unmap rctx->buffer (if mapped). */
196
if (rctx->buf_dma_count) {
197
dma_unmap_single(dev, rctx->buf_dma_addr, rctx->buf_dma_count,
198
DMA_TO_DEVICE);
199
rctx->buf_dma_count = 0;
200
}
201
202
/* Unmap req->src (if mapped). */
203
if (rctx->sg_dma_nents) {
204
dma_unmap_sg(dev, req->src, rctx->nents, DMA_TO_DEVICE);
205
rctx->sg_dma_nents = 0;
206
}
207
208
/* Free dma_list (if allocated). */
209
if (rctx->dma_list) {
210
ocs_hcu_dma_list_free(hcu_dev, rctx->dma_list);
211
rctx->dma_list = NULL;
212
}
213
}
214
215
/*
216
* Prepare for DMA operation:
217
* - DMA-map request context buffer (if needed)
218
* - DMA-map SG list (only the entries to be processed, see note below)
219
* - Allocate OCS HCU DMA linked list (number of elements = SG entries to
220
* process + context buffer (if not empty)).
221
* - Add DMA-mapped request context buffer to OCS HCU DMA list.
222
* - Add SG entries to DMA list.
223
*
224
* Note: if this is a final request, we process all the data in the SG list,
225
* otherwise we can only process up to the maximum amount of block-aligned data
226
* (the remainder will be put into the context buffer and processed in the next
227
* request).
228
*/
229
static int kmb_ocs_dma_prepare(struct ahash_request *req)
230
{
231
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
232
struct device *dev = rctx->hcu_dev->dev;
233
unsigned int remainder = 0;
234
unsigned int total;
235
int nents;
236
size_t count;
237
int rc;
238
int i;
239
240
/* This function should be called only when there is data to process. */
241
total = kmb_get_total_data(rctx);
242
if (!total)
243
return -EINVAL;
244
245
/*
246
* If this is not a final DMA (terminated DMA), the data passed to the
247
* HCU must be aligned to the block size; compute the remainder data to
248
* be processed in the next request.
249
*/
250
if (!(rctx->flags & REQ_FINAL))
251
remainder = total % rctx->blk_sz;
252
253
/* Determine the number of scatter gather list entries to process. */
254
nents = sg_nents_for_len(req->src, rctx->sg_data_total - remainder);
255
256
if (nents < 0)
257
return nents;
258
259
/* If there are entries to process, map them. */
260
if (nents) {
261
rctx->sg_dma_nents = dma_map_sg(dev, req->src, nents,
262
DMA_TO_DEVICE);
263
if (!rctx->sg_dma_nents) {
264
dev_err(dev, "Failed to MAP SG\n");
265
rc = -ENOMEM;
266
goto cleanup;
267
}
268
269
/* Save the value of nents to pass to dma_unmap_sg. */
270
rctx->nents = nents;
271
272
/*
273
* The value returned by dma_map_sg() can be < nents; so update
274
* nents accordingly.
275
*/
276
nents = rctx->sg_dma_nents;
277
}
278
279
/*
280
* If context buffer is not empty, map it and add extra DMA entry for
281
* it.
282
*/
283
if (rctx->buf_cnt) {
284
rctx->buf_dma_addr = dma_map_single(dev, rctx->buffer,
285
rctx->buf_cnt,
286
DMA_TO_DEVICE);
287
if (dma_mapping_error(dev, rctx->buf_dma_addr)) {
288
dev_err(dev, "Failed to map request context buffer\n");
289
rc = -ENOMEM;
290
goto cleanup;
291
}
292
rctx->buf_dma_count = rctx->buf_cnt;
293
/* Increase number of dma entries. */
294
nents++;
295
}
296
297
/* Allocate OCS HCU DMA list. */
298
rctx->dma_list = ocs_hcu_dma_list_alloc(rctx->hcu_dev, nents);
299
if (!rctx->dma_list) {
300
rc = -ENOMEM;
301
goto cleanup;
302
}
303
304
/* Add request context buffer (if previously DMA-mapped) */
305
if (rctx->buf_dma_count) {
306
rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list,
307
rctx->buf_dma_addr,
308
rctx->buf_dma_count);
309
if (rc)
310
goto cleanup;
311
}
312
313
/* Add the SG nodes to be processed to the DMA linked list. */
314
for_each_sg(req->src, rctx->sg, rctx->sg_dma_nents, i) {
315
/*
316
* The number of bytes to add to the list entry is the minimum
317
* between:
318
* - The DMA length of the SG entry.
319
* - The data left to be processed.
320
*/
321
count = min(rctx->sg_data_total - remainder,
322
sg_dma_len(rctx->sg) - rctx->sg_data_offset);
323
/*
324
* Do not create a zero length DMA descriptor. Check in case of
325
* zero length SG node.
