Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firmware/efi/libstub/x86-stub.c
29537 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
3
/* -----------------------------------------------------------------------
4
*
5
* Copyright 2011 Intel Corporation; author Matt Fleming
6
*
7
* ----------------------------------------------------------------------- */
8
9
#include <linux/efi.h>
10
#include <linux/pci.h>
11
#include <linux/stddef.h>
12
13
#include <asm/efi.h>
14
#include <asm/e820/types.h>
15
#include <asm/setup.h>
16
#include <asm/desc.h>
17
#include <asm/boot.h>
18
#include <asm/kaslr.h>
19
#include <asm/sev.h>
20
21
#include "efistub.h"
22
#include "x86-stub.h"
23
24
extern char _bss[], _ebss[];
25
26
const efi_system_table_t *efi_system_table;
27
const efi_dxe_services_table_t *efi_dxe_table;
28
static efi_loaded_image_t *image = NULL;
29
static efi_memory_attribute_protocol_t *memattr;
30
31
typedef union sev_memory_acceptance_protocol sev_memory_acceptance_protocol_t;
32
union sev_memory_acceptance_protocol {
33
struct {
34
efi_status_t (__efiapi * allow_unaccepted_memory)(
35
sev_memory_acceptance_protocol_t *);
36
};
37
struct {
38
u32 allow_unaccepted_memory;
39
} mixed_mode;
40
};
41
42
static efi_status_t
43
preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
44
{
45
struct pci_setup_rom *rom __free(efi_pool) = NULL;
46
efi_status_t status;
47
unsigned long size;
48
uint64_t romsize;
49
void *romimage;
50
51
/*
52
* Some firmware images contain EFI function pointers at the place where
53
* the romimage and romsize fields are supposed to be. Typically the EFI
54
* code is mapped at high addresses, translating to an unrealistically
55
* large romsize. The UEFI spec limits the size of option ROMs to 16
56
* MiB so we reject any ROMs over 16 MiB in size to catch this.
57
*/
58
romimage = efi_table_attr(pci, romimage);
59
romsize = efi_table_attr(pci, romsize);
60
if (!romimage || !romsize || romsize > SZ_16M)
61
return EFI_INVALID_PARAMETER;
62
63
size = romsize + sizeof(*rom);
64
65
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
66
(void **)&rom);
67
if (status != EFI_SUCCESS) {
68
efi_err("Failed to allocate memory for 'rom'\n");
69
return status;
70
}
71
72
memset(rom, 0, sizeof(*rom));
73
74
rom->data.type = SETUP_PCI;
75
rom->data.len = size - sizeof(struct setup_data);
76
rom->data.next = 0;
77
rom->pcilen = romsize;
78
79
status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
80
PCI_VENDOR_ID, 1, &rom->vendor);
81
82
if (status != EFI_SUCCESS) {
83
efi_err("Failed to read rom->vendor\n");
84
return status;
85
}
86
87
status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
88
PCI_DEVICE_ID, 1, &rom->devid);
89
90
if (status != EFI_SUCCESS) {
91
efi_err("Failed to read rom->devid\n");
92
return status;
93
}
94
95
status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus,
96
&rom->device, &rom->function);
97
98
if (status != EFI_SUCCESS)
99
return status;
100
101
memcpy(rom->romdata, romimage, romsize);
102
*__rom = no_free_ptr(rom);
103
return EFI_SUCCESS;
104
}
105
106
/*
107
* There's no way to return an informative status from this function,
108
* because any analysis (and printing of error messages) needs to be
109
* done directly at the EFI function call-site.
110
*
111
* For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
112
* just didn't find any PCI devices, but there's no way to tell outside
113
* the context of the call.
