Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/crypto/hash.h
29509 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* Hash: Hash algorithms under the crypto API
4
*
5
* Copyright (c) 2008 Herbert Xu <[email protected]>
6
*/
7
8
#ifndef _CRYPTO_HASH_H
9
#define _CRYPTO_HASH_H
10
11
#include <linux/crypto.h>
12
#include <linux/scatterlist.h>
13
#include <linux/slab.h>
14
#include <linux/string.h>
15
16
/* Set this bit for virtual address instead of SG list. */
17
#define CRYPTO_AHASH_REQ_VIRT 0x00000001
18
19
#define CRYPTO_AHASH_REQ_PRIVATE \
20
CRYPTO_AHASH_REQ_VIRT
21
22
struct crypto_ahash;
23
24
/**
25
* DOC: Message Digest Algorithm Definitions
26
*
27
* These data structures define modular message digest algorithm
28
* implementations, managed via crypto_register_ahash(),
29
* crypto_register_shash(), crypto_unregister_ahash() and
30
* crypto_unregister_shash().
31
*/
32
33
/*
34
* struct hash_alg_common - define properties of message digest
35
* @digestsize: Size of the result of the transformation. A buffer of this size
36
* must be available to the @final and @finup calls, so they can
37
* store the resulting hash into it. For various predefined sizes,
38
* search include/crypto/ using
39
* git grep _DIGEST_SIZE include/crypto.
40
* @statesize: Size of the block for partial state of the transformation. A
41
* buffer of this size must be passed to the @export function as it
42
* will save the partial state of the transformation into it. On the
43
* other side, the @import function will load the state from a
44
* buffer of this size as well.
45
* @base: Start of data structure of cipher algorithm. The common data
46
* structure of crypto_alg contains information common to all ciphers.
47
* The hash_alg_common data structure now adds the hash-specific
48
* information.
49
*/
50
#define HASH_ALG_COMMON { \
51
unsigned int digestsize; \
52
unsigned int statesize; \
53
\
54
struct crypto_alg base; \
55
}
56
struct hash_alg_common HASH_ALG_COMMON;
57
58
struct ahash_request {
59
struct crypto_async_request base;
60
61
unsigned int nbytes;
62
union {
63
struct scatterlist *src;
64
const u8 *svirt;
65
};
66
u8 *result;
67
68
struct scatterlist sg_head[2];
69
crypto_completion_t saved_complete;
70
void *saved_data;
71
72
void *__ctx[] CRYPTO_MINALIGN_ATTR;
73
};
74
75
/**
76
* struct ahash_alg - asynchronous message digest definition
77
* @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
78
* state of the HASH transformation at the beginning. This shall fill in
79
* the internal structures used during the entire duration of the whole
80
* transformation. No data processing happens at this point. Driver code
81
* implementation must not use req->result.
82
* @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
83
* function actually pushes blocks of data from upper layers into the
84
* driver, which then passes those to the hardware as seen fit. This
85
* function must not finalize the HASH transformation by calculating the
86
* final message digest as this only adds more data into the
87
* transformation. This function shall not modify the transformation
88
* context, as this function may be called in parallel with the same
89
* transformation object. Data processing can happen synchronously
90
* [SHASH] or asynchronously [AHASH] at this point. Driver must not use
91
* req->result.
92
* For block-only algorithms, @update must return the number
93
* of bytes to store in the API partial block buffer.
94
* @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
95
* transformation and retrieves the resulting hash from the driver and
96
* pushes it back to upper layers. No data processing happens at this
97
* point unless hardware requires it to finish the transformation
98
* (then the data buffered by the device driver is processed).
99
* @finup: **[optional]** Combination of @update and @final. This function is effectively a
100
* combination of @update and @final calls issued in sequence. As some
101
* hardware cannot do @update and @final separately, this callback was
102
* added to allow such hardware to be used at least by IPsec. Data
103
* processing can happen synchronously [SHASH] or asynchronously [AHASH]
104
* at this point.
105
* @digest: Combination of @init and @update and @final. This function
106
* effectively behaves as the entire chain of operations, @init,
107
* @update and @final issued in sequence. Just like @finup, this was
108
* added for hardware which cannot do even the @finup, but can only do
109
* the whole transformation in one run. Data processing can happen
110
* synchronously [SHASH] or asynchronously [AHASH] at this point.
