Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/debug/kdb/kdb_support.c
29519 views
1
/*
2
* Kernel Debugger Architecture Independent Support Functions
3
*
4
* This file is subject to the terms and conditions of the GNU General Public
5
* License. See the file "COPYING" in the main directory of this archive
6
* for more details.
7
*
8
* Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9
* Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
10
* 03/02/13 added new 2.5 kallsyms <[email protected]>
11
*/
12
13
#include <linux/types.h>
14
#include <linux/sched.h>
15
#include <linux/mm.h>
16
#include <linux/kallsyms.h>
17
#include <linux/stddef.h>
18
#include <linux/vmalloc.h>
19
#include <linux/ptrace.h>
20
#include <linux/highmem.h>
21
#include <linux/hardirq.h>
22
#include <linux/delay.h>
23
#include <linux/uaccess.h>
24
#include <linux/kdb.h>
25
#include <linux/slab.h>
26
#include <linux/string.h>
27
#include <linux/ctype.h>
28
#include "kdb_private.h"
29
30
/*
31
* kdbgetsymval - Return the address of the given symbol.
32
*
33
* Parameters:
34
* symname Character string containing symbol name
35
* symtab Structure to receive results
36
* Returns:
37
* 0 Symbol not found, symtab zero filled
38
* 1 Symbol mapped to module/symbol/section, data in symtab
39
*/
40
int kdbgetsymval(const char *symname, kdb_symtab_t *symtab)
41
{
42
kdb_dbg_printf(AR, "symname=%s, symtab=%px\n", symname, symtab);
43
memset(symtab, 0, sizeof(*symtab));
44
symtab->sym_start = kallsyms_lookup_name(symname);
45
if (symtab->sym_start) {
46
kdb_dbg_printf(AR, "returns 1, symtab->sym_start=0x%lx\n",
47
symtab->sym_start);
48
return 1;
49
}
50
kdb_dbg_printf(AR, "returns 0\n");
51
return 0;
52
}
53
EXPORT_SYMBOL(kdbgetsymval);
54
55
/**
56
* kdbnearsym() - Return the name of the symbol with the nearest address
57
* less than @addr.
58
* @addr: Address to check for near symbol
59
* @symtab: Structure to receive results
60
*
61
* WARNING: This function may return a pointer to a single statically
62
* allocated buffer (namebuf). kdb's unusual calling context (single
63
* threaded, all other CPUs halted) provides us sufficient locking for
64
* this to be safe. The only constraint imposed by the static buffer is
65
* that the caller must consume any previous reply prior to another call
66
* to lookup a new symbol.
67
*
68
* Note that, strictly speaking, some architectures may re-enter the kdb
69
* trap if the system turns out to be very badly damaged and this breaks
70
* the single-threaded assumption above. In these circumstances successful
71
* continuation and exit from the inner trap is unlikely to work and any
72
* user attempting this receives a prominent warning before being allowed
73
* to progress. In these circumstances we remain memory safe because
74
* namebuf[KSYM_NAME_LEN-1] will never change from '\0' although we do
75
* tolerate the possibility of garbled symbol display from the outer kdb
76
* trap.
77
*
78
* Return:
79
* * 0 - No sections contain this address, symtab zero filled
80
* * 1 - Address mapped to module/symbol/section, data in symtab
81
*/
82
int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab)
83
{
84
int ret = 0;
85
unsigned long symbolsize = 0;
86
unsigned long offset = 0;
87
static char namebuf[KSYM_NAME_LEN];
88
89
kdb_dbg_printf(AR, "addr=0x%lx, symtab=%px\n", addr, symtab);
90
memset(symtab, 0, sizeof(*symtab));
91
92
if (addr < 4096)
93
goto out;
94
95
symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset,
96
(char **)(&symtab->mod_name), namebuf);
97
if (offset > 8*1024*1024) {
98
symtab->sym_name = NULL;
99
addr = offset = symbolsize = 0;
100
}
101
symtab->sym_start = addr - offset;
102
symtab->sym_end = symtab->sym_start + symbolsize;
103
ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0';
104
105
if (symtab->mod_name == NULL)
106
symtab->mod_name = "kernel";
107
kdb_dbg_printf(AR, "returns %d symtab->sym_start=0x%lx, symtab->mod_name=%px, symtab->sym_name=%px (%s)\n",
108
ret, symtab->sym_start, symtab->mod_name, symtab->sym_name, symtab->sym_name);
109
out:
110
return ret;
111
}
112
113
static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1];
114
115
/*
116
* kallsyms_symbol_complete
117
*
118
* Parameters:
119
* prefix_name prefix of a symbol name to lookup
120
* max_len maximum length that can be returned
121
* Returns:
122
* Number of symbols which match the given prefix.