114
*/
115
static void setup_efi_pci(struct boot_params *params)
116
{
117
efi_status_t status;
118
efi_handle_t *pci_handle __free(efi_pool) = NULL;
119
efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
120
struct setup_data *data;
121
unsigned long num;
122
efi_handle_t h;
123
124
status = efi_bs_call(locate_handle_buffer, EFI_LOCATE_BY_PROTOCOL,
125
&pci_proto, NULL, &num, &pci_handle);
126
if (status != EFI_SUCCESS)
127
return;
128
129
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
130
131
while (data && data->next)
132
data = (struct setup_data *)(unsigned long)data->next;
133
134
for_each_efi_handle(h, pci_handle, num) {
135
efi_pci_io_protocol_t *pci = NULL;
136
struct pci_setup_rom *rom;
137
138
status = efi_bs_call(handle_protocol, h, &pci_proto,
139
(void **)&pci);
140
if (status != EFI_SUCCESS || !pci)
141
continue;
142
143
status = preserve_pci_rom_image(pci, &rom);
144
if (status != EFI_SUCCESS)
145
continue;
146
147
if (data)
148
data->next = (unsigned long)rom;
149
else
150
params->hdr.setup_data = (unsigned long)rom;
151
152
data = (struct setup_data *)rom;
153
}
154
}
155
156
static void retrieve_apple_device_properties(struct boot_params *boot_params)
157
{
158
efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
159
struct setup_data *data, *new;
160
efi_status_t status;
161
u32 size = 0;
162
apple_properties_protocol_t *p;
163
164
status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p);
165
if (status != EFI_SUCCESS)
166
return;
167
168
if (efi_table_attr(p, version) != 0x10000) {
169
efi_err("Unsupported properties proto version\n");
170
return;
171
}
172
173
efi_call_proto(p, get_all, NULL, &size);
174
if (!size)
175
return;
176
177
do {
178
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
179
size + sizeof(struct setup_data),
180
(void **)&new);
181
if (status != EFI_SUCCESS) {
182
efi_err("Failed to allocate memory for 'properties'\n");
183
return;
184
}
185
186
status = efi_call_proto(p, get_all, new->data, &size);
187
188
if (status == EFI_BUFFER_TOO_SMALL)
189
efi_bs_call(free_pool, new);
190
} while (status == EFI_BUFFER_TOO_SMALL);
191
192
new->type = SETUP_APPLE_PROPERTIES;
193
new->len = size;
194
new->next = 0;
195
196
data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
197
if (!data) {
198
boot_params->hdr.setup_data = (unsigned long)new;
199
} else {
200
while (data->next)
201
data = (struct setup_data *)(unsigned long)data->next;
202
data->next = (unsigned long)new;
203
}
204
}
205
206
static bool apple_match_product_name(void)
207
{
208
static const char type1_product_matches[][15] = {
209
"MacBookPro11,3",
210
"MacBookPro11,5",
211
"MacBookPro13,3",
212
"MacBookPro14,3",
213
"MacBookPro15,1",
214
"MacBookPro15,3",
215
"MacBookPro16,1",
216
"MacBookPro16,4",
217
};
218
const struct efi_smbios_type1_record *record;
219
const u8 *product;
220
221
record = (struct efi_smbios_type1_record *)efi_get_smbios_record(1);
222
if (!record)
223
return false;
224
225
product = efi_get_smbios_string(record, product_name);
226
if (!product)
227
return false;
228
229
for (int i = 0; i < ARRAY_SIZE(type1_product_matches); i++) {
230
if (!strcmp(product, type1_product_matches[i]))
231
return true;
232
}
233
234
return false;
235
}
236
237
static void apple_set_os(void)
238
{
239
struct {
240
unsigned long version;
241
efi_status_t (__efiapi *set_os_version)(const char *);
242