111
* @setkey: Set optional key used by the hashing algorithm. Intended to push
112
* optional key used by the hashing algorithm from upper layers into
113
* the driver. This function can store the key in the transformation
114
* context or can outright program it into the hardware. In the former
115
* case, one must be careful to program the key into the hardware at
116
* appropriate time and one must be careful that .setkey() can be
117
* called multiple times during the existence of the transformation
118
* object. Not all hashing algorithms do implement this function as it
119
* is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
120
* implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
121
* this function. This function must be called before any other of the
122
* @init, @update, @final, @finup, @digest is called. No data
123
* processing happens at this point.
124
* @export: Export partial state of the transformation. This function dumps the
125
* entire state of the ongoing transformation into a provided block of
126
* data so it can be @import 'ed back later on. This is useful in case
127
* you want to save partial result of the transformation after
128
* processing certain amount of data and reload this partial result
129
* multiple times later on for multiple re-use. No data processing
130
* happens at this point. Driver must not use req->result.
131
* @import: Import partial state of the transformation. This function loads the
132
* entire state of the ongoing transformation from a provided block of
133
* data so the transformation can continue from this point onward. No
134
* data processing happens at this point. Driver must not use
135
* req->result.
136
* @export_core: Export partial state without partial block. Only defined
137
* for algorithms that are not block-only.
138
* @import_core: Import partial state without partial block. Only defined
139
* for algorithms that are not block-only.
140
* @init_tfm: Initialize the cryptographic transformation object.
141
* This function is called only once at the instantiation
142
* time, right after the transformation context was
143
* allocated. In case the cryptographic hardware has
144
* some special requirements which need to be handled
145
* by software, this function shall check for the precise
146
* requirement of the transformation and put any software
147
* fallbacks in place.
148
* @exit_tfm: Deinitialize the cryptographic transformation object.
149
* This is a counterpart to @init_tfm, used to remove
150
* various changes set in @init_tfm.
151
* @clone_tfm: Copy transform into new object, may allocate memory.
152
* @halg: see struct hash_alg_common
153
*/
154
struct ahash_alg {
155
int (*init)(struct ahash_request *req);
156
int (*update)(struct ahash_request *req);
157
int (*final)(struct ahash_request *req);
158
int (*finup)(struct ahash_request *req);
159
int (*digest)(struct ahash_request *req);
160
int (*export)(struct ahash_request *req, void *out);
161
int (*import)(struct ahash_request *req, const void *in);
162
int (*export_core)(struct ahash_request *req, void *out);
163
int (*import_core)(struct ahash_request *req, const void *in);
164
int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
165
unsigned int keylen);
166
int (*init_tfm)(struct crypto_ahash *tfm);
167
void (*exit_tfm)(struct crypto_ahash *tfm);
168
int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
169
170
struct hash_alg_common halg;
171
};
172
173
struct shash_desc {
174
struct crypto_shash *tfm;
175
void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
176
};
177
178
#define HASH_MAX_DIGESTSIZE 64
179
180
/*
181
* The size of a core hash state and a partial block. The final byte
182
* is the length of the partial block.
183
*/
184
#define HASH_STATE_AND_BLOCK(state, block) ((state) + (block) + 1)
185
186
187
/* Worst case is sha3-224. */
188
#define HASH_MAX_STATESIZE HASH_STATE_AND_BLOCK(200, 144)
189
190
/* This needs to match arch/s390/crypto/sha.h. */
191
#define S390_SHA_CTX_SIZE 216
192
193
/*
194
* Worst case is hmac(sha3-224-s390). Its context is a nested 'shash_desc'
195
* containing a 'struct s390_sha_ctx'.
196
*/
197
#define SHA3_224_S390_DESCSIZE HASH_STATE_AND_BLOCK(S390_SHA_CTX_SIZE, 144)
198
#define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + \
199
SHA3_224_S390_DESCSIZE)
200
#define MAX_SYNC_HASH_REQSIZE (sizeof(struct ahash_request) + \
201
HASH_MAX_DESCSIZE)
202
203
#define SHASH_DESC_ON_STACK(shash, ctx) \
204
char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
205
__aligned(__alignof__(struct shash_desc)); \
206
struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
207
208
#define HASH_REQUEST_ON_STACK(name, _tfm) \
209
char __##name##_req[sizeof(struct ahash_request) + \
210
MAX_SYNC_HASH_REQSIZE] CRYPTO_MINALIGN_ATTR; \
211
struct ahash_request *name = \
212
ahash_request_on_stack_init(__##name##_req, (_tfm))
213
214
#define HASH_REQUEST_CLONE(name, gfp) \
215
hash_request_clone(name, sizeof(__##name##_req), gfp)
216
217
#define CRYPTO_HASH_STATESIZE(coresize, blocksize) (coresize + blocksize + 1)
218
219
/**
220
* struct shash_alg - synchronous message digest definition
221
* @init: see struct ahash_alg
222
* @update: see struct ahash_alg
223
* @final: see struct ahash_alg
224
* @finup: see struct ahash_alg
225
* @digest: see struct ahash_alg
226
* @export: see struct ahash_alg
227
* @import: see struct ahash_alg
228
* @export_core: see struct ahash_alg
229
* @import_core: see struct ahash_alg
230
* @setkey: see struct ahash_alg
231
* @init_tfm: Initialize the cryptographic transformation object.