326
*/
327
if (count == 0)
328
continue;
329
/* Add sg to HCU DMA list. */
330
rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev,
331
rctx->dma_list,
332
rctx->sg->dma_address,
333
count);
334
if (rc)
335
goto cleanup;
336
337
/* Update amount of data remaining in SG list. */
338
rctx->sg_data_total -= count;
339
340
/*
341
* If remaining data is equal to remainder (note: 'less than'
342
* case should never happen in practice), we are done: update
343
* offset and exit the loop.
344
*/
345
if (rctx->sg_data_total <= remainder) {
346
WARN_ON(rctx->sg_data_total < remainder);
347
rctx->sg_data_offset += count;
348
break;
349
}
350
351
/*
352
* If we get here is because we need to process the next sg in
353
* the list; set offset within the sg to 0.
354
*/
355
rctx->sg_data_offset = 0;
356
}
357
358
return 0;
359
cleanup:
360
dev_err(dev, "Failed to prepare DMA.\n");
361
kmb_ocs_hcu_dma_cleanup(req, rctx);
362
363
return rc;
364
}
365
366
static void kmb_ocs_hcu_secure_cleanup(struct ahash_request *req)
367
{
368
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
369
370
/* Clear buffer of any data. */
371
memzero_explicit(rctx->buffer, sizeof(rctx->buffer));
372
}
373
374
static int kmb_ocs_hcu_handle_queue(struct ahash_request *req)
375
{
376
struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
377
378
if (!hcu_dev)
379
return -ENOENT;
380
381
return crypto_transfer_hash_request_to_engine(hcu_dev->engine, req);
382
}
383
384
static int prepare_ipad(struct ahash_request *req)
385
{
386
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
387
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
388
struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
389
int i;
390
391
WARN(rctx->buf_cnt, "%s: Context buffer is not empty\n", __func__);
392
WARN(!(rctx->flags & REQ_FLAGS_HMAC_SW),
393
"%s: HMAC_SW flag is not set\n", __func__);
394
/*
395
* Key length must be equal to block size. If key is shorter,
396
* we pad it with zero (note: key cannot be longer, since
397
* longer keys are hashed by kmb_ocs_hcu_setkey()).
398
*/
399
if (ctx->key_len > rctx->blk_sz) {
400
WARN(1, "%s: Invalid key length in tfm context\n", __func__);
401
return -EINVAL;
402
}
403
memzero_explicit(&ctx->key[ctx->key_len],
404
rctx->blk_sz - ctx->key_len);
405
ctx->key_len = rctx->blk_sz;
406
/*
407
* Prepare IPAD for HMAC. Only done for first block.
408
* HMAC(k,m) = H(k ^ opad || H(k ^ ipad || m))
409
* k ^ ipad will be first hashed block.
410
* k ^ opad will be calculated in the final request.
411
* Only needed if not using HW HMAC.
412
*/
413
for (i = 0; i < rctx->blk_sz; i++)
414
rctx->buffer[i] = ctx->key[i] ^ HMAC_IPAD_VALUE;
415
rctx->buf_cnt = rctx->blk_sz;
416
417
return 0;
418
}
419
420
static int kmb_ocs_hcu_do_one_request(struct crypto_engine *engine, void *areq)
421
{
422
struct ahash_request *req = container_of(areq, struct ahash_request,
423
base);
424
struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
425
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
426
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
427
struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm);
428
int rc;
429
int i;
430
431
if (!hcu_dev) {
432
rc = -ENOENT;
433
goto error;
434
}
435
436
/*
437
* If hardware HMAC flag is set, perform HMAC in hardware.
438
*
439
* NOTE: this flag implies REQ_FINAL && kmb_get_total_data(rctx)
440
*/
441
if (rctx->flags & REQ_FLAGS_HMAC_HW) {
442
/* Map input data into the HCU DMA linked list. */
443
rc = kmb_ocs_dma_prepare(req);
444
if (rc)
445
goto error;
446
447
rc = ocs_hcu_hmac(hcu_dev, rctx->algo, tctx->key, tctx->key_len,
448
rctx->dma_list, req->result, rctx->dig_sz);
449
450
/* Unmap data and free DMA list regardless of return code. */
451
kmb_ocs_hcu_dma_cleanup(req, rctx);
452
453
/* Process previous return code. */
454
if (rc)
455
goto error;
456
457
goto done;
458
}
459
460
/* Handle update request case. */
461
if (!(rctx->flags & REQ_FINAL)) {
462
/* Update should always have input data. */
463
if (!kmb_get_total_data(rctx))
464
return -EINVAL;
465
466
/* Map input data into the HCU DMA linked list. */
467
rc = kmb_ocs_dma_prepare(req);
468
if (rc)
469
goto error;
470
471
/* Do hashing step. */
472
rc = ocs_hcu_hash_update(hcu_dev, &rctx->hash_ctx,
473
rctx->dma_list);
474
475
/* Unmap data and free DMA list regardless of return code. */
476
kmb_ocs_hcu_dma_cleanup(req, rctx);
477
478
/* Process previous return code. */
479
if (rc)
480
goto error;
481
482
/*
483
* Reset request buffer count (data in the buffer was just
484
* processed).