efi_status_t (__efiapi *set_os_vendor)(const char *);
243
} *set_os;
244
efi_status_t status;
245
246
if (!efi_is_64bit() || !apple_match_product_name())
247
return;
248
249
status = efi_bs_call(locate_protocol, &APPLE_SET_OS_PROTOCOL_GUID, NULL,
250
(void **)&set_os);
251
if (status != EFI_SUCCESS)
252
return;
253
254
if (set_os->version >= 2) {
255
status = set_os->set_os_vendor("Apple Inc.");
256
if (status != EFI_SUCCESS)
257
efi_err("Failed to set OS vendor via apple_set_os\n");
258
}
259
260
if (set_os->version > 0) {
261
/* The version being set doesn't seem to matter */
262
status = set_os->set_os_version("Mac OS X 10.9");
263
if (status != EFI_SUCCESS)
264
efi_err("Failed to set OS version via apple_set_os\n");
265
}
266
}
267
268
efi_status_t efi_adjust_memory_range_protection(unsigned long start,
269
unsigned long size)
270
{
271
efi_status_t status;
272
efi_gcd_memory_space_desc_t desc;
273
unsigned long end, next;
274
unsigned long rounded_start, rounded_end;
275
unsigned long unprotect_start, unprotect_size;
276
277
rounded_start = rounddown(start, EFI_PAGE_SIZE);
278
rounded_end = roundup(start + size, EFI_PAGE_SIZE);
279
280
if (memattr != NULL) {
281
status = efi_call_proto(memattr, set_memory_attributes,
282
rounded_start,
283
rounded_end - rounded_start,
284
EFI_MEMORY_RO);
285
if (status != EFI_SUCCESS) {
286
efi_warn("Failed to set EFI_MEMORY_RO attribute\n");
287
return status;
288
}
289
290
status = efi_call_proto(memattr, clear_memory_attributes,
291
rounded_start,
292
rounded_end - rounded_start,
293
EFI_MEMORY_XP);
294
if (status != EFI_SUCCESS)
295
efi_warn("Failed to clear EFI_MEMORY_XP attribute\n");
296
return status;
297
}
298
299
if (efi_dxe_table == NULL)
300
return EFI_SUCCESS;
301
302
/*
303
* Don't modify memory region attributes, if they are
304
* already suitable, to lower the possibility to
305
* encounter firmware bugs.
306
*/
307
308
for (end = start + size; start < end; start = next) {
309
310
status = efi_dxe_call(get_memory_space_descriptor, start, &desc);
311
312
if (status != EFI_SUCCESS)
313
break;
314
315
next = desc.base_address + desc.length;
316
317
/*
318
* Only system memory and more reliable memory are suitable for
319
* trampoline/kernel image placement. So only those memory types
320
* may need to have attributes modified.
321
*/
322
323
if ((desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory &&
324
desc.gcd_memory_type != EfiGcdMemoryTypeMoreReliable) ||
325
(desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0)
326
continue;
327
328
unprotect_start = max(rounded_start, (unsigned long)desc.base_address);
329
unprotect_size = min(rounded_end, next) - unprotect_start;
330
331
status = efi_dxe_call(set_memory_space_attributes,
332
unprotect_start, unprotect_size,
333
EFI_MEMORY_WB);
334
335
if (status != EFI_SUCCESS) {
336
efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n",
337
unprotect_start,
338
unprotect_start + unprotect_size,
339
status);
340
break;
341
}
342
}
343
return EFI_SUCCESS;
344
}
345
346
static void setup_unaccepted_memory(void)
347
{
348
efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID;
349
sev_memory_acceptance_protocol_t *proto;
350
efi_status_t status;
351
352
if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
353
return;
354
355
/*
356
* Enable unaccepted memory before calling exit boot services in order
357
* for the UEFI to not accept all memory on EBS.