232
* This function is called only once at the instantiation
233
* time, right after the transformation context was
234
* allocated. In case the cryptographic hardware has
235
* some special requirements which need to be handled
236
* by software, this function shall check for the precise
237
* requirement of the transformation and put any software
238
* fallbacks in place.
239
* @exit_tfm: Deinitialize the cryptographic transformation object.
240
* This is a counterpart to @init_tfm, used to remove
241
* various changes set in @init_tfm.
242
* @clone_tfm: Copy transform into new object, may allocate memory.
243
* @descsize: Size of the operational state for the message digest. This state
244
* size is the memory size that needs to be allocated for
245
* shash_desc.__ctx
246
* @halg: see struct hash_alg_common
247
* @HASH_ALG_COMMON: see struct hash_alg_common
248
*/
249
struct shash_alg {
250
int (*init)(struct shash_desc *desc);
251
int (*update)(struct shash_desc *desc, const u8 *data,
252
unsigned int len);
253
int (*final)(struct shash_desc *desc, u8 *out);
254
int (*finup)(struct shash_desc *desc, const u8 *data,
255
unsigned int len, u8 *out);
256
int (*digest)(struct shash_desc *desc, const u8 *data,
257
unsigned int len, u8 *out);
258
int (*export)(struct shash_desc *desc, void *out);
259
int (*import)(struct shash_desc *desc, const void *in);
260
int (*export_core)(struct shash_desc *desc, void *out);
261
int (*import_core)(struct shash_desc *desc, const void *in);
262
int (*setkey)(struct crypto_shash *tfm, const u8 *key,
263
unsigned int keylen);
264
int (*init_tfm)(struct crypto_shash *tfm);
265
void (*exit_tfm)(struct crypto_shash *tfm);
266
int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
267
268
unsigned int descsize;
269
270
union {
271
struct HASH_ALG_COMMON;
272
struct hash_alg_common halg;
273
};
274
};
275
#undef HASH_ALG_COMMON
276
277
struct crypto_ahash {
278
bool using_shash; /* Underlying algorithm is shash, not ahash */
279
unsigned int statesize;
280
unsigned int reqsize;
281
struct crypto_tfm base;
282
};
283
284
struct crypto_shash {
285
struct crypto_tfm base;
286
};
287
288
/**
289
* DOC: Asynchronous Message Digest API
290
*
291
* The asynchronous message digest API is used with the ciphers of type
292
* CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
293
*
294
* The asynchronous cipher operation discussion provided for the
295
* CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
296
*/
297
298
static inline bool ahash_req_on_stack(struct ahash_request *req)
299
{
300
return crypto_req_on_stack(&req->base);
301
}
302
303
static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
304
{
305
return container_of(tfm, struct crypto_ahash, base);
306
}
307
308
/**
309
* crypto_alloc_ahash() - allocate ahash cipher handle
310
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
311
* ahash cipher
312
* @type: specifies the type of the cipher
313
* @mask: specifies the mask for the cipher
314
*
315
* Allocate a cipher handle for an ahash. The returned struct
316
* crypto_ahash is the cipher handle that is required for any subsequent
317
* API invocation for that ahash.
318
*
319
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
320
* of an error, PTR_ERR() returns the error code.
321
*/
322
struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
323
u32 mask);
324
325
struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
326
327
static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
328
{
329
return &tfm->base;
330
}
331
332
/**
333
* crypto_free_ahash() - zeroize and free the ahash handle
334
* @tfm: cipher handle to be freed
335
*
336
* If @tfm is a NULL or error pointer, this function does nothing.
337
*/
338
static inline void crypto_free_ahash(struct crypto_ahash *tfm)
339
{
340
crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
341
}
342
343
/**
344
* crypto_has_ahash() - Search for the availability of an ahash.