123
* Notes:
124
* prefix_name is changed to contain the longest unique prefix that
125
* starts with this prefix (tab completion).
126
*/
127
int kallsyms_symbol_complete(char *prefix_name, int max_len)
128
{
129
loff_t pos = 0;
130
int prefix_len = strlen(prefix_name), prev_len = 0;
131
int i, number = 0;
132
const char *name;
133
134
while ((name = kdb_walk_kallsyms(&pos))) {
135
if (strncmp(name, prefix_name, prefix_len) == 0) {
136
strscpy(ks_namebuf, name, sizeof(ks_namebuf));
137
/* Work out the longest name that matches the prefix */
138
if (++number == 1) {
139
prev_len = min_t(int, max_len-1,
140
strlen(ks_namebuf));
141
memcpy(ks_namebuf_prev, ks_namebuf, prev_len);
142
ks_namebuf_prev[prev_len] = '\0';
143
continue;
144
}
145
for (i = 0; i < prev_len; i++) {
146
if (ks_namebuf[i] != ks_namebuf_prev[i]) {
147
prev_len = i;
148
ks_namebuf_prev[i] = '\0';
149
break;
150
}
151
}
152
}
153
}
154
if (prev_len > prefix_len)
155
memcpy(prefix_name, ks_namebuf_prev, prev_len+1);
156
return number;
157
}
158
159
/*
160
* kallsyms_symbol_next
161
*
162
* Parameters:
163
* prefix_name prefix of a symbol name to lookup
164
* flag 0 means search from the head, 1 means continue search.
165
* buf_size maximum length that can be written to prefix_name
166
* buffer
167
* Returns:
168
* 1 if a symbol matches the given prefix.
169
* 0 if no string found
170
*/
171
int kallsyms_symbol_next(char *prefix_name, int flag, int buf_size)
172
{
173
int prefix_len = strlen(prefix_name);
174
static loff_t pos;
175
const char *name;
176
177
if (!flag)
178
pos = 0;
179
180
while ((name = kdb_walk_kallsyms(&pos))) {
181
if (!strncmp(name, prefix_name, prefix_len))
182
return strscpy(prefix_name, name, buf_size);
183
}
184
return 0;
185
}
186
187
/*
188
* kdb_symbol_print - Standard method for printing a symbol name and offset.
189
* Inputs:
190
* addr Address to be printed.
191
* symtab Address of symbol data, if NULL this routine does its
192
* own lookup.
193
* punc Punctuation for string, bit field.
194
* Remarks:
195
* The string and its punctuation is only printed if the address
196
* is inside the kernel, except that the value is always printed
197
* when requested.
198
*/
199
void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p,
200
unsigned int punc)
201
{
202
kdb_symtab_t symtab, *symtab_p2;
203
if (symtab_p) {
204
symtab_p2 = (kdb_symtab_t *)symtab_p;
205
} else {
206
symtab_p2 = &symtab;
207
kdbnearsym(addr, symtab_p2);
208
}
209
if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE)))
210
return;
211
if (punc & KDB_SP_SPACEB)
212
kdb_printf(" ");
213
if (punc & KDB_SP_VALUE)
214
kdb_printf(kdb_machreg_fmt0, addr);
215
if (symtab_p2->sym_name) {
216
if (punc & KDB_SP_VALUE)
217
kdb_printf(" ");
218
if (punc & KDB_SP_PAREN)
219
kdb_printf("(");
220
if (strcmp(symtab_p2->mod_name, "kernel"))
221
kdb_printf("[%s]", symtab_p2->mod_name);
222
kdb_printf("%s", symtab_p2->sym_name);
223
if (addr != symtab_p2->sym_start)
224
kdb_printf("+0x%lx", addr - symtab_p2->sym_start);
225
if (punc & KDB_SP_SYMSIZE)
226
kdb_printf("/0x%lx",
227
symtab_p2->sym_end - symtab_p2->sym_start);
228
if (punc & KDB_SP_PAREN)
229
kdb_printf(")");
230
}
231
if (punc & KDB_SP_SPACEA)
232
kdb_printf(" ");
233
if (punc & KDB_SP_NEWLINE)
234
kdb_printf("\n");
235
}
236
237
/*
238
* kdb_strdup - kdb equivalent of strdup, for disasm code.
239
* Inputs:
240
* str The string to duplicate.
241
* type Flags to kmalloc for the new string.
242
* Returns:
243
* Address of the new string, NULL if storage could not be allocated.
244
* Remarks:
245
* This is not in lib/string.c because it uses kmalloc which is not
246
* available when string.o is used in boot loaders.