485
*/
486
rctx->buf_cnt = 0;
487
/*
488
* Move remaining sg data into the request buffer, so that it
489
* will be processed during the next request.
490
*
491
* NOTE: we have remaining data if kmb_get_total_data() was not
492
* a multiple of block size.
493
*/
494
rc = flush_sg_to_ocs_buffer(rctx);
495
if (rc)
496
goto error;
497
498
goto done;
499
}
500
501
/* If we get here, this is a final request. */
502
503
/* If there is data to process, use finup. */
504
if (kmb_get_total_data(rctx)) {
505
/* Map input data into the HCU DMA linked list. */
506
rc = kmb_ocs_dma_prepare(req);
507
if (rc)
508
goto error;
509
510
/* Do hashing step. */
511
rc = ocs_hcu_hash_finup(hcu_dev, &rctx->hash_ctx,
512
rctx->dma_list,
513
req->result, rctx->dig_sz);
514
/* Free DMA list regardless of return code. */
515
kmb_ocs_hcu_dma_cleanup(req, rctx);
516
517
/* Process previous return code. */
518
if (rc)
519
goto error;
520
521
} else { /* Otherwise (if we have no data), use final. */
522
rc = ocs_hcu_hash_final(hcu_dev, &rctx->hash_ctx, req->result,
523
rctx->dig_sz);
524
if (rc)
525
goto error;
526
}
527
528
/*
529
* If we are finalizing a SW HMAC request, we just computed the result
530
* of: H(k ^ ipad || m).
531
*
532
* We now need to complete the HMAC calculation with the OPAD step,
533
* that is, we need to compute H(k ^ opad || digest), where digest is
534
* the digest we just obtained, i.e., H(k ^ ipad || m).
535
*/
536
if (rctx->flags & REQ_FLAGS_HMAC_SW) {
537
/*
538
* Compute k ^ opad and store it in the request buffer (which
539
* is not used anymore at this point).
540
* Note: key has been padded / hashed already (so keylen ==
541
* blksz) .
542
*/
543
WARN_ON(tctx->key_len != rctx->blk_sz);
544
for (i = 0; i < rctx->blk_sz; i++)
545
rctx->buffer[i] = tctx->key[i] ^ HMAC_OPAD_VALUE;
546
/* Now append the digest to the rest of the buffer. */
547
for (i = 0; (i < rctx->dig_sz); i++)
548
rctx->buffer[rctx->blk_sz + i] = req->result[i];
549
550
/* Now hash the buffer to obtain the final HMAC. */
551
rc = ocs_hcu_digest(hcu_dev, rctx->algo, rctx->buffer,
552
rctx->blk_sz + rctx->dig_sz, req->result,
553
rctx->dig_sz);
554
if (rc)
555
goto error;
556
}
557
558
/* Perform secure clean-up. */
559
kmb_ocs_hcu_secure_cleanup(req);
560
done:
561
crypto_finalize_hash_request(hcu_dev->engine, req, 0);
562
563
return 0;
564
565
error:
566
kmb_ocs_hcu_secure_cleanup(req);
567
return rc;
568
}
569
570
static int kmb_ocs_hcu_init(struct ahash_request *req)
571
{
572
struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
573
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
574
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
575
struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
576
577
if (!hcu_dev)
578
return -ENOENT;
579
580
/* Initialize entire request context to zero. */
581
memset(rctx, 0, sizeof(*rctx));
582
583
rctx->hcu_dev = hcu_dev;
584
rctx->dig_sz = crypto_ahash_digestsize(tfm);
585
586
switch (rctx->dig_sz) {
587
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
588
case SHA224_DIGEST_SIZE:
589
rctx->blk_sz = SHA224_BLOCK_SIZE;
590
rctx->algo = OCS_HCU_ALGO_SHA224;
591
break;
592
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
593
case SHA256_DIGEST_SIZE:
594
rctx->blk_sz = SHA256_BLOCK_SIZE;
595
/*
596
* SHA256 and SM3 have the same digest size: use info from tfm
597
* context to find out which one we should use.
598
*/
599
rctx->algo = ctx->is_sm3_tfm ? OCS_HCU_ALGO_SM3 :
600
OCS_HCU_ALGO_SHA256;
601
break;
602
case SHA384_DIGEST_SIZE:
603
rctx->blk_sz = SHA384_BLOCK_SIZE;
604
rctx->algo = OCS_HCU_ALGO_SHA384;
605
break;
606
case SHA512_DIGEST_SIZE:
607
rctx->blk_sz = SHA512_BLOCK_SIZE;
608
rctx->algo = OCS_HCU_ALGO_SHA512;
609
break;
610
default:
611
return -EINVAL;
612
}
613
614
/* Initialize intermediate data. */
615
ocs_hcu_hash_init(&rctx->hash_ctx, rctx->algo);
616
617
/* If this a HMAC request, set HMAC flag. */
618
if (ctx->is_hmac_tfm)
619
rctx->flags |= REQ_FLAGS_HMAC;
620
621
return 0;
622
}
623
624
static int kmb_ocs_hcu_update(struct ahash_request *req)
625
{
626
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
627
int rc;
628
629
if (!req->nbytes)
630
return 0;
631
632
rctx->sg_data_total = req->nbytes;
633
rctx->sg_data_offset = 0;
634
rctx->sg = req->src;
635
636
/*
637
* If we are doing HMAC, then we must use SW-assisted HMAC, since HW
638
* HMAC does not support context switching (there it can only be used
639
* with finup() or digest()).