345
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
346
* ahash
347
* @type: specifies the type of the ahash
348
* @mask: specifies the mask for the ahash
349
*
350
* Return: true when the ahash is known to the kernel crypto API; false
351
* otherwise
352
*/
353
int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
354
355
static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
356
{
357
return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
358
}
359
360
static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
361
{
362
return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
363
}
364
365
/**
366
* crypto_ahash_blocksize() - obtain block size for cipher
367
* @tfm: cipher handle
368
*
369
* The block size for the message digest cipher referenced with the cipher
370
* handle is returned.
371
*
372
* Return: block size of cipher
373
*/
374
static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
375
{
376
return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
377
}
378
379
static inline struct hash_alg_common *__crypto_hash_alg_common(
380
struct crypto_alg *alg)
381
{
382
return container_of(alg, struct hash_alg_common, base);
383
}
384
385
static inline struct hash_alg_common *crypto_hash_alg_common(
386
struct crypto_ahash *tfm)
387
{
388
return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
389
}
390
391
/**
392
* crypto_ahash_digestsize() - obtain message digest size
393
* @tfm: cipher handle
394
*
395
* The size for the message digest created by the message digest cipher
396
* referenced with the cipher handle is returned.
397
*
398
*
399
* Return: message digest size of cipher
400
*/
401
static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
402
{
403
return crypto_hash_alg_common(tfm)->digestsize;
404
}
405
406
/**
407
* crypto_ahash_statesize() - obtain size of the ahash state
408
* @tfm: cipher handle
409
*
410
* Return the size of the ahash state. With the crypto_ahash_export()
411
* function, the caller can export the state into a buffer whose size is
412
* defined with this function.
413
*
414
* Return: size of the ahash state
415
*/
416
static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
417
{
418
return tfm->statesize;
419
}
420
421
static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
422
{
423
return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
424
}
425
426
static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
427
{
428
crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
429
}
430
431
static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
432
{
433
crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
434
}
435
436
/**
437
* crypto_ahash_reqtfm() - obtain cipher handle from request
438
* @req: asynchronous request handle that contains the reference to the ahash
439
* cipher handle
440
*
441
* Return the ahash cipher handle that is registered with the asynchronous
442
* request handle ahash_request.
443
*
444
* Return: ahash cipher handle
445
*/
446
static inline struct crypto_ahash *crypto_ahash_reqtfm(
447
struct ahash_request *req)
448
{
449
return __crypto_ahash_cast(req->base.tfm);
450
}
451
452
/**
453
* crypto_ahash_reqsize() - obtain size of the request data structure
454
* @tfm: cipher handle
455
*
456
* Return: size of the request data
457
*/
458
static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
459
{
460
return tfm->reqsize;
461
}
462
463
static inline void *ahash_request_ctx(struct ahash_request *req)
464
{
465
return req->__ctx;
466
}
467
468
/**
469
* crypto_ahash_setkey - set key for cipher handle
470
* @tfm: cipher handle
471
* @key: buffer holding the key
472
* @keylen: length of the key in bytes
473
*
474
* The caller provided key is set for the ahash cipher. The cipher
475
* handle must point to a keyed hash in order for this function to succeed.
476
*
477
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
478
*/
479
int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
480
unsigned int keylen);
481
482
/**
483
* crypto_ahash_finup() - update and finalize message digest
484
* @req: reference to the ahash_request handle that holds all information
485
* needed to perform the cipher operation
486
*
487
* This function is a "short-hand" for the function calls of
488
* crypto_ahash_update and crypto_ahash_final. The parameters have the same
489
* meaning as discussed for those separate functions.
490
*
491
* Return: see crypto_ahash_final()
492
*/
493
int crypto_ahash_finup(struct ahash_request *req);
494
495
/**
496
* crypto_ahash_final() - calculate message digest
497
* @req: reference to the ahash_request handle that holds all information
498
* needed to perform the cipher operation
499
*
500
* Finalize the message digest operation and create the message digest
501
* based on all data added to the cipher handle. The message digest is placed
502
* into the output buffer registered with the ahash_request handle.
503
*
504
* Return:
505
* 0 if the message digest was successfully calculated;
506
* -EINPROGRESS if data is fed into hardware (DMA) or queued for later;
507
* -EBUSY if queue is full and request should be resubmitted later;
508
* other < 0 if an error occurred
509
*/
510
static inline int crypto_ahash_final(struct ahash_request *req)
511
{
512
req->nbytes = 0;
513
return crypto_ahash_finup(req);
514
}
515
516
/**
517
* crypto_ahash_digest() - calculate message digest for a buffer
518
* @req: reference to the ahash_request handle that holds all information
519
* needed to perform the cipher operation
520
*
521
* This function is a "short-hand" for the function calls of crypto_ahash_init,
522
* crypto_ahash_update and crypto_ahash_final. The parameters have the same
523
* meaning as discussed for those separate three functions.