247
*/
248
char *kdb_strdup(const char *str, gfp_t type)
249
{
250
size_t n = strlen(str) + 1;
251
char *s = kmalloc(n, type);
252
if (!s)
253
return NULL;
254
memcpy(s, str, n);
255
return s;
256
}
257
258
/*
259
* kdb_strdup_dequote - same as kdb_strdup(), but trims surrounding quotes from
260
* the input string if present.
261
* Remarks:
262
* Quotes are only removed if there is both a leading and a trailing quote.
263
*/
264
char *kdb_strdup_dequote(const char *str, gfp_t type)
265
{
266
size_t len = strlen(str);
267
char *s;
268
269
if (str[0] == '"' && len > 1 && str[len - 1] == '"') {
270
/* trim both leading and trailing quotes */
271
str++;
272
len -= 2;
273
}
274
275
len++; /* add space for NUL terminator */
276
277
s = kmalloc(len, type);
278
if (!s)
279
return NULL;
280
281
memcpy(s, str, len - 1);
282
s[len - 1] = '\0';
283
284
return s;
285
}
286
287
/*
288
* kdb_getarea_size - Read an area of data. The kdb equivalent of
289
* copy_from_user, with kdb messages for invalid addresses.
290
* Inputs:
291
* res Pointer to the area to receive the result.
292
* addr Address of the area to copy.
293
* size Size of the area.
294
* Returns:
295
* 0 for success, < 0 for error.
296
*/
297
int kdb_getarea_size(void *res, unsigned long addr, size_t size)
298
{
299
int ret = copy_from_kernel_nofault((char *)res, (char *)addr, size);
300
if (ret) {
301
if (!KDB_STATE(SUPPRESS)) {
302
kdb_func_printf("Bad address 0x%lx\n", addr);
303
KDB_STATE_SET(SUPPRESS);
304
}
305
ret = KDB_BADADDR;
306
} else {
307
KDB_STATE_CLEAR(SUPPRESS);
308
}
309
return ret;
310
}
311
312
/*
313
* kdb_putarea_size - Write an area of data. The kdb equivalent of
314
* copy_to_user, with kdb messages for invalid addresses.
315
* Inputs:
316
* addr Address of the area to write to.
317
* res Pointer to the area holding the data.
318
* size Size of the area.
319
* Returns:
320
* 0 for success, < 0 for error.
321
*/
322
int kdb_putarea_size(unsigned long addr, void *res, size_t size)
323
{
324
int ret = copy_to_kernel_nofault((char *)addr, (char *)res, size);
325
if (ret) {
326
if (!KDB_STATE(SUPPRESS)) {
327
kdb_func_printf("Bad address 0x%lx\n", addr);
328
KDB_STATE_SET(SUPPRESS);
329
}
330
ret = KDB_BADADDR;
331
} else {
332
KDB_STATE_CLEAR(SUPPRESS);
333
}
334
return ret;
335
}
336
337
/*
338
* kdb_getphys - Read data from a physical address. Validate the
339
* address is in range, use kmap_local_page() to get data
340
* similar to kdb_getarea() - but for phys addresses
341
* Inputs:
342
* res Pointer to the word to receive the result
343
* addr Physical address of the area to copy
344
* size Size of the area
345
* Returns:
346
* 0 for success, < 0 for error.
347
*/
348
static int kdb_getphys(void *res, unsigned long addr, size_t size)
349
{
350
unsigned long pfn;
351
void *vaddr;
352
struct page *page;
353
354
pfn = (addr >> PAGE_SHIFT);
355
if (!pfn_valid(pfn))
356
return 1;
357
page = pfn_to_page(pfn);
358
vaddr = kmap_local_page(page);
359
memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size);
360
kunmap_local(vaddr);
361
362
return 0;
363
}
364
365
/*
366
* kdb_getphysword
367
* Inputs:
368
* word Pointer to the word to receive the result.
369
* addr Address of the area to copy.
370
* size Size of the area.
371
* Returns:
372
* 0 for success, < 0 for error.
373
*/
374
int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size)
375
{
376
int diag;
377
__u8 w1;
378
__u16 w2;
379
__u32 w4;
380
__u64 w8;
381
*word = 0; /* Default value if addr or size is invalid */
382
383
switch (size) {
384
case 1:
385
diag = kdb_getphys(&w1, addr, sizeof(w1));
386
if (!diag)
387
*word = w1;
388
break;
389
case 2:
390
diag = kdb_getphys(&w2, addr, sizeof(w2));
391
if (!diag)
392
*word = w2;
393
break;
394
case 4:
395
diag = kdb_getphys(&w4, addr, sizeof(w4));
396
if (!diag)
397
*word = w4;
398
break;
399
case 8:
400
if (size <= sizeof(*word)) {
401
diag = kdb_getphys(&w8, addr, sizeof(w8));
402
if (!diag)
403
*word = w8;
404
break;
405
}
406
fallthrough;
407
default:
408
diag = KDB_BADWIDTH;
409
kdb_func_printf("bad width %zu\n", size);
410
}
411
return diag;
412
}
413
414
/*
415
* kdb_getword - Read a binary value. Unlike kdb_getarea, this treats
416
* data as numbers.