358
*/
359
status = efi_bs_call(locate_protocol, &mem_acceptance_proto, NULL,
360
(void **)&proto);
361
if (status != EFI_SUCCESS)
362
return;
363
364
status = efi_call_proto(proto, allow_unaccepted_memory);
365
if (status != EFI_SUCCESS)
366
efi_err("Memory acceptance protocol failed\n");
367
}
368
369
static efi_char16_t *efistub_fw_vendor(void)
370
{
371
unsigned long vendor = efi_table_attr(efi_system_table, fw_vendor);
372
373
return (efi_char16_t *)vendor;
374
}
375
376
static const efi_char16_t apple[] = L"Apple";
377
378
static void setup_quirks(struct boot_params *boot_params)
379
{
380
if (!memcmp(efistub_fw_vendor(), apple, sizeof(apple))) {
381
if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
382
retrieve_apple_device_properties(boot_params);
383
384
apple_set_os();
385
}
386
}
387
388
static void setup_graphics(struct boot_params *boot_params)
389
{
390
struct screen_info *si = memset(&boot_params->screen_info, 0, sizeof(*si));
391
392
efi_setup_gop(si);
393
}
394
395
static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
396
{
397
efi_bs_call(exit, handle, status, 0, NULL);
398
for(;;)
399
asm("hlt");
400
}
401
402
/*
403
* Because the x86 boot code expects to be passed a boot_params we
404
* need to create one ourselves (usually the bootloader would create
405
* one for us).
406
*/
407
static efi_status_t efi_allocate_bootparams(efi_handle_t handle,
408
struct boot_params **bp)
409
{
410
efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
411
struct boot_params *boot_params;
412
struct setup_header *hdr;
413
efi_status_t status;
414
unsigned long alloc;
415
char *cmdline_ptr;
416
417
status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image);
418
if (status != EFI_SUCCESS) {
419
efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
420
return status;
421
}
422
423
status = efi_allocate_pages(PARAM_SIZE, &alloc, ULONG_MAX);
424
if (status != EFI_SUCCESS)
425
return status;
426
427
boot_params = memset((void *)alloc, 0x0, PARAM_SIZE);
428
hdr = &boot_params->hdr;
429
430
/* Assign the setup_header fields that the kernel actually cares about */
431
hdr->root_flags = 1;
432
hdr->vid_mode = 0xffff;
433
434
hdr->type_of_loader = 0x21;
435
hdr->initrd_addr_max = INT_MAX;
436
437
/* Convert unicode cmdline to ascii */
438
cmdline_ptr = efi_convert_cmdline(image);
439
if (!cmdline_ptr) {
440
efi_free(PARAM_SIZE, alloc);
441
return EFI_OUT_OF_RESOURCES;
442
}
443
444
efi_set_u64_split((unsigned long)cmdline_ptr, &hdr->cmd_line_ptr,
445
&boot_params->ext_cmd_line_ptr);
446
447
*bp = boot_params;
448
return EFI_SUCCESS;
449
}
450
451
static void add_e820ext(struct boot_params *params,
452
struct setup_data *e820ext, u32 nr_entries)
453
{
454
struct setup_data *data;
455
456
e820ext->type = SETUP_E820_EXT;
457
e820ext->len = nr_entries * sizeof(struct boot_e820_entry);
458
e820ext->next = 0;
459
460
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
461
462
while (data && data->next)
463
data = (struct setup_data *)(unsigned long)data->next;
464
465
if (data)
466
data->next = (unsigned long)e820ext;
467
else
468
params->hdr.setup_data = (unsigned long)e820ext;
469
}
470
471
static efi_status_t
472
setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
473
{
474
struct boot_e820_entry *entry = params->e820_table;
475
struct efi_info *efi = &params->efi_info;
476
struct boot_e820_entry *prev = NULL;
477
u32 nr_entries;
478
u32 nr_desc;
479
int i;
480
481
nr_entries = 0;
482
nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
483
484
for (i = 0; i < nr_desc; i++) {
485
efi_memory_desc_t *d;
486
unsigned int e820_type = 0;
487
unsigned long m = efi->efi_memmap;
488
489
#ifdef CONFIG_X86_64
490