524
*
525
* Return: see crypto_ahash_final()
526
*/
527
int crypto_ahash_digest(struct ahash_request *req);
528
529
/**
530
* crypto_ahash_export() - extract current message digest state
531
* @req: reference to the ahash_request handle whose state is exported
532
* @out: output buffer of sufficient size that can hold the hash state
533
*
534
* This function exports the hash state of the ahash_request handle into the
535
* caller-allocated output buffer out which must have sufficient size (e.g. by
536
* calling crypto_ahash_statesize()).
537
*
538
* Return: 0 if the export was successful; < 0 if an error occurred
539
*/
540
int crypto_ahash_export(struct ahash_request *req, void *out);
541
542
/**
543
* crypto_ahash_import() - import message digest state
544
* @req: reference to ahash_request handle the state is imported into
545
* @in: buffer holding the state
546
*
547
* This function imports the hash state into the ahash_request handle from the
548
* input buffer. That buffer should have been generated with the
549
* crypto_ahash_export function.
550
*
551
* Return: 0 if the import was successful; < 0 if an error occurred
552
*/
553
int crypto_ahash_import(struct ahash_request *req, const void *in);
554
555
/**
556
* crypto_ahash_init() - (re)initialize message digest handle
557
* @req: ahash_request handle that already is initialized with all necessary
558
* data using the ahash_request_* API functions
559
*
560
* The call (re-)initializes the message digest referenced by the ahash_request
561
* handle. Any potentially existing state created by previous operations is
562
* discarded.
563
*
564
* Return: see crypto_ahash_final()
565
*/
566
int crypto_ahash_init(struct ahash_request *req);
567
568
/**
569
* crypto_ahash_update() - add data to message digest for processing
570
* @req: ahash_request handle that was previously initialized with the
571
* crypto_ahash_init call.
572
*
573
* Updates the message digest state of the &ahash_request handle. The input data
574
* is pointed to by the scatter/gather list registered in the &ahash_request
575
* handle
576
*
577
* Return: see crypto_ahash_final()
578
*/
579
int crypto_ahash_update(struct ahash_request *req);
580
581
/**
582
* DOC: Asynchronous Hash Request Handle
583
*
584
* The &ahash_request data structure contains all pointers to data
585
* required for the asynchronous cipher operation. This includes the cipher
586
* handle (which can be used by multiple &ahash_request instances), pointer
587
* to plaintext and the message digest output buffer, asynchronous callback
588
* function, etc. It acts as a handle to the ahash_request_* API calls in a
589
* similar way as ahash handle to the crypto_ahash_* API calls.
590
*/
591
592
/**
593
* ahash_request_set_tfm() - update cipher handle reference in request
594
* @req: request handle to be modified
595
* @tfm: cipher handle that shall be added to the request handle
596
*
597
* Allow the caller to replace the existing ahash handle in the request
598
* data structure with a different one.
599
*/
600
static inline void ahash_request_set_tfm(struct ahash_request *req,
601
struct crypto_ahash *tfm)
602
{
603
crypto_request_set_tfm(&req->base, crypto_ahash_tfm(tfm));
604
}
605
606
/**
607
* ahash_request_alloc() - allocate request data structure
608
* @tfm: cipher handle to be registered with the request
609
* @gfp: memory allocation flag that is handed to kmalloc by the API call.
610
*
611
* Allocate the request data structure that must be used with the ahash
612
* message digest API calls. During
613
* the allocation, the provided ahash handle
614
* is registered in the request data structure.