417
* Inputs:
418
* word Pointer to the word to receive the result.
419
* addr Address of the area to copy.
420
* size Size of the area.
421
* Returns:
422
* 0 for success, < 0 for error.
423
*/
424
int kdb_getword(unsigned long *word, unsigned long addr, size_t size)
425
{
426
int diag;
427
__u8 w1;
428
__u16 w2;
429
__u32 w4;
430
__u64 w8;
431
*word = 0; /* Default value if addr or size is invalid */
432
switch (size) {
433
case 1:
434
diag = kdb_getarea(w1, addr);
435
if (!diag)
436
*word = w1;
437
break;
438
case 2:
439
diag = kdb_getarea(w2, addr);
440
if (!diag)
441
*word = w2;
442
break;
443
case 4:
444
diag = kdb_getarea(w4, addr);
445
if (!diag)
446
*word = w4;
447
break;
448
case 8:
449
if (size <= sizeof(*word)) {
450
diag = kdb_getarea(w8, addr);
451
if (!diag)
452
*word = w8;
453
break;
454
}
455
fallthrough;
456
default:
457
diag = KDB_BADWIDTH;
458
kdb_func_printf("bad width %zu\n", size);
459
}
460
return diag;
461
}
462
463
/*
464
* kdb_putword - Write a binary value. Unlike kdb_putarea, this
465
* treats data as numbers.
466
* Inputs:
467
* addr Address of the area to write to..
468
* word The value to set.
469
* size Size of the area.
470
* Returns:
471
* 0 for success, < 0 for error.
472
*/
473
int kdb_putword(unsigned long addr, unsigned long word, size_t size)
474
{
475
int diag;
476
__u8 w1;
477
__u16 w2;
478
__u32 w4;
479
__u64 w8;
480
switch (size) {
481
case 1:
482
w1 = word;
483
diag = kdb_putarea(addr, w1);
484
break;
485
case 2:
486
w2 = word;
487
diag = kdb_putarea(addr, w2);
488
break;
489
case 4:
490
w4 = word;
491
diag = kdb_putarea(addr, w4);
492
break;
493
case 8:
494
if (size <= sizeof(word)) {
495
w8 = word;
496
diag = kdb_putarea(addr, w8);
497
break;
498
}
499
fallthrough;
500
default:
501
diag = KDB_BADWIDTH;
502
kdb_func_printf("bad width %zu\n", size);
503
}
504
return diag;
505
}
506
507
508
509
/*
510
* kdb_task_state_char - Return the character that represents the task state.
511
* Inputs:
512
* p struct task for the process
513
* Returns:
514
* One character to represent the task state.
515
*/
516
char kdb_task_state_char (const struct task_struct *p)
517
{
518
unsigned long tmp;
519
char state;
520
int cpu;
521
522
if (!p ||
523
copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
524
return 'E';
525
526
state = task_state_to_char((struct task_struct *) p);
527
528
if (is_idle_task(p)) {
529
/* Idle task. Is it really idle, apart from the kdb
530
* interrupt? */
531
cpu = kdb_process_cpu(p);
532
if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) {
533
if (cpu != kdb_initial_cpu)
534
state = '-'; /* idle task */
535
}
536
} else if (!p->mm && strchr("IMS", state)) {
537
state = tolower(state); /* sleeping system daemon */
538
}
539
return state;
540
}
541
542
/*
543
* kdb_task_state - Return true if a process has the desired state
544
* given by the mask.
545
* Inputs:
546
* p struct task for the process
547
* mask set of characters used to select processes; both NULL
548
* and the empty string mean adopt a default filter, which
549
* is to suppress sleeping system daemons and the idle tasks
550
* Returns:
551
* True if the process matches at least one criteria defined by the mask.
552
*/
553
bool kdb_task_state(const struct task_struct *p, const char *mask)
554
{
555
char state = kdb_task_state_char(p);
556
557
/* If there is no mask, then we will filter code that runs when the
558
* scheduler is idling and any system daemons that are currently
559
* sleeping.
560
*/
561
if (!mask || mask[0] == '\0')
562
return !strchr("-ims", state);
563
564
/* A is a special case that matches all states */
565
if (strchr(mask, 'A'))
566
return true;
567
568
return strchr(mask, state);
569
}
570
571