640
*/
641
if (rctx->flags & REQ_FLAGS_HMAC &&
642
!(rctx->flags & REQ_FLAGS_HMAC_SW)) {
643
rctx->flags |= REQ_FLAGS_HMAC_SW;
644
rc = prepare_ipad(req);
645
if (rc)
646
return rc;
647
}
648
649
/*
650
* If remaining sg_data fits into ctx buffer, just copy it there; we'll
651
* process it at the next update() or final().
652
*/
653
if (rctx->sg_data_total <= (sizeof(rctx->buffer) - rctx->buf_cnt))
654
return flush_sg_to_ocs_buffer(rctx);
655
656
return kmb_ocs_hcu_handle_queue(req);
657
}
658
659
/* Common logic for kmb_ocs_hcu_final() and kmb_ocs_hcu_finup(). */
660
static int kmb_ocs_hcu_fin_common(struct ahash_request *req)
661
{
662
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
663
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
664
struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
665
int rc;
666
667
rctx->flags |= REQ_FINAL;
668
669
/*
670
* If this is a HMAC request and, so far, we didn't have to switch to
671
* SW HMAC, check if we can use HW HMAC.
672
*/
673
if (rctx->flags & REQ_FLAGS_HMAC &&
674
!(rctx->flags & REQ_FLAGS_HMAC_SW)) {
675
/*
676
* If we are here, it means we never processed any data so far,
677
* so we can use HW HMAC, but only if there is some data to
678
* process (since OCS HW MAC does not support zero-length
679
* messages) and the key length is supported by the hardware
680
* (OCS HCU HW only supports length <= 64); if HW HMAC cannot
681
* be used, fall back to SW-assisted HMAC.
682
*/
683
if (kmb_get_total_data(rctx) &&
684
ctx->key_len <= OCS_HCU_HW_KEY_LEN) {
685
rctx->flags |= REQ_FLAGS_HMAC_HW;
686
} else {
687
rctx->flags |= REQ_FLAGS_HMAC_SW;
688
rc = prepare_ipad(req);
689
if (rc)
690
return rc;
691
}
692
}
693
694
return kmb_ocs_hcu_handle_queue(req);
695
}
696
697
static int kmb_ocs_hcu_final(struct ahash_request *req)
698
{
699
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
700
701
rctx->sg_data_total = 0;
702
rctx->sg_data_offset = 0;
703
rctx->sg = NULL;
704
705
return kmb_ocs_hcu_fin_common(req);
706
}
707
708
static int kmb_ocs_hcu_finup(struct ahash_request *req)
709
{
710
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
711
712
rctx->sg_data_total = req->nbytes;
713
rctx->sg_data_offset = 0;
714
rctx->sg = req->src;
715
716
return kmb_ocs_hcu_fin_common(req);
717
}
718
719
static int kmb_ocs_hcu_digest(struct ahash_request *req)
720
{
721
int rc = 0;
722
struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
723
724
if (!hcu_dev)
725
return -ENOENT;
726
727
rc = kmb_ocs_hcu_init(req);
728
if (rc)
729
return rc;
730
731
rc = kmb_ocs_hcu_finup(req);
732
733
return rc;
734
}
735
736
static int kmb_ocs_hcu_export(struct ahash_request *req, void *out)
737
{
738
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
739
740
/* Intermediate data is always stored and applied per request. */
741
memcpy(out, rctx, sizeof(*rctx));
742
743
return 0;
744
}
745
746
static int kmb_ocs_hcu_import(struct ahash_request *req, const void *in)
747
{
748
struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
749
750
/* Intermediate data is always stored and applied per request. */
751
memcpy(rctx, in, sizeof(*rctx));
752
753
return 0;
754
}
755
756
static int kmb_ocs_hcu_setkey(struct crypto_ahash *tfm, const u8 *key,
757
unsigned int keylen)
758
{
759
unsigned int digestsize = crypto_ahash_digestsize(tfm);
760
struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
761
size_t blk_sz = crypto_ahash_blocksize(tfm);
762
struct crypto_ahash *ahash_tfm;
763
struct ahash_request *req;
764
struct crypto_wait wait;
765
struct scatterlist sg;
766
const char *alg_name;
767
int rc;
768
769
/*
770
* Key length must be equal to block size:
771
* - If key is shorter, we are done for now (the key will be padded
772
* later on); this is to maximize the use of HW HMAC (which works
773
* only for keys <= 64 bytes).