615
*
616
* Return: allocated request handle in case of success, or NULL if out of memory
617
*/
618
static inline struct ahash_request *ahash_request_alloc_noprof(
619
struct crypto_ahash *tfm, gfp_t gfp)
620
{
621
struct ahash_request *req;
622
623
req = kmalloc_noprof(sizeof(struct ahash_request) +
624
crypto_ahash_reqsize(tfm), gfp);
625
626
if (likely(req))
627
ahash_request_set_tfm(req, tfm);
628
629
return req;
630
}
631
#define ahash_request_alloc(...) alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__))
632
633
/**
634
* ahash_request_free() - zeroize and free the request data structure
635
* @req: request data structure cipher handle to be freed
636
*/
637
void ahash_request_free(struct ahash_request *req);
638
639
static inline void ahash_request_zero(struct ahash_request *req)
640
{
641
memzero_explicit(req, sizeof(*req) +
642
crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
643
}
644
645
static inline struct ahash_request *ahash_request_cast(
646
struct crypto_async_request *req)
647
{
648
return container_of(req, struct ahash_request, base);
649
}
650
651
/**
652
* ahash_request_set_callback() - set asynchronous callback function
653
* @req: request handle
654
* @flags: specify zero or an ORing of the flags
655
* CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
656
* increase the wait queue beyond the initial maximum size;
657
* CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
658
* @compl: callback function pointer to be registered with the request handle
659
* @data: The data pointer refers to memory that is not used by the kernel
660
* crypto API, but provided to the callback function for it to use. Here,
661
* the caller can provide a reference to memory the callback function can
662
* operate on. As the callback function is invoked asynchronously to the
663
* related functionality, it may need to access data structures of the
664
* related functionality which can be referenced using this pointer. The
665
* callback function can access the memory via the "data" field in the
666
* &crypto_async_request data structure provided to the callback function.
667
*
668
* This function allows setting the callback function that is triggered once
669
* the cipher operation completes.
670
*
671
* The callback function is registered with the &ahash_request handle and
672
* must comply with the following template::
673
*
674
* void callback_function(struct crypto_async_request *req, int error)
675
*/
676
static inline void ahash_request_set_callback(struct ahash_request *req,
677
u32 flags,
678
crypto_completion_t compl,
679
void *data)
680
{
681
flags &= ~CRYPTO_AHASH_REQ_PRIVATE;
682
flags |= req->base.flags & CRYPTO_AHASH_REQ_PRIVATE;
683
crypto_request_set_callback(&req->base, flags, compl, data);
684
}
685
686
/**
687
* ahash_request_set_crypt() - set data buffers
688
* @req: ahash_request handle to be updated
689
* @src: source scatter/gather list
690
* @result: buffer that is filled with the message digest -- the caller must
691
* ensure that the buffer has sufficient space by, for example, calling
692
* crypto_ahash_digestsize()
693
* @nbytes: number of bytes to process from the source scatter/gather list
694
*
695
* By using this call, the caller references the source scatter/gather list.
696
* The source scatter/gather list points to the data the message digest is to
697
* be calculated for.
698
*/
699
static inline void ahash_request_set_crypt(struct ahash_request *req,
700
struct scatterlist *src, u8 *result,
701
unsigned int nbytes)
702
{
703
req->src = src;
704
req->nbytes = nbytes;
705
req->result = result;
706
req->base.flags &= ~CRYPTO_AHASH_REQ_VIRT;
707
}
708
709
/**
710
* ahash_request_set_virt() - set virtual address data buffers
711
* @req: ahash_request handle to be updated
712
* @src: source virtual address
713
* @result: buffer that is filled with the message digest -- the caller must
714
* ensure that the buffer has sufficient space by, for example, calling
715
* crypto_ahash_digestsize()
716
* @nbytes: number of bytes to process from the source virtual address
717
*
718
* By using this call, the caller references the source virtual address.
719
* The source virtual address points to the data the message digest is to
720
* be calculated for.
721
*/
722
static inline void ahash_request_set_virt(struct ahash_request *req,
723
const u8 *src, u8 *result,
724
unsigned int nbytes)
725
{
726
req->svirt = src;
727
req->nbytes = nbytes;
728
req->result = result;
729
req->base.flags |= CRYPTO_AHASH_REQ_VIRT;
730
}
731
732
/**
733
* DOC: Synchronous Message Digest API
734
*
735
* The synchronous message digest API is used with the ciphers of type
736
* CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
737
*
738
* The message digest API is able to maintain state information for the
739
* caller.
740
*
741
* The synchronous message digest API can store user-related context in its
742
* shash_desc request data structure.
743
*/
744
745
/**
746
* crypto_alloc_shash() - allocate message digest handle
747
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
748
* message digest cipher
749
* @type: specifies the type of the cipher
750
* @mask: specifies the mask for the cipher
751
*
752
* Allocate a cipher handle for a message digest. The returned &struct
753
* crypto_shash is the cipher handle that is required for any subsequent
754
* API invocation for that message digest.
755
*
756
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
757
* of an error, PTR_ERR() returns the error code.