m |= (u64)efi->efi_memmap_hi << 32;
491
#endif
492
493
d = efi_memdesc_ptr(m, efi->efi_memdesc_size, i);
494
switch (d->type) {
495
case EFI_RESERVED_TYPE:
496
case EFI_RUNTIME_SERVICES_CODE:
497
case EFI_RUNTIME_SERVICES_DATA:
498
case EFI_MEMORY_MAPPED_IO:
499
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
500
case EFI_PAL_CODE:
501
e820_type = E820_TYPE_RESERVED;
502
break;
503
504
case EFI_UNUSABLE_MEMORY:
505
e820_type = E820_TYPE_UNUSABLE;
506
break;
507
508
case EFI_ACPI_RECLAIM_MEMORY:
509
e820_type = E820_TYPE_ACPI;
510
break;
511
512
case EFI_LOADER_CODE:
513
case EFI_LOADER_DATA:
514
case EFI_BOOT_SERVICES_CODE:
515
case EFI_BOOT_SERVICES_DATA:
516
case EFI_CONVENTIONAL_MEMORY:
517
if (efi_soft_reserve_enabled() &&
518
(d->attribute & EFI_MEMORY_SP))
519
e820_type = E820_TYPE_SOFT_RESERVED;
520
else
521
e820_type = E820_TYPE_RAM;
522
break;
523
524
case EFI_ACPI_MEMORY_NVS:
525
e820_type = E820_TYPE_NVS;
526
break;
527
528
case EFI_PERSISTENT_MEMORY:
529
e820_type = E820_TYPE_PMEM;
530
break;
531
532
case EFI_UNACCEPTED_MEMORY:
533
if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
534
continue;
535
e820_type = E820_TYPE_RAM;
536
process_unaccepted_memory(d->phys_addr,
537
d->phys_addr + PAGE_SIZE * d->num_pages);
538
break;
539
default:
540
continue;
541
}
542
543
/* Merge adjacent mappings */
544
if (prev && prev->type == e820_type &&
545
(prev->addr + prev->size) == d->phys_addr) {
546
prev->size += d->num_pages << 12;
547
continue;
548
}
549
550
if (nr_entries == ARRAY_SIZE(params->e820_table)) {
551
u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
552
sizeof(struct setup_data);
553
554
if (!e820ext || e820ext_size < need)
555
return EFI_BUFFER_TOO_SMALL;
556
557
/* boot_params map full, switch to e820 extended */
558
entry = (struct boot_e820_entry *)e820ext->data;
559
}
560
561
entry->addr = d->phys_addr;
562
entry->size = d->num_pages << PAGE_SHIFT;
563
entry->type = e820_type;
564
prev = entry++;
565
nr_entries++;
566
}
567
568
if (nr_entries > ARRAY_SIZE(params->e820_table)) {
569
u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
570
571
add_e820ext(params, e820ext, nr_e820ext);
572
nr_entries -= nr_e820ext;
573
}
574
575
params->e820_entries = (u8)nr_entries;
576
577
return EFI_SUCCESS;
578
}
579
580
static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
581
u32 *e820ext_size)
582
{
583
efi_status_t status;
584
unsigned long size;
585
586
size = sizeof(struct setup_data) +
587
sizeof(struct e820_entry) * nr_desc;
588
589
if (*e820ext) {
590
efi_bs_call(free_pool, *e820ext);
591
*e820ext = NULL;
592
*e820ext_size = 0;
593
}
594
595
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
596
(void **)e820ext);
597
if (status == EFI_SUCCESS)
598
*e820ext_size = size;
599
600
return status;
601
}
602
603
static efi_status_t allocate_e820(struct boot_params *params,
604
struct setup_data **e820ext,
605
u32 *e820ext_size)
606
{
607
struct efi_boot_memmap *map __free(efi_pool) = NULL;
608
efi_status_t status;
609
__u32 nr_desc;
610
611
status = efi_get_memory_map(&map, false);
612
if (status != EFI_SUCCESS)
613
return status;
614
615
nr_desc = map->map_size / map->desc_size;
616
if (nr_desc > ARRAY_SIZE(params->e820_table) - EFI_MMAP_NR_SLACK_SLOTS) {
617
u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table) +
618
EFI_MMAP_NR_SLACK_SLOTS;
619
620
status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
621
if (status != EFI_SUCCESS)
622
return status;
623
}
624
625
if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
626
return allocate_unaccepted_bitmap(nr_desc, map);
627
628
return EFI_SUCCESS;
629
}
630
631
struct exit_boot_struct {
632
struct boot_params *boot_params;