774
* - If key is longer, we hash it.
775
*/
776
if (keylen <= blk_sz) {
777
memcpy(ctx->key, key, keylen);
778
ctx->key_len = keylen;
779
return 0;
780
}
781
782
switch (digestsize) {
783
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
784
case SHA224_DIGEST_SIZE:
785
alg_name = "sha224-keembay-ocs";
786
break;
787
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
788
case SHA256_DIGEST_SIZE:
789
alg_name = ctx->is_sm3_tfm ? "sm3-keembay-ocs" :
790
"sha256-keembay-ocs";
791
break;
792
case SHA384_DIGEST_SIZE:
793
alg_name = "sha384-keembay-ocs";
794
break;
795
case SHA512_DIGEST_SIZE:
796
alg_name = "sha512-keembay-ocs";
797
break;
798
default:
799
return -EINVAL;
800
}
801
802
ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
803
if (IS_ERR(ahash_tfm))
804
return PTR_ERR(ahash_tfm);
805
806
req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
807
if (!req) {
808
rc = -ENOMEM;
809
goto err_free_ahash;
810
}
811
812
crypto_init_wait(&wait);
813
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
814
crypto_req_done, &wait);
815
crypto_ahash_clear_flags(ahash_tfm, ~0);
816
817
sg_init_one(&sg, key, keylen);
818
ahash_request_set_crypt(req, &sg, ctx->key, keylen);
819
820
rc = crypto_wait_req(crypto_ahash_digest(req), &wait);
821
if (rc == 0)
822
ctx->key_len = digestsize;
823
824
ahash_request_free(req);
825
err_free_ahash:
826
crypto_free_ahash(ahash_tfm);
827
828
return rc;
829
}
830
831
/* Set request size and initialize tfm context. */
832
static void __cra_init(struct crypto_tfm *tfm, struct ocs_hcu_ctx *ctx)
833
{
834
crypto_ahash_set_reqsize_dma(__crypto_ahash_cast(tfm),
835
sizeof(struct ocs_hcu_rctx));
836
}
837
838
static int kmb_ocs_hcu_sha_cra_init(struct crypto_tfm *tfm)
839
{
840
struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
841
842
__cra_init(tfm, ctx);
843
844
return 0;
845
}
846
847
static int kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm *tfm)
848
{
849
struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
850
851
__cra_init(tfm, ctx);
852
853
ctx->is_sm3_tfm = true;
854
855
return 0;
856
}
857
858
static int kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm *tfm)
859
{
860
struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
861
862
__cra_init(tfm, ctx);
863
864
ctx->is_sm3_tfm = true;
865
ctx->is_hmac_tfm = true;
866
867
return 0;
868
}
869
870
static int kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm *tfm)
871
{
872
struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
873
874
__cra_init(tfm, ctx);
875
876
ctx->is_hmac_tfm = true;
877
878
return 0;
879
}
880
881
/* Function called when 'tfm' is de-initialized. */
882
static void kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm *tfm)
883
{
884
struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
885
886
/* Clear the key. */
887
memzero_explicit(ctx->key, sizeof(ctx->key));
888
}
889
890
static struct ahash_engine_alg ocs_hcu_algs[] = {
891
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
892
{
893
.base.init = kmb_ocs_hcu_init,
894
.base.update = kmb_ocs_hcu_update,
895
.base.final = kmb_ocs_hcu_final,
896
.base.finup = kmb_ocs_hcu_finup,
897
.base.digest = kmb_ocs_hcu_digest,
898
.base.export = kmb_ocs_hcu_export,
899
.base.import = kmb_ocs_hcu_import,
900
.base.halg = {
901
.digestsize = SHA224_DIGEST_SIZE,
902
.statesize = sizeof(struct ocs_hcu_rctx),
903
.base = {
904
.cra_name = "sha224",
905
.cra_driver_name = "sha224-keembay-ocs",
906
.cra_priority = 255,
907
.cra_flags = CRYPTO_ALG_ASYNC,
908
.cra_blocksize = SHA224_BLOCK_SIZE,
909
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
910