758
*/
759
struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
760
u32 mask);
761
762
struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
763
764
int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
765
766
static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
767
{
768
return &tfm->base;
769
}
770
771
/**
772
* crypto_free_shash() - zeroize and free the message digest handle
773
* @tfm: cipher handle to be freed
774
*
775
* If @tfm is a NULL or error pointer, this function does nothing.
776
*/
777
static inline void crypto_free_shash(struct crypto_shash *tfm)
778
{
779
crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
780
}
781
782
static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
783
{
784
return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
785
}
786
787
static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
788
{
789
return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
790
}
791
792
/**
793
* crypto_shash_blocksize() - obtain block size for cipher
794
* @tfm: cipher handle
795
*
796
* The block size for the message digest cipher referenced with the cipher
797
* handle is returned.
798
*
799
* Return: block size of cipher
800
*/
801
static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
802
{
803
return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
804
}
805
806
static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
807
{
808
return container_of(alg, struct shash_alg, base);
809
}
810
811
static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
812
{
813
return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
814
}
815
816
/**
817
* crypto_shash_digestsize() - obtain message digest size
818
* @tfm: cipher handle
819
*
820
* The size for the message digest created by the message digest cipher
821
* referenced with the cipher handle is returned.
822
*
823
* Return: digest size of cipher
824
*/
825
static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
826
{
827
return crypto_shash_alg(tfm)->digestsize;
828
}
829
830
static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
831
{
832
return crypto_shash_alg(tfm)->statesize;
833
}
834
835
static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
836
{
837
return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
838
}
839
840
static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
841
{
842
crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
843
}
844
845
static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
846
{
847
crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
848
}
849
850
/**
851
* crypto_shash_descsize() - obtain the operational state size
852
* @tfm: cipher handle
853
*
854
* The size of the operational state the cipher needs during operation is
855
* returned for the hash referenced with the cipher handle. This size is
856
* required to calculate the memory requirements to allow the caller allocating
857
* sufficient memory for operational state.
858
*
859
* The operational state is defined with struct shash_desc where the size of
860
* that data structure is to be calculated as
861
* sizeof(struct shash_desc) + crypto_shash_descsize(alg)
862
*
863
* Return: size of the operational state
864
*/
865
static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
866
{
867
return crypto_shash_alg(tfm)->descsize;
868
}
869
870
static inline void *shash_desc_ctx(struct shash_desc *desc)
871
{
872
return desc->__ctx;
873
}
874
875
/**
876
* crypto_shash_setkey() - set key for message digest
877
* @tfm: cipher handle
878
* @key: buffer holding the key
879
* @keylen: length of the key in bytes
880
*
881
* The caller provided key is set for the keyed message digest cipher. The
882
* cipher handle must point to a keyed message digest cipher in order for this
883
* function to succeed.
884
*
885
* Context: Softirq or process context.
886
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
887
*/
888
int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
889
unsigned int keylen);
890
891
/**
892
* crypto_shash_digest() - calculate message digest for buffer
893
* @desc: see crypto_shash_final()
894
* @data: see crypto_shash_update()
895
* @len: see crypto_shash_update()
896
* @out: see crypto_shash_final()
897
*
898
* This function is a "short-hand" for the function calls of crypto_shash_init,
899
* crypto_shash_update and crypto_shash_final. The parameters have the same
900
* meaning as discussed for those separate three functions.
901
*
902
* Context: Softirq or process context.
903
* Return: 0 if the message digest creation was successful; < 0 if an error
904
* occurred
905
*/
906
int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
907
unsigned int len, u8 *out);
908
909
/**
910
* crypto_shash_tfm_digest() - calculate message digest for buffer
911
* @tfm: hash transformation object
912
* @data: see crypto_shash_update()
913
* @len: see crypto_shash_update()
914
* @out: see crypto_shash_final()
915
*
916
* This is a simplified version of crypto_shash_digest() for users who don't
917
* want to allocate their own hash descriptor (shash_desc). Instead,
918
* crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
919
* directly, and it allocates a hash descriptor on the stack internally.
920
* Note that this stack allocation may be fairly large.
921
*
922
* Context: Softirq or process context.
923
* Return: 0 on success; < 0 if an error occurred.
924
*/
925
int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
926
unsigned int len, u8 *out);
927
928
int crypto_hash_digest(struct crypto_ahash *tfm, const u8 *data,
929
unsigned int len, u8 *out);
930
931
/**
932
* crypto_shash_export() - extract operational state for message digest
933
* @desc: reference to the operational state handle whose state is exported
934
* @out: output buffer of sufficient size that can hold the hash state
935
*
936
* This function exports the hash state of the operational state handle into the
937
* caller-allocated output buffer out which must have sufficient size (e.g. by
938
* calling crypto_shash_descsize).