633
struct efi_info *efi;
634
};
635
636
static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
637
void *priv)
638
{
639
const char *signature;
640
struct exit_boot_struct *p = priv;
641
642
signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
643
: EFI32_LOADER_SIGNATURE;
644
memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
645
646
efi_set_u64_split((unsigned long)efi_system_table,
647
&p->efi->efi_systab, &p->efi->efi_systab_hi);
648
p->efi->efi_memdesc_size = map->desc_size;
649
p->efi->efi_memdesc_version = map->desc_ver;
650
efi_set_u64_split((unsigned long)map->map,
651
&p->efi->efi_memmap, &p->efi->efi_memmap_hi);
652
p->efi->efi_memmap_size = map->map_size;
653
654
return EFI_SUCCESS;
655
}
656
657
static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
658
{
659
struct setup_data *e820ext = NULL;
660
__u32 e820ext_size = 0;
661
efi_status_t status;
662
struct exit_boot_struct priv;
663
664
priv.boot_params = boot_params;
665
priv.efi = &boot_params->efi_info;
666
667
status = allocate_e820(boot_params, &e820ext, &e820ext_size);
668
if (status != EFI_SUCCESS)
669
return status;
670
671
/* Might as well exit boot services now */
672
status = efi_exit_boot_services(handle, &priv, exit_boot_func);
673
if (status != EFI_SUCCESS)
674
return status;
675
676
/* Historic? */
677
boot_params->alt_mem_k = 32 * 1024;
678
679
status = setup_e820(boot_params, e820ext, e820ext_size);
680
if (status != EFI_SUCCESS)
681
return status;
682
683
return EFI_SUCCESS;
684
}
685
686
static bool have_unsupported_snp_features(void)
687
{
688
u64 unsupported;
689
690
unsupported = snp_get_unsupported_features(sev_get_status());
691
if (unsupported) {
692
efi_err("Unsupported SEV-SNP features detected: 0x%llx\n",
693
unsupported);
694
return true;
695
}
696
return false;
697
}
698
699
static void efi_get_seed(void *seed, int size)
700
{
701
efi_get_random_bytes(size, seed);
702
703
/*
704
* This only updates seed[0] when running on 32-bit, but in that case,
705
* seed[1] is not used anyway, as there is no virtual KASLR on 32-bit.
706
*/
707
*(unsigned long *)seed ^= kaslr_get_random_long("EFI");
708
}
709
710
static void error(char *str)
711
{
712
efi_warn("Decompression failed: %s\n", str);
713
}
714
715
static const char *cmdline_memmap_override;
716
717
static efi_status_t parse_options(const char *cmdline)
718
{
719
static const char opts[][14] = {
720
"mem=", "memmap=", "hugepages="
721
};
722
723
for (int i = 0; i < ARRAY_SIZE(opts); i++) {
724
const char *p = strstr(cmdline, opts[i]);
725
726
if (p == cmdline || (p > cmdline && isspace(p[-1]))) {
727
cmdline_memmap_override = opts[i];
728
break;
729
}
730
}
731
732
return efi_parse_options(cmdline);
733
}
734
735
static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry,
736
struct boot_params *boot_params)
737
{
738
unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
739
unsigned long addr, alloc_size, entry;
740
efi_status_t status;
741
u32 seed[2] = {};
742
743
boot_params_ptr = boot_params;
744
745
/* determine the required size of the allocation */
746
alloc_size = ALIGN(max_t(unsigned long, output_len, kernel_total_size),
747
MIN_KERNEL_ALIGN);
748
749
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
750
u64 range = KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR - kernel_total_size;
751
static const efi_char16_t ami[] = L"American Megatrends";
752
753
efi_get_seed(seed, sizeof(seed));
754
755
virt_addr += (range * seed[1]) >> 32;
756
virt_addr &= ~(CONFIG_PHYSICAL_ALIGN - 1);
757
758
/*
759
* Older Dell systems with AMI UEFI firmware v2.0 may hang
760
* while decompressing the kernel if physical address
761
* randomization is enabled.