.cra_alignmask = 0,
911
.cra_module = THIS_MODULE,
912
.cra_init = kmb_ocs_hcu_sha_cra_init,
913
}
914
},
915
.op.do_one_request = kmb_ocs_hcu_do_one_request,
916
},
917
{
918
.base.init = kmb_ocs_hcu_init,
919
.base.update = kmb_ocs_hcu_update,
920
.base.final = kmb_ocs_hcu_final,
921
.base.finup = kmb_ocs_hcu_finup,
922
.base.digest = kmb_ocs_hcu_digest,
923
.base.export = kmb_ocs_hcu_export,
924
.base.import = kmb_ocs_hcu_import,
925
.base.setkey = kmb_ocs_hcu_setkey,
926
.base.halg = {
927
.digestsize = SHA224_DIGEST_SIZE,
928
.statesize = sizeof(struct ocs_hcu_rctx),
929
.base = {
930
.cra_name = "hmac(sha224)",
931
.cra_driver_name = "hmac-sha224-keembay-ocs",
932
.cra_priority = 255,
933
.cra_flags = CRYPTO_ALG_ASYNC,
934
.cra_blocksize = SHA224_BLOCK_SIZE,
935
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
936
.cra_alignmask = 0,
937
.cra_module = THIS_MODULE,
938
.cra_init = kmb_ocs_hcu_hmac_cra_init,
939
.cra_exit = kmb_ocs_hcu_hmac_cra_exit,
940
}
941
},
942
.op.do_one_request = kmb_ocs_hcu_do_one_request,
943
},
944
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
945
{
946
.base.init = kmb_ocs_hcu_init,
947
.base.update = kmb_ocs_hcu_update,
948
.base.final = kmb_ocs_hcu_final,
949
.base.finup = kmb_ocs_hcu_finup,
950
.base.digest = kmb_ocs_hcu_digest,
951
.base.export = kmb_ocs_hcu_export,
952
.base.import = kmb_ocs_hcu_import,
953
.base.halg = {
954
.digestsize = SHA256_DIGEST_SIZE,
955
.statesize = sizeof(struct ocs_hcu_rctx),
956
.base = {
957
.cra_name = "sha256",
958
.cra_driver_name = "sha256-keembay-ocs",
959
.cra_priority = 255,
960
.cra_flags = CRYPTO_ALG_ASYNC,
961
.cra_blocksize = SHA256_BLOCK_SIZE,
962
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
963
.cra_alignmask = 0,
964
.cra_module = THIS_MODULE,
965
.cra_init = kmb_ocs_hcu_sha_cra_init,
966
}
967
},
968
.op.do_one_request = kmb_ocs_hcu_do_one_request,
969
},
970
{
971
.base.init = kmb_ocs_hcu_init,
972
.base.update = kmb_ocs_hcu_update,
973
.base.final = kmb_ocs_hcu_final,
974
.base.finup = kmb_ocs_hcu_finup,
975
.base.digest = kmb_ocs_hcu_digest,
976
.base.export = kmb_ocs_hcu_export,
977
.base.import = kmb_ocs_hcu_import,
978
.base.setkey = kmb_ocs_hcu_setkey,
979
.base.halg = {
980
.digestsize = SHA256_DIGEST_SIZE,
981
.statesize = sizeof(struct ocs_hcu_rctx),
982
.base = {
983
.cra_name = "hmac(sha256)",
984
.cra_driver_name = "hmac-sha256-keembay-ocs",
985
.cra_priority = 255,
986
.cra_flags = CRYPTO_ALG_ASYNC,
987
.cra_blocksize = SHA256_BLOCK_SIZE,
988
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
989
.cra_alignmask = 0,
990
.cra_module = THIS_MODULE,
991
.cra_init = kmb_ocs_hcu_hmac_cra_init,
992
.cra_exit = kmb_ocs_hcu_hmac_cra_exit,
993
}
994
},
995
.op.do_one_request = kmb_ocs_hcu_do_one_request,
996
},
997
{
998
.base.init = kmb_ocs_hcu_init,
999
.base.update = kmb_ocs_hcu_update,
1000
.base.final = kmb_ocs_hcu_final,
1001
.base.finup = kmb_ocs_hcu_finup,
1002
.base.digest = kmb_ocs_hcu_digest,
1003
.base.export = kmb_ocs_hcu_export,
1004
.base.import = kmb_ocs_hcu_import,
1005
.base.halg = {
1006
.digestsize = SM3_DIGEST_SIZE,
1007
.statesize = sizeof(struct ocs_hcu_rctx),
1008
.base = {
1009
.cra_name = "sm3",
1010
.cra_driver_name = "sm3-keembay-ocs",
1011
.cra_priority = 255,
1012
.cra_flags = CRYPTO_ALG_ASYNC,
1013
.cra_blocksize = SM3_BLOCK_SIZE,
1014
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1015
.cra_alignmask = 0,
1016
.cra_module = THIS_MODULE,
1017
.cra_init = kmb_ocs_hcu_sm3_cra_init,
1018
}
1019
},
1020
.op.do_one_request = kmb_ocs_hcu_do_one_request,
1021
},
1022
{
1023
.base.init = kmb_ocs_hcu_init,
1024
.base.update = kmb_ocs_hcu_update,