939
*
940
* Context: Softirq or process context.
941
* Return: 0 if the export creation was successful; < 0 if an error occurred
942
*/
943
int crypto_shash_export(struct shash_desc *desc, void *out);
944
945
/**
946
* crypto_shash_import() - import operational state
947
* @desc: reference to the operational state handle the state imported into
948
* @in: buffer holding the state
949
*
950
* This function imports the hash state into the operational state handle from
951
* the input buffer. That buffer should have been generated with the
952
* crypto_ahash_export function.
953
*
954
* Context: Softirq or process context.
955
* Return: 0 if the import was successful; < 0 if an error occurred
956
*/
957
int crypto_shash_import(struct shash_desc *desc, const void *in);
958
959
/**
960
* crypto_shash_init() - (re)initialize message digest
961
* @desc: operational state handle that is already filled
962
*
963
* The call (re-)initializes the message digest referenced by the
964
* operational state handle. Any potentially existing state created by
965
* previous operations is discarded.
966
*
967
* Context: Softirq or process context.
968
* Return: 0 if the message digest initialization was successful; < 0 if an
969
* error occurred
970
*/
971
int crypto_shash_init(struct shash_desc *desc);
972
973
/**
974
* crypto_shash_finup() - calculate message digest of buffer
975
* @desc: see crypto_shash_final()
976
* @data: see crypto_shash_update()
977
* @len: see crypto_shash_update()
978
* @out: see crypto_shash_final()
979
*
980
* This function is a "short-hand" for the function calls of
981
* crypto_shash_update and crypto_shash_final. The parameters have the same
982
* meaning as discussed for those separate functions.
983
*
984
* Context: Softirq or process context.
985
* Return: 0 if the message digest creation was successful; < 0 if an error
986
* occurred
987
*/
988
int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
989
unsigned int len, u8 *out);
990
991
/**
992
* crypto_shash_update() - add data to message digest for processing
993
* @desc: operational state handle that is already initialized
994
* @data: input data to be added to the message digest
995
* @len: length of the input data
996
*
997
* Updates the message digest state of the operational state handle.
998
*
999
* Context: Softirq or process context.
1000
* Return: 0 if the message digest update was successful; < 0 if an error
1001
* occurred
1002
*/
1003
static inline int crypto_shash_update(struct shash_desc *desc, const u8 *data,
1004
unsigned int len)
1005
{
1006
return crypto_shash_finup(desc, data, len, NULL);
1007
}
1008
1009
/**
1010
* crypto_shash_final() - calculate message digest
1011
* @desc: operational state handle that is already filled with data
1012
* @out: output buffer filled with the message digest
1013
*
1014
* Finalize the message digest operation and create the message digest
1015
* based on all data added to the cipher handle. The message digest is placed
1016
* into the output buffer. The caller must ensure that the output buffer is
1017
* large enough by using crypto_shash_digestsize.
1018
*
1019
* Context: Softirq or process context.
1020
* Return: 0 if the message digest creation was successful; < 0 if an error
1021
* occurred
1022
*/
1023
static inline int crypto_shash_final(struct shash_desc *desc, u8 *out)
1024
{
1025
return crypto_shash_finup(desc, NULL, 0, out);
1026
}
1027
1028
static inline void shash_desc_zero(struct shash_desc *desc)
1029
{
1030
memzero_explicit(desc,
1031
sizeof(*desc) + crypto_shash_descsize(desc->tfm));
1032
}
1033
1034
static inline bool ahash_is_async(struct crypto_ahash *tfm)
1035
{
1036
return crypto_tfm_is_async(&tfm->base);
1037
}
1038
1039
static inline struct ahash_request *ahash_request_on_stack_init(
1040
char *buf, struct crypto_ahash *tfm)
1041
{
1042
struct ahash_request *req = (void *)buf;
1043
1044
crypto_stack_request_init(&req->base, crypto_ahash_tfm(tfm));
1045
return req;
1046
}
1047
1048
static inline struct ahash_request *ahash_request_clone(
1049
struct ahash_request *req, size_t total, gfp_t gfp)
1050
{
1051
return container_of(crypto_request_clone(&req->base, total, gfp),
1052
struct ahash_request, base);
1053
}
1054
1055
#endif /* _CRYPTO_HASH_H */
1056
1057