762
*
763
* https://bugzilla.kernel.org/show_bug.cgi?id=218173
764
*/
765
if (efi_system_table->hdr.revision <= EFI_2_00_SYSTEM_TABLE_REVISION &&
766
!memcmp(efistub_fw_vendor(), ami, sizeof(ami))) {
767
efi_debug("AMI firmware v2.0 or older detected - disabling physical KASLR\n");
768
seed[0] = 0;
769
} else if (cmdline_memmap_override) {
770
efi_info("%s detected on the kernel command line - disabling physical KASLR\n",
771
cmdline_memmap_override);
772
seed[0] = 0;
773
}
774
775
boot_params->hdr.loadflags |= KASLR_FLAG;
776
}
777
778
status = efi_random_alloc(alloc_size, CONFIG_PHYSICAL_ALIGN, &addr,
779
seed[0], EFI_LOADER_CODE,
780
LOAD_PHYSICAL_ADDR,
781
EFI_X86_KERNEL_ALLOC_LIMIT);
782
if (status != EFI_SUCCESS)
783
return status;
784
785
entry = decompress_kernel((void *)addr, virt_addr, error);
786
if (entry == ULONG_MAX) {
787
efi_free(alloc_size, addr);
788
return EFI_LOAD_ERROR;
789
}
790
791
*kernel_entry = addr + entry;
792
793
return efi_adjust_memory_range_protection(addr, kernel_text_size) ?:
794
efi_adjust_memory_range_protection(addr + kernel_inittext_offset,
795
kernel_inittext_size);
796
}
797
798
static void __noreturn enter_kernel(unsigned long kernel_addr,
799
struct boot_params *boot_params)
800
{
801
/* enter decompressed kernel with boot_params pointer in RSI/ESI */
802
asm("jmp *%0"::"r"(kernel_addr), "S"(boot_params));
803
804
unreachable();
805
}
806
807
/*
808
* On success, this routine will jump to the relocated image directly and never
809
* return. On failure, it will exit to the firmware via efi_exit() instead of
810
* returning.