1025
.base.final = kmb_ocs_hcu_final,
1026
.base.finup = kmb_ocs_hcu_finup,
1027
.base.digest = kmb_ocs_hcu_digest,
1028
.base.export = kmb_ocs_hcu_export,
1029
.base.import = kmb_ocs_hcu_import,
1030
.base.setkey = kmb_ocs_hcu_setkey,
1031
.base.halg = {
1032
.digestsize = SM3_DIGEST_SIZE,
1033
.statesize = sizeof(struct ocs_hcu_rctx),
1034
.base = {
1035
.cra_name = "hmac(sm3)",
1036
.cra_driver_name = "hmac-sm3-keembay-ocs",
1037
.cra_priority = 255,
1038
.cra_flags = CRYPTO_ALG_ASYNC,
1039
.cra_blocksize = SM3_BLOCK_SIZE,
1040
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1041
.cra_alignmask = 0,
1042
.cra_module = THIS_MODULE,
1043
.cra_init = kmb_ocs_hcu_hmac_sm3_cra_init,
1044
.cra_exit = kmb_ocs_hcu_hmac_cra_exit,
1045
}
1046
},
1047
.op.do_one_request = kmb_ocs_hcu_do_one_request,
1048
},
1049
{
1050
.base.init = kmb_ocs_hcu_init,
1051
.base.update = kmb_ocs_hcu_update,
1052
.base.final = kmb_ocs_hcu_final,
1053
.base.finup = kmb_ocs_hcu_finup,
1054
.base.digest = kmb_ocs_hcu_digest,
1055
.base.export = kmb_ocs_hcu_export,
1056
.base.import = kmb_ocs_hcu_import,
1057
.base.halg = {
1058
.digestsize = SHA384_DIGEST_SIZE,
1059
.statesize = sizeof(struct ocs_hcu_rctx),
1060
.base = {
1061
.cra_name = "sha384",
1062
.cra_driver_name = "sha384-keembay-ocs",
1063
.cra_priority = 255,
1064
.cra_flags = CRYPTO_ALG_ASYNC,
1065
.cra_blocksize = SHA384_BLOCK_SIZE,
1066
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1067
.cra_alignmask = 0,
1068
.cra_module = THIS_MODULE,
1069
.cra_init = kmb_ocs_hcu_sha_cra_init,
1070
}
1071
},
1072
.op.do_one_request = kmb_ocs_hcu_do_one_request,
1073
},
1074
{
1075
.base.init = kmb_ocs_hcu_init,
1076
.base.update = kmb_ocs_hcu_update,
1077
.base.final = kmb_ocs_hcu_final,
1078
.base.finup = kmb_ocs_hcu_finup,
1079
.base.digest = kmb_ocs_hcu_digest,
1080
.base.export = kmb_ocs_hcu_export,
1081
.base.import = kmb_ocs_hcu_import,
1082
.base.setkey = kmb_ocs_hcu_setkey,
1083
.base.halg = {
1084
.digestsize = SHA384_DIGEST_SIZE,
1085
.statesize = sizeof(struct ocs_hcu_rctx),
1086
.base = {
1087
.cra_name = "hmac(sha384)",
1088
.cra_driver_name = "hmac-sha384-keembay-ocs",
1089
.cra_priority = 255,
1090
.cra_flags = CRYPTO_ALG_ASYNC,
1091
.cra_blocksize = SHA384_BLOCK_SIZE,
1092
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1093
.cra_alignmask = 0,
1094
.cra_module = THIS_MODULE,
1095
.cra_init = kmb_ocs_hcu_hmac_cra_init,
1096
.cra_exit = kmb_ocs_hcu_hmac_cra_exit,
1097
}
1098
},
1099
.op.do_one_request = kmb_ocs_hcu_do_one_request,
1100
},
1101
{
1102
.base.init = kmb_ocs_hcu_init,
1103
.base.update = kmb_ocs_hcu_update,
1104
.base.final = kmb_ocs_hcu_final,
1105
.base.finup = kmb_ocs_hcu_finup,
1106
.base.digest = kmb_ocs_hcu_digest,
1107
.base.export = kmb_ocs_hcu_export,
1108
.base.import = kmb_ocs_hcu_import,
1109
.base.halg = {
1110
.digestsize = SHA512_DIGEST_SIZE,
1111
.statesize = sizeof(struct ocs_hcu_rctx),
1112
.base = {
1113
.cra_name = "sha512",
1114
.cra_driver_name = "sha512-keembay-ocs",
1115
.cra_priority = 255,
1116
.cra_flags = CRYPTO_ALG_ASYNC,
1117
.cra_blocksize = SHA512_BLOCK_SIZE,
1118
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1119
.cra_alignmask = 0,
1120
.cra_module = THIS_MODULE,
1121
.cra_init = kmb_ocs_hcu_sha_cra_init,
1122
}
1123
},
1124
.op.do_one_request = kmb_ocs_hcu_do_one_request,
1125
},
1126
{
1127
.base.init = kmb_ocs_hcu_init,
1128
.base.update = kmb_ocs_hcu_update,
1129
.base.final = kmb_ocs_hcu_final,
1130
.base.finup = kmb_ocs_hcu_finup,
1131
.base.digest = kmb_ocs_hcu_digest,
1132
.base.export = kmb_ocs_hcu_export,
1133
.base.import = kmb_ocs_hcu_import,