811
*/
812
void __noreturn efi_stub_entry(efi_handle_t handle,
813
efi_system_table_t *sys_table_arg,
814
struct boot_params *boot_params)
815
816
{
817
efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
818
const struct linux_efi_initrd *initrd = NULL;
819
unsigned long kernel_entry;
820
struct setup_header *hdr;
821
efi_status_t status;
822
823
efi_system_table = sys_table_arg;
824
/* Check if we were booted by the EFI firmware */
825
if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
826
efi_exit(handle, EFI_INVALID_PARAMETER);
827
828
if (!IS_ENABLED(CONFIG_EFI_HANDOVER_PROTOCOL) || !boot_params) {
829
status = efi_allocate_bootparams(handle, &boot_params);
830
if (status != EFI_SUCCESS)
831
efi_exit(handle, status);
832
}
833
834
hdr = &boot_params->hdr;
835
836
if (have_unsupported_snp_features())
837
efi_exit(handle, EFI_UNSUPPORTED);
838
839
if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES)) {
840
efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID);
841
if (efi_dxe_table &&
842
efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) {
843
efi_warn("Ignoring DXE services table: invalid signature\n");
844
efi_dxe_table = NULL;
845
}
846
}
847
848
/* grab the memory attributes protocol if it exists */
849
efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
850
851
status = efi_setup_5level_paging();
852
if (status != EFI_SUCCESS) {
853
efi_err("efi_setup_5level_paging() failed!\n");
854
goto fail;
855
}
856
857
#ifdef CONFIG_CMDLINE_BOOL
858
status = parse_options(CONFIG_CMDLINE);
859
if (status != EFI_SUCCESS) {
860
efi_err("Failed to parse options\n");
861
goto fail;
862
}
863
#endif
864
if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
865
unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
866
((u64)boot_params->ext_cmd_line_ptr << 32));
867
status = parse_options((char *)cmdline_paddr);
868
if (status != EFI_SUCCESS) {
869
efi_err("Failed to parse options\n");
870
goto fail;
871
}
872
}
873
874
if (efi_mem_encrypt > 0)
875
hdr->xloadflags |= XLF_MEM_ENCRYPTION;
876
877
status = efi_decompress_kernel(&kernel_entry, boot_params);
878
if (status != EFI_SUCCESS) {
879
efi_err("Failed to decompress kernel\n");
880
goto fail;
881
}
882
883
/*
884
* At this point, an initrd may already have been loaded by the
885
* bootloader and passed via bootparams. We permit an initrd loaded
886
* from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it.
887
*
888
* If the device path is not present, any command-line initrd=
889
* arguments will be processed only if image is not NULL, which will be
890
* the case only if we were loaded via the PE entry point.
891
*/
892
status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
893
&initrd);
894
if (status != EFI_SUCCESS)
895
goto fail;
896
if (initrd && initrd->size > 0) {
897
efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
898
&boot_params->ext_ramdisk_image);
899
efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
900
&boot_params->ext_ramdisk_size);
901
}
902
903
904
/*
905
* If the boot loader gave us a value for secure_boot then we use that,
906
* otherwise we ask the BIOS.
907
*/
908
if (boot_params->secure_boot == efi_secureboot_mode_unset)
909
boot_params->secure_boot = efi_get_secureboot();
910
911
/* Ask the firmware to clear memory on unclean shutdown */
912
efi_enable_reset_attack_mitigation();
913
914
efi_random_get_seed();
915
916
efi_retrieve_eventlog();
917
918
setup_graphics(boot_params);
919
920
setup_efi_pci(boot_params);
921
922
setup_quirks(boot_params);
923
924
setup_unaccepted_memory();
925
926
status = exit_boot(boot_params, handle);
927
if (status != EFI_SUCCESS) {
928
efi_err("exit_boot() failed!\n");
929
goto fail;
930
}
931
932
/*
933
* Call the SEV init code while still running with the firmware's
934
* GDT/IDT, so #VC exceptions will be handled by EFI.
935
*/
936
sev_enable(boot_params);
937
938
efi_5level_switch();
939
940
enter_kernel(kernel_entry, boot_params);
941
fail:
942
efi_err("efi_stub_entry() failed!\n");
943
944
efi_exit(handle, status);
945
}
946
947
efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
948
efi_system_table_t *sys_table_arg)
949
{
950
efi_stub_entry(handle, sys_table_arg, NULL);
951
}
952
953
#ifdef CONFIG_EFI_HANDOVER_PROTOCOL
954
void efi_handover_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
955
struct boot_params *boot_params)
956
{
957
memset(_bss, 0, _ebss - _bss);
958
efi_stub_entry(handle, sys_table_arg, boot_params);
959
}
960
961
#ifndef CONFIG_EFI_MIXED
962
extern __alias(efi_handover_entry)
963
void efi32_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
964
struct boot_params *boot_params);
965
966
extern __alias(efi_handover_entry)
967
void efi64_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
968
struct boot_params *boot_params);
969
#endif
970
#endif
971
972