1134
.base.setkey = kmb_ocs_hcu_setkey,
1135
.base.halg = {
1136
.digestsize = SHA512_DIGEST_SIZE,
1137
.statesize = sizeof(struct ocs_hcu_rctx),
1138
.base = {
1139
.cra_name = "hmac(sha512)",
1140
.cra_driver_name = "hmac-sha512-keembay-ocs",
1141
.cra_priority = 255,
1142
.cra_flags = CRYPTO_ALG_ASYNC,
1143
.cra_blocksize = SHA512_BLOCK_SIZE,
1144
.cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1145
.cra_alignmask = 0,
1146
.cra_module = THIS_MODULE,
1147
.cra_init = kmb_ocs_hcu_hmac_cra_init,
1148
.cra_exit = kmb_ocs_hcu_hmac_cra_exit,
1149
}
1150
},
1151
.op.do_one_request = kmb_ocs_hcu_do_one_request,
1152
},
1153
};
1154
1155
/* Device tree driver match. */
1156
static const struct of_device_id kmb_ocs_hcu_of_match[] = {
1157
{
1158
.compatible = "intel,keembay-ocs-hcu",
1159
},
1160
{}
1161
};
1162
MODULE_DEVICE_TABLE(of, kmb_ocs_hcu_of_match);
1163
1164
static void kmb_ocs_hcu_remove(struct platform_device *pdev)
1165
{
1166
struct ocs_hcu_dev *hcu_dev = platform_get_drvdata(pdev);
1167
1168
crypto_engine_unregister_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
1169
1170
crypto_engine_exit(hcu_dev->engine);
1171
1172
spin_lock_bh(&ocs_hcu.lock);
1173
list_del(&hcu_dev->list);
1174
spin_unlock_bh(&ocs_hcu.lock);
1175
}
1176
1177
static int kmb_ocs_hcu_probe(struct platform_device *pdev)
1178
{
1179
struct device *dev = &pdev->dev;
1180
struct ocs_hcu_dev *hcu_dev;
1181
int rc;
1182
1183
hcu_dev = devm_kzalloc(dev, sizeof(*hcu_dev), GFP_KERNEL);
1184
if (!hcu_dev)
1185
return -ENOMEM;
1186
1187
hcu_dev->dev = dev;
1188
1189
platform_set_drvdata(pdev, hcu_dev);
1190
rc = dma_set_mask_and_coherent(&pdev->dev, OCS_HCU_DMA_BIT_MASK);
1191
if (rc)
1192
return rc;
1193
1194
hcu_dev->io_base = devm_platform_ioremap_resource(pdev, 0);
1195
if (IS_ERR(hcu_dev->io_base))
1196
return PTR_ERR(hcu_dev->io_base);
1197
1198
init_completion(&hcu_dev->irq_done);
1199
1200
/* Get and request IRQ. */
1201
hcu_dev->irq = platform_get_irq(pdev, 0);
1202
if (hcu_dev->irq < 0)
1203
return hcu_dev->irq;
1204
1205
rc = devm_request_threaded_irq(&pdev->dev, hcu_dev->irq,
1206
ocs_hcu_irq_handler, NULL, 0,
1207
"keembay-ocs-hcu", hcu_dev);
1208
if (rc < 0) {
1209
dev_err(dev, "Could not request IRQ.\n");
1210
return rc;
1211
}
1212
1213
INIT_LIST_HEAD(&hcu_dev->list);
1214
1215
spin_lock_bh(&ocs_hcu.lock);
1216
list_add_tail(&hcu_dev->list, &ocs_hcu.dev_list);
1217
spin_unlock_bh(&ocs_hcu.lock);
1218
1219
/* Initialize crypto engine */
1220
hcu_dev->engine = crypto_engine_alloc_init(dev, 1);
1221
if (!hcu_dev->engine) {
1222
rc = -ENOMEM;
1223
goto list_del;
1224
}
1225
1226
rc = crypto_engine_start(hcu_dev->engine);
1227
if (rc) {
1228
dev_err(dev, "Could not start engine.\n");
1229
goto cleanup;
1230
}
1231
1232
/* Security infrastructure guarantees OCS clock is enabled. */
1233
1234
rc = crypto_engine_register_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
1235
if (rc) {
1236
dev_err(dev, "Could not register algorithms.\n");
1237
goto cleanup;
1238
}
1239
1240
return 0;
1241
1242
cleanup:
1243
crypto_engine_exit(hcu_dev->engine);
1244
list_del:
1245
spin_lock_bh(&ocs_hcu.lock);
1246
list_del(&hcu_dev->list);
1247
spin_unlock_bh(&ocs_hcu.lock);
1248
1249
return rc;
1250
}
1251
1252
/* The OCS driver is a platform device. */
1253
static struct platform_driver kmb_ocs_hcu_driver = {
1254
.probe = kmb_ocs_hcu_probe,
1255
.remove = kmb_ocs_hcu_remove,
1256
.driver = {
1257
.name = DRV_NAME,
1258
.of_match_table = kmb_ocs_hcu_of_match,
1259
},
1260
};
1261
1262
module_platform_driver(kmb_ocs_hcu_driver);
1263
1264
MODULE_LICENSE("GPL");
1265
1266